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AN IMPROVED ALGORITHM
FOR A BICRITERIA BATCHING SCHEDULING

PROBLEM ∗

Cheng He1, Xiumei Wang2, Yixun Lin2 and Yundong Mu1

Abstract. This note is concerned with the bicriteria scheduling prob-
lem on a series-batching machine to minimize maximum cost and
makespan. An O(n5) algorithm has been established previously. Here
is an improved algorithm which solves the problem in O(n3) time.
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1. Introduction

This note studies the bicriteria problem of scheduling n jobs on a series-
batching machine to minimize maximum cost and makespan simultaneously. A
series-batching machine is a machine that can handle up to b jobs in a batch and
jobs in a batch start and complete respectively at the same time, where the process-
ing time of a batch is equal to the sum of the processing times of jobs in the batch.
When a new batch starts, a constant setup time s occurs. For the series-batching
scheduling problems, some work has been known in the literature. For example,
Albers and Brucker [1] presented an O(n) algorithm to the problem of minimizing
weighted completion time, and Webster et al. [9] presented an O(n2)-time algo-
rithm to the problem of minimizing maximum lateness. On the other hand, for
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a bicriteria scheduling problem, the simultaneous optimization is to determine all
Pareto optimal solutions for two objectives. In this respect, Hoogeveen [8] showed
that the bicriteria problem of minimizing two maximum cost criteria is solvable in
O(n4) time. Our motivation is to generalize this result to the context of batching
scheduling problems. In our previous work [5, 6] we investigated bicriteria prob-
lems of certain combinations of criteria. In particular, we proposed an O(n5)-time
algorithm for the bicriteria scheduling problem of minimizing maximum cost and
makespan ([4]). In this note we further improve this algorithm to have complexity
O(n3) by a more elaborate analysis.

The rest of the note is organized as follows. In Section 1 we describe the problem
studied. Section 2 is dedicated to an improved result, an O(n3) algorithm. We shall
follow the terminology and notation of Brucker [2].

2. Problem formulation

We first formulate the problem as follows. Suppose that there are n jobs J1,
J2, . . . , Jn being scheduled on a batching machine. Each job Jj has a processing
time pj and a cost function fj(t) (j = 1, . . . , n). A schedule σ is a sequence
of batches σ = (B1, B2, . . . , Bl), where each batch Bk (k = 1, . . . , l) is a set
of jobs. Before the processing of each batch, there is a setup time s (a given
positive constant). The processing time of batch Bk is p(Bk) =

∑
Jj∈Bk

pj and

its completion time is C(Bk) =
∑k

q=1 p(Bq) + ks. The completion time of job Jj

in σ, for each Jj ∈ Bk and 1 ≤ k ≤ l, is Cj(σ) = C(Bk). This type of batching
machine is called series-batching machine, denoted by “s-batch” in short. Besides,
we only consider the unbounded model in which the number of jobs in each batch
is unlimited, denoted by “b ≥ n” in short.

For a schedule σ, fj(σ) = fj(Cj(σ)) is defined as the cost of job Jj and
fmax(σ) = maxn

j=1 fj(σ) is the maximum cost of σ. Without loss of generality,
we may assume that the processing times and the costs are integral. Additionally,
we assume that the cost function fj(t) is strictly increasing with respect to the
completion time t = Cj of job Jj (j = 1, . . . , n).

In the context of bicriteria scheduling, we always use a composition objective
function F (f(σ), g(σ)) to combine two performance criteria f(σ) and g(σ), where
F is an unknown function that is nondecreasing in both arguments. In this note,
the criteria f(σ) and g(σ) are maximum cost fmax(σ) and makespan Cmax(σ).
Following the traditional three-field notation of Graham et al. [3], this model is
denoted by 1|s-batch, b ≥ n|F (fmax, Cmax).

