
RAIRO-Oper. Res. 47 (2013) 33–46 RAIRO Operations Research

DOI: 10.1051/ro/2013025 www.rairo-ro.org

MINIMIZING THE NUMBER OF TARDY
JOBS FOR THE SINGLE MACHINE SCHEDULING

PROBLEM: MIP-BASED LOWER AND UPPER BOUNDS

Cyril Briand
1,2

and Samia Ourari
3

Abstract. This paper considers the problem of scheduling n jobs on
a single machine. A fixed processing time and an execution interval
are associated with each job. Preemption is not allowed. The objective
is to find a feasible job sequence that minimizes the number of tardy
jobs. On the basis of an original mathematical integer programming
formulation, this paper shows how good-quality lower and upper bounds
can be computed. Numerical experiments are provided for assessing the
proposed approach.

Keywords. Single machine scheduling, tardy jobs, dominance condi-
tions, mixed-integer programming.

Mathematics Subject Classification. 90B35, 90C11.

1. Introduction

A single machine scheduling problem (SMSP) consists of a set V of n jobs
to be sequenced on a single disjunctive resource. The interval [rj , dj ] defines the
execution window of each job j, where rj is the release date of job j and dj , its
due-date. The processing time pj of j is known and preemption is not allowed. A
job sequence σ is said feasible if, for any job j ∈ V , sj ≥ rj and sj + pj ≤ dj , sj

being the earliest starting time of job j in σ.
In this paper, we take an interest in finding a job sequence that minimizes the

number of late jobs, problem referred as 1|rj |
∑

Uj in the literature, where Uj is

Received December 10, 2012. Accepted December 13, 2012.

1 CNRS, LAAS, 7 avenue du colonel Roche, 31077 Toulouse, France. briand@laas.fr
2 Université de Toulouse, UPS, INSA, INP, ISAE, LAAS, 31077 Toulouse, France
3 CDTA, lotissement du 20 août 1956, Baba Hassen, Alger, Algeria. sourari@cdta.dz

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2013

http://dx.doi.org/10.1051/ro/2013025
http://www.rairo-ro.org
http://www.edpsciences.org


34 C. BRIAND AND S. OURARI

set to 1 if job j is late, i.e., Uj ← (sj + pj > dj). This problem has received
considerable attention both in industry and in computer science where one has to
decide whether to accept or to reject a new job, provided that all accepted jobs have
to be completed on time on the machine (or the processor). This problem naturally
also arises in more complex scheduling environment with several resources and
precedence constraints, which gives motivation for determining procedures able to
solve efficiently the single resource problem.

From the complexity viewpoint, let us mention that determining whether it
exists a feasible sequence (i.e., all jobs meet their due date) is NP-complete for
the single machine problem [19]. The problem of minimizing the number of tardy
jobs (1|rj |

∑
Uj) is strongly NP-hard [12], as well as the problem of minimizing

the weighted number of tardy jobs (1|rj |
∑

wjUj). When dj = d, the problem with
weighted jobs (1|dj = d|

∑
wjUj) remains hard [14], whereas the unweighted case

(1|dj = d|
∑

Uj) becomes polynomially solvable.
The paper is structured as follows. First, Section 2 proposes a brief analysis of

the literature. Then Section 3 focuses on the problem of finding a feasible sequence
to the SMSP and recalls a dominance theorem. In Section 4, a mathematical integer
program (MIP) for determining a feasible job sequence, initially proposed in [6],
is detailed. The following section discusses the validity of the dominance theorem
stated in Section 3 for the case of the

∑
Uj criterion. Section 6 shows how the

MIP of Section 4 can be adapted for computing upper bounds and lower bounds
to the 1|rj |

∑
Uj problem. The last section is devoted to the presentation and the

analysis of our computational experiments.

2. Related works

In the sequel, we review some important papers that directly deal with this
problem, as well as some other approaches that consider additional assumptions
or criteria.

For the basic NP-hard 1|rj |
∑

Uj and 1|rj |
∑

wjUj problems, efficient branch-
and-bound procedures are reported in the literature [4,9,20]. The one of M’Hallah
and Bulfin [20] is known as very effective since it is able to cope with both un-
weighted and weighted versions of the problem, solving instances with more than
200 jobs in less than 200 seconds. It also succeed in solving all problem instances
that were reported as difficult by Baptiste et al. [4]. Many older works also deal
with minimization of tardy jobs and we refer the reader to [20] for an up-to-date
review.

When additional assumptions are made, 1|rj |
∑

Uj problems can become solv-
able in polynomial time. In the special case where release dates (or due dates)
are equal, 1||

∑
Uj problems can be solved in O(n log(n)) using Moore’s well

known algorithm [22]. Considering the case where release and due dates of jobs
are agreeable, i.e., ri < rj ⇒ di ≤ dj , Kise, Ibaraki and Mine proposed a dynamic
programming algorithm that runs in O(n2) [15]. Under this same assumption,
an O(n log(n)) algorithm was later proposed by Lawler in 1982 [16]. Lawler [17]



MINIMIZING THE NUMBER OF TARDY JOBS FOR THE SMSP 35

also described an O(n log(n)) algorithm that works on preemptive nested prob-
lems 1|rj , nested, pmtn|

∑
Uj, i.e., job preemption is allowed and job execution

windows are nested: ri < rj ⇒ di ≥ dj or di > dj ⇒ ri ≤ rj . More recently, con-
sidering the general preemptive problem 1|rj , pmtn|

∑
Uj, Baptiste designed an

algorithm that runs in O(n4) [3]. When processing times are equal, Carlier [7] pro-
posed in the early eighties a O(n3 log(n)) procedure. Nevertheless, this procedure
has been proved incorrect by Chrobak et al. [8] who exhibit a new optimal O(n5)
algorithm.

When jobs are weighted and release dates are identical, 1||
∑

wjUj problems can
be solved using dynamic programming or ad-hoc branch-and-bound procedures,
as the efficient one of M’Hallah and Bulfin [21] that allows to consider problem
instances with up to 2,500 jobs. Using variable fixing techniques, Baptiste et al.
recently propose a MIP formulation [5] that solves a generalization of the previ-
ous problem with both due dates and deadlines, which is able to tackle problem
instances with 50,000 jobs.

More recently, many works took an interest in some extensions of the 1|rj |
∑

Uj

problem, taking other criterion or other constraints into consideration. In [25],
the authors studied the problem of minimizing the number of tardy jobs when
processing times are controllable. They consider a general convex decreasing re-
source consumption function, prove the NP-hardness of the problem, and assess
the efficiency of three specific heuristics. Recently, focusing on the minimization
of both flowtime and number of tardy jobs, Erenay et al. propose an algorithm
based on a beam-search methodology and observe that it provides efficient sched-
ules in most cases, comparing to other metaheuristic approaches [10] . Guohua
and Benjamin [13] consider a single machine scheduling problem with dual cri-
teria, i.e., the minimization of the total weighted earliness subject to minimum
number of tardy jobs, discuss several dominance properties of optimal solutions
and propose efficient solving heuristic and exact procedures. Lee and Kim stud-
ied the 1|rj |

∑
Uj problem when periodic maintenance activities are imposed on

the machine [18]. They provide a Mathematical Integer Program (MIP) to solve
the problem optimally, propose a two-phase algorithm and give computational re-
sults for comparing both approaches in terms of quality. Tuon et al. consider a
multi-agent version of the SMSP [24] where jobs are distributed among agents,
each agent competing to perform his jobs on the machine. Every agent aims at
minimizing the number of tardy jobs, provided a global objective function has also
to be optimized. Considering both a ε−constraint approach and a linear combi-
nation of objectives, the authors give complexity results and provide a dynamic
program that can tackle this multi-objective problem in pseudo-polynomial time.
Aloulou and Della-Croce [2] consider a robust variant of the 1|rj |

∑
Uj problem

where processing times are uncertain and modeled as a set of possible values (i.e.,
scenarios). They take interest in determining the best worst-case among all the
possible scenarios and give some complexity results. Aissi et al. also consider this
problem when due dates are uncertain [1] and provide complexity results together
with some approximation algorithms.



36 C. BRIAND AND S. OURARI

From this brief review of the literature, we observe that minimizing the number
of tardy jobs is still an attractive objective due to its computational hardness on
the one hand, and its practical interest, on the other hand. This paper describes a
generic MIP for computing good-quality lower and upper bounds for the 1|rj |

∑
Uj

problem. The MIP formulation is inspired by the one of Briand et al. [6] that
solves the 1|rj |Lmax efficiently. Determining good-quality bounds is of interest for
boosting branch-and-bound methods or for providing good initial solution to local
search procedures. Moreover, it is noteworthy that our MIP formulation can easily
be adapted to tackle new constraints or new objectives.

3. A dominance theorem for the SMSP

This section focuses on the analysis of feasibility of job sequences for the SMSP
with release and due dates. Some analytical dominance conditions are particularly
recalled that have been originally introduced in the early eighties by Erschler
et al. [11] within a theorem. This theorem uses the notions of a top and a pyramid,
which are defined below. It characterizes a particular order between the tasks and
exhibits a set Sdom of job sequences, said dominant with respect to feasibility
of job sequences. Let us recall that a job sequence σ1 dominates another job
sequence σ2 if σ2 feasible⇒ σ1 feasible. By extension, a set of job sequences Sdom

is said dominant if, for any job sequence σ2 /∈ Sdom, it exists σ1 ∈ Sdom such that
σ2 feasible⇒ σ1 feasible.