A feasible schedule σ is Pareto optimal, or nondominated, with respect to the
performance criteria fmax and Cmax if there is no feasible schedule π such that both
fmax(π) ≤ fmax(σ) and Cmax(π) ≤ Cmax(σ), where at least one of the inequali-
ties is strict. By solving a Pareto optimization problem in polynomial time, we
mean that we are able to identify all Pareto optimal schedules in polynomial time.
Moreover, with each schedule σ we associate a point (fmax(σ), Cmax(σ)) in R2 to
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represent the status of two criteria, which is called a Pareto optimal point if σ is
a Pareto optimal schedule.

The following result provides a general approach for finding Pareto optimal
schedules ([7]): Let y be the optimal value of the problem α|f ≤ x̂|g, and let x be
the optimal value of the problem α|g ≤ y|f . Then (x, y) is a Pareto optimal point
for α||F (f, g).

3. Pareto optimality algorithm

The algorithmic framework of this note is the same as that of [4], only we revise
the algorithm procedure into a more compact form. Especially, the main improve-
ment is embodied in the complexity analysis by using efficient data structures.

As in [4], the makespan of schedule σ is mainly dependent on the number l of
batches. So we have the following.

Proposition 3.1. For any schedule σ with l batches, Cmax(σ) = ls +
∑

1≤j≤n pj .

Therefore, in order to find all Pareto optimal schedules of the problem 1|s-
batch, b ≥ n| F (fmax, Cmax), it suffices to minimize fmax(σ) for every fixed l,
1 ≤ l ≤ n. For each given l, the algorithmic process of minimizing fmax(σ) of l
batches is called a Stage l. In each stage, we can compute the sums

C(l)
max = ls +

n∑
j=1

pj (1 ≤ l ≤ n)

in a preprocessing step, which takes O(n) time.
Moreover, by the classical Lawler algorithm for problem 1||fmax (see [2]), as

long as fmax(σ) is unchanged, every job is put as late as possible. This gives rise
to the following.

Definition 3.2. A feasible schedule σ = (B1, . . . , Bi, . . . , Bk, . . . , Bl) is called f-
tight if for every job Jj ∈ Bi and a subsequent batch Bk, fj(C(Bk)) > fmax(σ).

Proposition 3.3 ([4]). For each Pareto optimal point of the problem 1|s-
batch, b ≥ n|F (fmax, Cmax), there exists an f -tight schedule that attains this point.

By this property, we may confine ourselves to consider the feasible schedules
which are f -tight.

Now we modify the algorithm of [4] at each Stage l (1 ≤ l ≤ n). Suppose that
σ∗ is the last Pareto optimal schedule of the problem with at most l− 1 batches.

Initial solution procedure (stage l)

Step 0. Set J := {J1, J2, . . . , Jn}, k := l, t := C
(l)
max, and f = fmax(σ∗) − 1.

Step 1. Set Bk := {Jj ∈ J|fj(t) ≤ f}. If Bk = ∅, then go to Step 3, else set
k := k − 1, J := J \ Bk and t := t − p(Bk) − s.
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Step 2. If k > 0, go back to Step 1. If k = 0 and J = ∅, then return the f -tight
feasible schedule σl := (B1, B2, . . . , Bl). Otherwise k = 0 and J �= ∅, then Stage l
terminates (there is no feasible schedule with l batches), go to Stage l + 1.

Step 3. If k > 0 and Bk = ∅, then the whole algorithm terminates (there is no
other Pareto optimal schedule with l and more batches).

If k = 0 and J �= ∅ in Step 2 or k > 0 and Bk = ∅ in Step 3, we say that the
decision problem of fmax ≤ f is infeasible.

Proposition 3.4. Unless the decision problem 1|s-batch, b ≥ n, Cmax =
C

(l)
max|fmax ≤ f is infeasible, the Initial Solution Procedure produces an f -tight

feasible schedule of Stage l in O(ln) time.