Characterizing a set of dominant job sequences is of interest since, when search-
ing for a feasible job sequence, only the set of dominant sequences need to be
explored. Indeed, when there does not exist any feasible sequence in the domi-
nant set, it can be asserted that the original problem does not admit any feasible
solution. This allows a significant reduction of the search space.

Definition 3.1. A job t ∈ V is a top if there does not exist any other job j ∈ V
such that rj > rt ∧ dj < dt (i.e., the execution window of a top does not include
(strictly) any other execution window).

The tops are indexed in non-decreasing order with respect to their release dates
or, in case of tie, in non-decreasing order with respect to their due dates. When
both release dates and due dates are equal, they can be indexed in an arbitrary
order. Thus, if ta and tb are two tops then a < b if and only if (rta ≤ rtb

)∧ (dta ≤
dtb

). Let refers to T as the set of tops, with cardinality |T | = m.

Definition 3.2. Given a top tk, a pyramid Pk related to tk is the set of jobs
j ∈ V \ T such that rj < rtk

∧ dj > dtk
(i.e., the set of jobs whose execution

window strictly includes the one of the top).

Considering the previous definition, let us remark that a non-top job can belong
to several pyramids. Let u(j) (v(j) resp.) refers to the index of the first pyramid
(the last pyramid resp.) to which Job j can be assigned.

The following theorem can now be stated. The reader is referred to [11] for its
proof.



MINIMIZING THE NUMBER OF TARDY JOBS FOR THE SMSP 37

Figure 1. The interval structure, tops and pyramids.

Theorem 3.3. A dominant set Sdom of job sequences is such that:

– the tops are ordered according to the non-decreasing order of their index;
– only the jobs belonging to the first pyramid can be located before the first top

and they are ordered according to the non-decreasing order of their release dates
(in an arbitrary order in case of tie);

– only the jobs belonging to the last pyramid can be located after the last top and
they are ordered according to the non-decreasing order of their due dates (in
an arbitrary order in case of tie);

– between two tops tk and tk+1, only jobs belonging to Pk can be sequenced im-
mediately after tk, according to the non-decreasing order of their due dates (in
an arbitrary order in case of tie), then jobs belonging to both Pk and Pk+1

in an arbitrary order, and lastly jobs belonging only to Pk+1 according to the
non-decreasing order of their release dates (in an arbitrary order in case of tie).

It should be pointed out that the numerical values of pj , as well as the ones of
rj and dj , are not used explicitly in the Theorem. Only the relative order of the
release and due dates is considered, hence its interest. The number of characterized
dominant sequences is: card(Sdom) =

∏N
q=1(q+1)nq where nq is the number of non-

top jobs belonging to exactly q pyramids and N is the total number of pyramids.
Moreover, let us highlight that any sequence belonging to Sdom is in the form

α1 ≺ t1 ≺ β1 ≺ · · · ≺ αk ≺ tk ≺ βk ≺ · · · ≺ αm ≺ tm ≺ βm, where αk and βk

are job subsequences located at the left and the right of Top tk respectively. Jobs
assigned to αk or βk have to belong to Pk and they are sequenced with respect to
the non-decreasing order of their rj , for αk, the non-decreasing order of their dj ,
for βk.

In order to illustrate the theorem, let us consider a problem instance with six
jobs so that the relative order among the release dates rj and the due dates dj of
the jobs is r4 < r5 < r3 < r1 < d1 < d3 < r6 < d4 < r2 < d2 < d5 < d6. The
interval structure associated with that example is displayed in Figure 1. There
are two tops: t1 = 1 and t2 = 2 which characterize two pyramids: P1 = {3, 4, 5}
and P2 = {6} (in accordance with the definition, a top job does not belong to the
pyramid it characterizes).

According to Theorem 3.3, whatever the real values of ri and di are (provided
they remain compatible with the previous interval structure), the set Sdom of



38 C. BRIAND AND S. OURARI

dominant sequences is in the form α1 ≺ 1 ≺ β1 ≺ α2 ≺ 2 ≺ β2, where jobs
belonging to subsequence αk (βk respectively) are sequenced with respect to the
non-decreasing order of their rj (dj , respectively). Here we have α1 ∈ {4 ≺ 5 ≺ 3},
β1 ∈ {3 ≺ 4 ≺ 5}, α2 = {6}, β2 ∈ {5 ≺ 6}, and card(Sdom) = (1+1)3.(2+1)1 = 24
sequences (out of 6! = 720 possible cases) are characterized:

4 ≺ 5 ≺ 3 ≺ 1 ≺ 6 ≺ 2 , 5 ≺ 3 ≺ 1 ≺ 4 ≺ 6 ≺ 2
4 ≺ 5 ≺ 3 ≺ 1 ≺ 2 ≺ 6 , 5 ≺ 3 ≺ 1 ≺ 4 ≺ 2 ≺ 6
4 ≺ 5 ≺ 1 ≺ 3 ≺ 6 ≺ 2 , 5 ≺ 1 ≺ 3 ≺ 4 ≺ 6 ≺ 2
4 ≺ 5 ≺ 1 ≺ 3 ≺ 2 ≺ 6 , 5 ≺ 1 ≺ 3 ≺ 4 ≺ 2 ≺ 6
4 ≺ 3 ≺ 1 ≺ 5 ≺ 6 ≺ 2 , 3 ≺ 1 ≺ 4 ≺ 5 ≺ 6 ≺ 2
4 ≺ 3 ≺ 1 ≺ 5 ≺ 2 ≺ 6 , 3 ≺ 1 ≺ 4 ≺ 5 ≺ 2 ≺ 6
4 ≺ 3 ≺ 1 ≺ 6 ≺ 2 ≺ 5 , 3 ≺ 1 ≺ 4 ≺ 6 ≺ 2 ≺ 5
4 ≺ 3 ≺ 1 ≺ 2 ≺ 5 ≺ 6 , 3 ≺ 1 ≺ 4 ≺ 2 ≺ 5 ≺ 6
4 ≺ 1 ≺ 3 ≺ 5 ≺ 6 ≺ 2 , 1 ≺ 3 ≺ 4 ≺ 5 ≺ 6 ≺ 2
4 ≺ 1 ≺ 3 ≺ 5 ≺ 2 ≺ 6 , 1 ≺ 3 ≺ 4 ≺ 5 ≺ 2 ≺ 6
4 ≺ 1 ≺ 3 ≺ 6 ≺ 2 ≺ 5 , 1 ≺ 3 ≺ 4 ≺ 6 ≺ 2 ≺ 5
4 ≺ 1 ≺ 3 ≺ 2 ≺ 5 ≺ 6 , 1 ≺ 3 ≺ 4 ≺ 2 ≺ 5 ≺ 6

4. A MIP for finding a feasible job sequence

In this section, the problem of finding a feasible job sequence is considered
and a MIP is described, which has been originally introduced in [6]. It aims at
determining the most dominant job sequence among the set Sdom that is in the
form α1 ≺ t1 ≺ β1 ≺ · · · ≺ αm ≺ tm ≺ βm. Let us highlight that the case where
a non-top job is sequenced at the right of a top tk, is strictly equivalent to the
case where this job has been sequenced at the left of top tk+1. These cases are not
distinguished in the MIP model below.

max z = mink=1,...,m(Dk −Rk − ptk
)

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rk ≥ rtk
, ∀tk ∈ T (4.1)

Rk ≥ ri +
∑

{j∈Pk|rj≥ri} pjxk−1,j , ∀i ∈ V \ T , k = u(i) (4.2)
Rk ≥ Rk−1 + ptk−1

+
∑

j∈Pk−1
pjxk−1,j

+
∑

{j∈Pk|u(j)=k} pjxk−1,j , ∀tk ∈ T \ {t1} (4.3)
Dk ≤ dtk

, ∀tk ∈ T (4.4)
Dk ≤ di −

∑
{j∈Pk|dj≤di} pjxk,j , ∀i ∈ V \ T , k = v(i) (4.5)

Dk ≤ Dk+1 − ptk+1

−
∑

{j∈Pk+1|u(j)=k+1} pjxkj

−
∑

j∈Pk
pjxkj , ∀tk ∈ T \ {tm} (4.6)∑v(i)

k=u(i)−1 xki = 1 , ∀i ∈ V \ T (4.7)
xki ∈ {0, 1} , ∀i ∈ V \ T , ∀k ∈ [u(i)− 1; v(i)]
Dk, Rk ∈ Z , ∀tk ∈ T

In this MIP, a binary variable xki, with k = u(i)− 1 to v(i), is assigned to each
non-top job i. If i is sequenced at the left of top u(i) then xu(i)−1,i = 1, otherwise



MINIMIZING THE NUMBER OF TARDY JOBS FOR THE SMSP 39

xu(i)−1,i = 0. Now if job i is sequenced at the right of any top k ∈ [u(i), v(i)] then
xki = 1, otherwise xki = 0. Constraints 4.7 ensure that i is sequenced once.

The integer variable Rk gives the earliest starting time of Job tk. By definition,
we know that:

Rk = max(rtk
, eftk−1 +

∑
{j∈αk}

pj, max
i∈αk

(ri + pi +
∑

{j∈αk|i≺j}
pj)) (4.8)

where eftk−1 is the earliest completion time of the job subsequence βk−1. As
the variable Rk−1 corresponds to the earliest starting time of Job tk−1, it comes
that eftk−1 = Rk−1 + ptk−1 +

∑
j∈βk−1

pj. Therefore, the constraints (4.1), (4.2)
and (4.3), according to Equation 4.8, allow to determine the value of Rk.