The proof is similar to that of Proposition 3.4 in [4] and so omitted here.
We next consider solving the optimization problem 1|s-batch, b ≥ n, Cmax =

C
(l)
max|fmax of Stage l. The following data structure is useful in evaluating the

running time of the algorithm.

Definition 3.5. In a schedule σ = (B1, B2, . . . , Bl), if a job Jj ∈ Bi (1 ≤ i ≤ l),
then we say that Jj has order label Lj(σ) = i. Moreover, we denote λ(σ) =∑

1≤j≤n Lj(σ).

The algorithm of Stage l will be iterated from a feasible schedule to another. The
prominent improvement of this note is based on the relation of iterated solutions
represented in the following proposition.

Proposition 3.6. Let σ = (B1, B2, . . . , Bl) be an initial schedule of f = fmax(σ)
obtained by the Initial Solution Procedure and let σ′ = (B′

1, B
′
2, . . . , B

′
l) be another

f -tight feasible schedule of f ′ ≤ f − 1. Then the following relations are satisfied:

(1) B′
i ⊂ Bi ∪ Bi+1 (1 ≤ i ≤ l);

(2) λ(σ′) < λ(σ).

Proof. To obtain (1), we first show that ∪k≤i≤lB
′
i ⊆ ∪k≤i≤lBi for 1 ≤ k ≤ l. In

fact, σ is obtained by the Initial Solution Procedure with threshold f . Similarly, σ′

can be regarded to be obtained by the Initial Solution Procedure with threshold
f ′ ≤ f − 1. We compare the procedures for producing σ and σ′. Suppose that
tk = C(Bk) and t′k = C(B′

k). Then B′
k = {Jj ∈ J′|fj(t′k) ≤ f ′} and Bk = {Jj ∈

J|fj(tk) ≤ fmax(σ)}. We show the above-mentioned inclusion relation by induction
on k backwards. For k = l, t′l = tl = C

(l)
max. If Jj ∈ B′

l , then fj(tl) = fj(t′l) ≤ f ′ <
fmax(σ) and so Jj ∈ Bl, i.e., B′

l ⊆ Bl. Assume that ∪k+1≤i≤lB
′
i ⊆ ∪k+1≤i≤lBi.

Then t′k ≥ tk, and fj(tk) ≤ fj(t′k) ≤ f ′ < fmax(σ) for any job Jj ∈ B′
k and so Jj

belongs to Bk or it has been deleted from J (that is, B′
k ⊆ ∪k≤i≤lBi). Therefore

∪k≤i≤lB
′
i ⊆ ∪k≤i≤lBi by the induction hypothesis.

By the above inclusion relation it follows that C(Bi) ≤ C(B′
i)(1 ≤ i ≤ l).

Furthermore, we can show that C(B′
i) < C(Bi+1)(1 ≤ i < l). Suppose not. Then

ti+1 = C(Bi+1) ≤ C(B′
i) = t′i for some i. Thus ∪i≤h≤lB

′
h ⊆ ∪i+1≤h≤lBh, and

∪1≤h≤iBh ⊆ ∪1≤h≤i−1B
′
h. In the procedure of producing σ′, there are i−1 batches
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before the time t′i−1. Therefore, in the procedure of producing σ (note that f ≥
f ′ + 1), there are at most i− 1 batches before the time ti. This contradicts that σ
has l batches. So (1) follows by C(Bi) ≤ C(B′

i) < C(Bi+1) (1 ≤ i ≤ l).
By (1), we have Lj(σ′) ≤ Lj(σ) for every job Jj (1 ≤ j ≤ n). Thus λ(σ′) ≤ λ(σ).

If this inequality holds with equality, then every job has the same order label, thus
σ = σ′. This contradicts that fmax(σ′) < fmax(σ). Consequently, (2) holds. The
proof is completed. �

Let σ0 = (B1, B2, . . . , Bl) be the f -tight feasible schedule of Stage l and f =
fmax(σ0) − 1. We have the following procedure for producing iterated solutions.