Symmetrically, the integer variable Dk corresponds to the latest finishing time
of Job tk. By definition:

Dk = min(dtk
, lstk+1 −

∑
{j∈βk}

pj, min
i∈βk

(di − pi −
∑

{j∈βk|j≺i}
pj)) (4.9)

where lstk+1 is the latest starting time of the job subsequence αk+1. As the
variable Dk+1 corresponds to the latest finishing time of Job tk+1, it comes
that lstk+1 = Dk+1 − ptk+1 −

∑
j∈αk+1

pj . Therefore, the constraints (4.4), (4.5)
and (4.6), according to Equation 4.9, give to Dk its value.

Obviously, it can be observed that the values of Rk and Dk variables can directly
be deduced from the values of binary variables xki. In [6], the authors state that if
z = mink=1,...,m(Dk−Rk−ptk

) is maximized while respecting the constraints, then
the obtained sequence dominates all the others. Indeed, the proof is given that, for
any feasible sequence, the maximum lateness Lmax strictly equals −z. Therefore,
maximizing z is strictly equivalent to minimizing the maximum lateness Lmax and
it can be asserted that any sequence α1 ≺ t1 ≺ β1 ≺ · · · ≺ αm ≺ tm ≺ βm is
feasible if and only if z = mink=1,...,m(Dk − Rk − ptk

) ≥ 0. In the case where
z∗ < 0, there obviously does not exist any feasible sequence of n jobs for the
considered problem.

For illustration, let consider an instance of 5 jobs with two tops t1 and t2 such
that: r3 < r1 < rt1 < dt1 < d1 < d3 < r2 < rt2 < dt2 < d2 < d3. There
are two pyramids: Pt1 = {1, 3} and Pt2 = {2, 3}. If the solution of the MIP is
x01 = 1, x11 = 0, x03 = 0, x13 = 1, x23 = 0, x12 = 0 and x22 = 1 then the most
dominant sequence is: 1 ≺ t1 ≺ 3 ≺ t2 ≺ 2.

5. Dominance conditions for 1|rj|
∑

Uj

In this section, the
∑

Uj criterion is considered again and some properties are
stated. Searching an optimal solution for 1|rj |

∑
Uj problem amounts to determine

a feasible sequence for the largest selection of jobs E ⊆ V . Let E∗ be this selection.
The jobs of E∗ are on time while others are late. The late jobs can be scheduled
after the jobs of E∗ in any order. So they do not need to be considered when
searching a feasible job sequence for on-time jobs. Consequently, Theorem 3.3



40 C. BRIAND AND S. OURARI

can be applied only to the jobs belonging to E∗. There are
∑

k=1...n Ck
n possible

different selections of jobs. Regarding the
∑

Uj criterion, the following corollary
is proved.

Corollary 5.1. The union of all the dominant sequences that Theorem 3.3 char-
acterizes for each possible selection of jobs is dominant for the

∑
Uj criterion.

Note that, clearly, this property remains also valid with respect to
∑

wjUj.

Proof. The proof is obvious since the union of all the sequences that Theorem 3.3
characterizes for any possible selection necessarily includes the dominant sequences
associated with E∗, hence an optimal solution. �

As already pointed out, the number of possible job selections is quite large. Nev-
ertheless, as explained in [23], it is not necessary to enumerate all the possible job
selections to get the dominant sequences. Indeed, they can be characterized using
one or more so-called master-pyramid sequences. The notion of a master-pyramid
sequence is somewhat close to the notion of a master sequence that Dauzères-Pérès
and Sevaux proposed [9]. It allows to easily verify whether a job sequence belongs
to a set of dominant sequences.The master-pyramid sequence associated with job
selection E ⊆ V , with mE tops and pyramids, is σΔ(E) = α1(E) ≺ t1(E) ≺
β1(E) ≺ · · · ≺ αk(E) ≺ tk(E) ≺ βk(E) ≺ · · · ≺ αmE (E) ≺ tmE (E) ≺ βmE (E).
According to Theorem 3.3, a non-top job j can be ranked inside subsequence αk(E)
with k = u(j) or any subsequence βk(E) such that k ∈ [u(j), v(j)].

For illustration, let us consider the problem instance with 6 jobs given in previ-
ous section. The master-pyramid sequence corresponding to the selection E = V
is (tops are in bold):

σΔ(V ) = (4 ≺ 5 ≺ 3) ≺ 1 ≺ (3 ≺ 4 ≺ 5) ≺ (6) ≺ 2 ≺ (5 ≺ 6).

Any job sequence of n jobs compatible with σΔ(V ) belongs to the set of dominant
sequences. A sequence s is said compatible with the master-pyramid sequence
σΔ(V ) if the order of the jobs in s does not contradict the possible orders defined
by σΔ(V ), this will be denoted as s � σΔ(V ).

Theorem 5.2. Considering a given problem 1|rj |
∑

Uj with the set of jobs V , if
an optimal solution exists where all tops are on-time then, σΔ(V ) characterizes a
set of dominant sequences that contains the optimal solution.