Iteration procedure (stage l)

Step 0. Set J := {J1, J2, . . . , Jn}, k := l, t := C
(l)
max, and f = fmax(σ0) − 1.

Step 1. Set B′
k := {Jj ∈ J∩ (Bk ∪Bk+1)|fj(t) ≤ f}. If B′

k = ∅, then go to Step 3,
else set k := k − 1, J := J \ B′

k and t := t − p(B′
k) − s.

Step 2. If k > 0, go back to Step 1. If k = 0 and J = ∅, then return the f -
tight feasible schedule σ′ := (B′

1, B
′
2, . . . , B

′
l), which is an improved schedule of σ0.

Otherwise k = 0 and J �= ∅, then Stage l terminates (there is no more feasible
schedule with l batches), return the optimal schedule σ0 of Stage l, and go to Stage
l + 1.

Step 3. If k > 0 and B′
k = ∅, then the whole algorithm terminates (there is no

other Pareto optimal schedule with l and more batches), return the last Pareto
optimal schedule σ0.

The crucial point of the complexity improvement lies in the following.

Proposition 3.7. The Iteration Procedure correctly gives three feasible conclu-
sions:

(1) an improved schedule σ′ is obtained;
(2) σ0 is an optimal schedule of Stage l;
(3) σ0 is the last Pareto optimal schedule.

Moreover, the running time of the procedure is O(n).

Proof. The correctness of the batching is based on Proposition 3.6. There are three
outcomes as follows. (1) If the procedure stops at Step 2 with k = 0 and J = ∅,
then all jobs are exactly assigned into l batches and we get a schedule σ′ with
fmax(σ′) ≤ fmax(σ0)−1, which is an improved schedule. (2) If the procedure stops
at Step 2 with k = 0 and J �= ∅, then n jobs cannot be assigned into l batches
to get a better schedule of σ0. So σ0 is an optimal schedule of Stage l. (3) If the
procedure stops at Step 3 with k > 0 and B′

k = ∅, then any schedule with at
least l batches cannot has fmax(σ) < fmax(σ0), thus σ0 is the last Pareto optimal
schedule.
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As for the running time, we see that the procedure has l+1 rounds. Let bk = |Bk|
be the number of jobs in batch Bk. In the k-th round, the number of values fj(t) is
at most bk+bk+1 and each value is compared with f . Therefore the overall running
time is bounded by 2(bl+1 + bl + bl + bl−1 + bl−1 + bl−2 + . . . + b2 + b1 + b1 + b0) =
4Σ1≤i≤lbi = 4n = O(n). This completes the proof. �

With the above preparations, we can state the main algorithm as follows.

Pareto optimality algorithm

Step 0.(Initiation): Let σ∗
1 = (B1), where B1 = {J1, J2, . . . , Jn}, be the schedule

of one batch containing all jobs. Write f
(1)
max = fmax(σ∗

1) = max1≤j≤n{fj(C
(1)
max)}.

Then (f (1)
max, C

(1)
max) is the first Pareto optimal point. Set m := 1, l = 1, i1 := 1.

Step 1. (Decision Step): If l = n, then go to Step 3; otherwise let l := l + 1. To
decide whether there exists a Pareto optimal schedule of l batches, let f = f

(im)
max −1

and run the Initial Solution Procedure. If the procedure stops at Step 3 with the
conclusion that there is no other Pareto optimal schedule with l and more batches,
then go to Step 3. If the procedure stops at Step 2 with the conclusion that there
is no feasible schedule with l, then go back to the beginning of this step. Otherwise
a feasible schedule is obtained, which is an initial schedule of Stage l.

Step 2. (Stage l): With the initial schedule σ0 = (B1, B2, . . . , Bl) obtained previ-
ously, we carry out the Iteration Procedure. There are three outcomes:

(1) If the procedure returns an improved schedule σ′, then set σ0 := σ′ and go
back to the beginning of Step 2.

(2) If the procedure stops at Step 2 with an optimal schedule σ0 of Stage l, then
set σ∗

l = σ0 and set m := m + 1 and im := l. Write f
(im)
max = fmax(σ∗

im
). Then

(f (im)
max , C

(im)
max ) is the m-th Pareto optimal point. Go back to Step 1.

(3) If the procedure stops at Step 3 with the last Pareto optimal schedule σ0, then
set σ∗

l = σ0 and set m := m + 1 and im := l. Write f
(im)
max = fmax(σ∗

im
). Then

(f (im)
max , C

(im)
max ) is the last Pareto optimal point.

Step 3. (Termination): Return all Pareto optimal schedules σ∗
i1 , σ

∗
i2 , . . . , σ

∗
im

ob-
tained.

Finally, we come to the conclusion of this paper.

Theorem 3.8. The Pareto Optimality Algorithm produces all Pareto optimal
points of problem 1|s-batch, b ≥ n|F (fmax, Cmax) in O(n3) time.

Proof. When the algorithm is carried out stage by stage, the number l of batches
is increasing and so C

(i1)
max < C

(i2)
max < . . . < C

(im)
max . By the Initial Solution Procedure

and the Iteration Procedure, we see that f
(i1)
max > f

(i2)
max > . . . > f

(im)
max . By Proposi-

tion 3.7, the algorithm terminates when no further Pareto optimal schedules can
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be found. Hence the schedules obtained by the algorithm are all Pareto optimal
schedules.

We next consider the running time of the algorithm. Similar to Proposition 3.6,
we have the following claim.

Claim. Suppose that σ is the feasible schedule of Stage l − 1 obtained by the
Initial Solution Procedure and σ′ is the Pareto optimal schedule of Stage l. Then
λ(σ) < λ(σ′) (if the number of batches of σ′ is larger than l, the conclusion is still
established).

In fact, without loss of generality we may assume that σ = (B1, B2, . . . , Bl−1)
and σ′ = (B′

1, B
′
2, . . . , B

′
l). Note that in the procedure producing σ′, the threshold

is f ′ < f = fmax(σ). If Jj ∈ B′
l , then fj(C

(l−1)
max ) < fj(C

(l)
max) ≤ f ′ < f , thus Jj ∈

Bl−1. So we have B′
l ⊆ Bl−1. Furthermore, by comparing each batch backwards

(as in Proposition 3.6), we can see that ∪k≤i≤lB
′
i ⊆ ∪k−1≤i≤l−1Bi for 1 ≤ k ≤ l.

By changing the schedule from σ to σ′, the order label Lj of each job is either
unchanged or increasing by one. Hence Lj(σ) ≤ Lj(σ′). However, there must be
some jobs, say those in B′

l , whose order labels are strictly increasing. Therefore
λ(σ) < λ(σ′), proving the claim.

By Proposition 3.6, during each stage the value of λ(σ) is strictly decreasing. By
the above claim, when the stage number l changes in the reverse order, the value
of λ(σ) is also strictly decreasing. Hence all values of λ(σ) in our algorithm are dif-
ferent and its maximum value is given by λ(σ) =

∑
1≤j≤n Lj(σ) ≤ 1+2+ . . .+n =

1
2n(n−1). Therefore the total number of the schedules generated by the algorithm
is O(n2). By Proposition 3.7, the computation of generating each schedule in the
Iteration Procedure takes O(n) time. So the total running time of all iteration
procedures in the algorithm is O(n3). On the other hand, by Proposition 3.4, the
computation of generating each initial schedule in the Initial Solution Procedure
takes O(ln) time. So the total running time of all Initial Solution Procedures in
the algorithm is also O(n3), as

∑
1≤l≤n ln = (1+2+. . . +n)n = 1

2n2(n− 1). Hence
the overall complexity of the algorithm is O(n3), completing the proof. �
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