Proof. Under the hypothesis that all tops are on-time, it is obvious that σΔ(V )
also characterizes the set of dominant sequences of any job selection E such that
{t1, . . . , tm} ⊆ E. In other words, if s is a job sequence such that s � σΔ(E) then
s � σΔ(V ). �

Nevertheless, σΔ(V ) does not necessarily characterize all the job sequences being
dominant for the

∑
Uj criterion. This assertion can easily be illustrated considering

a problem V with 4 jobs having the interval structure shown in Figure 2. Job t is
the single top of the interval structure and the master-pyramid sequence σΔ(V )
is (c ≺ a ≺ b) ≺ t ≺ (a ≺ b ≺ c). Now, let us suppose that it does not exist an
optimal solution with t on-time (the interval of t can be ignored). In this case,



MINIMIZING THE NUMBER OF TARDY JOBS FOR THE SMSP 41

Figure 2. An interval structure.

the selection becomes E = V \ {t} = {a, b, c} and there are two tops a and b that
characterize the master-pyramid sequence σΔ(E) = (c ≺ a ≺ c ≺ b ≺ c). As it
can be observed, σΔ(E) is not compatible with σΔ(V ) since, in the former, job
c cannot be sequenced between a and b, while this is possible in the latter, i.e.,
(a ≺ c ≺ b) � σΔ(E) is not compatible with σΔ(V ). This simple example shows
that the complete characterization of the set of dominant sequences requires to
enumerate all the non-compatible master-pyramid sequences, their number being
possibly exponential.

Up to now, we have shown that Theorem 3.3 is not dominant in general for
the

∑
Uj criterion. Let us take interest now in a particular interval structure

where any pyramid Pk, ∀k = 1, . . . , m is perfect. A pyramid Pk is said perfect
if, ∀(i, j) ∈ Pk × Pk, (ri ≥ rj) ⇔ (di ≤ dj), i.e., the execution intervals of the
jobs belonging to Pk are included each inside the other. By extension, when all
the pyramids are perfect, the corresponding SMSP will be said perfect. For this
special case, the following theorem is proved:

Theorem 5.3. Considering a perfect SMSP with job set V , the master-pyramid
sequence σΔ(V ) characterizes a set of dominant sequences for the

∑
Uj criterion.

Proof. Obviously, removing a job j from a perfect SMSP V produces a new perfect
SMSP V \ {j}. The proof goes by showing that the master pyramid sequence
σΔ(V \ {j}) is compatible with σΔ(V ) (in other words, all the sequences that
are compatible with σΔ(V \ {j}) are also compatible with σΔ(V )). Let us assume
first that the removed job j is a non-top job. Since σΔ(V ) is built up according
to the position of the tops, removing j from V induces to remove j from all the
subsequences αk, βk of σΔ(V ) such that u(j) ≤ k ≤ v(j) and, in this case, the
relation σΔ(V \ {j}) � σΔ(V ) necessarily holds.

Let us assume now that j is a top having the index x. The master-pyramid
sequence σΔ is in the form (α1, t1, . . . , tx−1, βx−1, αx, j, βx, αx+1, tx+1, . . . , tm, βm).
Two cases have to be considered: if j is a top such that ∀i ∈ Px ⇒ i ∈ Px−1 or
i ∈ Px+1, then σΔ(V \{j}) = (α1, t1, . . . , tx−1, βx−1, αx+1, tx+1, . . . , tm, βm) and in
this case, σΔ(V \{j}) is obviously compatible with σΔ(V ). Otherwise, let k be the
last job of αx (i.e., αx = (α′

x, k)). Since the execution intervals of the jobs belonging
to Px are included each inside the other, the order of the jobs in αx matches the
reverse order of the jobs of βx, therefore k is also the first job of βx (i.e., βx =
(k, β′

x)). Then σΔ(V \ {j}) = (α1, t1 . . . tx−1, βx−1, α
′
x, k, β′

x, αx+1, tx+1 . . . tm, βm)
and in this case, σΔ(V \ {j}) is obviously compatible with σΔ(V ). �



42 C. BRIAND AND S. OURARI

6. A MIP formulation for the 1|rj|
∑

Uj problem

The MIP of Section 2, which returns the most dominant sequence, can easily
be adapted for solving, either problem 1|rj |

∑
Uj under the hypothesis that tops

are on time, or the perfect SMSP case. The new MIP is described below and dif-
fers from the previous one only by the addition of the terms in bold. Allowing
non-top jobs to be late is easy by relaxing constraints (4.7), replacing them by
constraints (5.7). As the feasibility of the obtained sequence is required, the con-
straints Dk − Rk ≥ ptk

are set, ∀k = 1, . . . , m. Nevertheless, these constraints
can be too strong since, when two consecutive tops tk and tk+1 are such that
dtk+1 − rtk

< ptk+1 +ptk
, the MIP is unfeasible (i.e., there does not exist any feasi-

ble sequence that keeps both tk and tk+1 on time). For avoiding this unfeasibility,
the binary variables yk are introduced (see constraints (5.8)) such that yk equals 1
if the processing time of tk is ignored (tk is late), 0 otherwise.

As a top can be late, constraints (4.3) and (4.6) must be adapted (see con-
straints (5.3) and (5.6)) so that the duration ptk

should not be taken into ac-
count when yk = 1. Moreover, still in the case where tk is late, constraints (4.1)
and (4.4) should be relaxed: this can be done by replacing them by constraints (5.1)
and (5.4), respectively, with R0 = minj∈V \T rj and Dm+1 = maxj∈V \T dj . Indeed,
constraint Rk ≥ R0 and Dk ≤ Dm+1 are always valid. On the other hand, con-
straints (4.2)–(4.5) should also be relaxed in the case job i is late. This can be done
in the same way as before, using constraints (5.2) and (5.5), respectively. Finally,
the

∑
Uj criterion can easily be expressed by using binary variables yk and xki

since, when
∑v(j)

k=u(j)−1 xjk = 0, the non-top job j is not assigned to any pyramid
and can be considered late.

min z =
∑

i∈V\{t1...tm}(1−
∑v(i)

k=u(i)−1 xki) +
∑m

k=1 yk

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rk ≥ rtk
+ yk(R0 − rtk) , ∀tk ∈ T (5.1)

Rk ≥ ri + (1− xk−1,i)(R0 − ri)
+

∑
{j∈Pk|rj≥ri} pjxk−1,j , ∀i ∈ V \ T , k = u(i) (5.2)

Rk ≥ Rk−1 + ptk−1(1− yk−1)
+

∑
j∈Pk−1

pjxk−1,j

+
∑

{j∈Pk|u(j)=k} pjxk−1,j , ∀tk ∈ T \ {t1} (5.3)
Dk ≤ dtk

+ yk(Dm+1 − dtk) , ∀tk ∈ T (5.4)
Dk ≤ di + (1− xki)(Dm+1 − di)
−

∑
{j∈Pk|dj≤di} pjxk,j , ∀i ∈ V \ T , k = v(i) (5.5)

Dk ≤ Dk+1 − ptk+1(1− yk+1)
−

∑
{j∈Pk+1|u(j)=k+1} pjxkj

−
∑

j∈Pk
pjxkj , ∀tk ∈ T \ {tm} (5.6)∑v(i)

k=u(i)−1 xki≤ 1 , ∀i ∈ V \ T (5.7)
Dk −Rk ≥ ptk(1− yk) , ∀tk ∈ T (5.8)
yk ∈ {0,1} ∀tk ∈ T
xki ∈ {0, 1} , ∀i ∈ V \ T , ∀k ∈ [u(i)− 1; v(i)]
Dk, Rk ∈ Z , ∀tk ∈ T



MINIMIZING THE NUMBER OF TARDY JOBS FOR THE SMSP 43

Figure 3. Two relaxation strategies for converting a problem into a perfect one.

Obviously, considering any problem V , solving the previous MIP gives an upper
bound to the number of tardy jobs, i.e., it returns the best solution found in σΔ(V ).
Nevertheless, since the set of sequences compatible with σΔ(V ) is not dominant,
there is not guaranty for this solution to be optimal.

On the other hand, a lower bound can be obtained by relaxing some constraints
and optimally solving the relaxed problem. From Theorem 5.3, when the problem
is perfect, we know that the set of sequences in the form α1 ≺ t1 ≺ β1 · · · ≺
αm ≺ tm ≺ βm is dominant for the

∑
Uj criterion. Furthermore, considering any

problem, it is always possible to decrease the rj values (or increase the dj values) of
some jobs in order to make it perfect, i.e., ∀(i, j) ∈ Pk×Pk, (ri ≥ rj)⇔ (di ≤ dj),
∀k = 1, . . . , m (see Fig. 3). Doing so, a relaxed problem is obtained that can be
optimally solved by the last MIP. This will give us a lower bound for the number
of tardy jobs Of course, in the case where both lower and upper bounds are equal,
it can directly be deduced that the solution found for the upper bound is optimal.

7. Numerical experiments

For evaluating the performances of our MIP model, Baptiste et al.’s problem
instances have been used (see [4]). For n ∈ {80, 100, 120, 140, 160}, 120 problem
instances are provided and, for each of them, thanks to the authors who provide
us with their detailed results, either the optimal

∑
Uj value (OPT ) or, at least,

an upper-bound of this value (BEST ), is known.
For each problem instance, using a commercial MIP solver, we determined one

lower bound (LB) and one upper bound (UB). For the lower bound, we chose
to relax the deadlines of the non-top jobs to convert the problem into a perfect
one, then to solve the corresponding MIP. Indeed, from preliminary experiments,
it turns out that relaxing the di give in general better result than relaxing the
release times ri. Since the two kinds of relaxation are symmetric, this is possibly



44 C. BRIAND AND S. OURARI

Table 1. Percentages of MIP solved to optimality.

Problem class LB UB

n = 80 100.00% (0.01; 8.075; 761) s 99.16% (0.01; 1.40; 113) s

n = 100 97.5% (0.02; 10.44; 460) s 99.16% (0.02; 5.96; 553) s

n = 120 97.5% (0.02; 54.18; 2554) s 93.33% (0.02; 25.04; 858) s

n = 140 92.5% (0.05; 28.31; 721) s 86.66% (0.02 ; 22.78; 905) s

n = 160 84.16% (0.05; 81.03; 3067) s 82.5% (0.02; 86.37; 2496) s

Table 2. Percentages of optimal solutions.

Problem class
LB=UB UB -LB

All instances min; mean; max
n = 80 59.67% 0; 0.58; 3
n = 100 52.94% 0; 0.69; 6
n = 120 50.9% 0; 0.78; 5
n = 140 51.2% 0; 0.93; 5
n = 160 35.35% 0; 1.14; 6

due to the way problem instances have been generated (see [4]). The upper bound
is obtained by directly solving the MIP using the initial ri and di values.

In each run, the CPU time has been bounded to one hour. Table 1 displays, for
each class of problem, the percentages of LB and UB that were proven optimal
within one hour, as well as the min / mean / max CPU time. For example, when
n = 80, the solver returns the optimal LB value in 100% of the cases, with a
min / mean / max CPU time of 0.01/8.075/761 seconds respectively.

A few observations can be made at this point. First, even if some problem
instances seem very hard to solve (the proof of optimality is very time-consuming),
optimal solutions are found in most of the cases, the computation time being rather
low. We also observe that the computation of the upper bound is globally less time
expensive than the one of the lower bound. One explanation could be that, in the
former case, because tops are assumed on time, the search space is less extended
than in the latter case, where any job can be late or on time.

Even if finding optimal solution is not the aim of our approach, Table 2 takes
an interest in the cases where the solution UB can be directly proved optimal,
i.e., (UB = LB). As one can see, optimality can be proved in many cases, even
if ad-hoc approaches remain better suited from this point of view. Furthermore,
the gap between LB and UB is very tight in average. Let us point out that our
MIP approach proves the optimality of 48 instances that were not optimally solved
by Baptiste et al. Moreover, Baptiste et al. did not succeed to solve most of the
problems with 160 jobs (only 15), while we solved 101 of them and proved the
optimality of 35.

Lastly, Table 3 gives a more tightened analysis of the quality of our lower bounds
LB and upper bounds UB. LB bounds are systematically compared with the
optimal value OPT found by the Baptiste et al.’s method (when it is computed in



MINIMIZING THE NUMBER OF TARDY JOBS FOR THE SMSP 45

Table 3. Analysis of the lower and upper bounds quality.

Problem classes Tcpu < 3600 s and LB = OPT UB <= BEST
all 90.9% 98.2%

less than one hour). We observe than LB have a good quality since they directly
equals OPT in 90% of the cases. The bounds UB are even better since they are
lower or equal to BEST in 98% of the cases. These observations suggest that,
in order to increase the percentage of optimal-certified solutions, our relaxation
approach should be improved. Mixed relaxation schemes where ri and di values
would be both relaxed, intending to minimize the sum of their variations, could
be investigated.

Conclusion

Designing MIP models for solving efficiently basic SMSPs is of interest since
MIP approaches can be more easily adapted when dealing with new constraints or
new objectives. As a proof of this statement, this paper shows how an original MIP
model, used for solving the 1|rj |Lmax problem, can be adapted for dealing with
the more complex 1|rj |

∑
Uj problem. Since the analytical dominance condition

used for designing the MIP formulation of the former problem is valid for the
∑

Uj

criterion only under some restrictions (tops are not late), only an upper bound can
be computed. However, as shown by the experiments, this upper bound is optimal
in most of the cases, or at least very close to the optimum. In the particular case
where the considered SMSP is perfect (see Sect. 5), our MIP gives an optimal

∑
Uj

value. Since it is always possible to relax the release dates or the due dates of any
SMSP in order to make it perfect, this MIP also allows to compute good-quality
lower bounds.

For the future works, we plan to investigate preprocessing methods by applying
variable-fixing techniques from Integer Linear Programming. Such techniques, suc-
cessfully used in several papers (see for instance [5]), might allow to definitively fix
the value of some binary variables, namely those of ytk

, xki in our MIP, intending
to tighten the search space and speed up the solving phase. We believe that such
techniques could improve our approach from a computational viewpoint so that it
hopefully becomes competitive with existing branch and bound procedures.

Acknowledgements. We would like to address a special thank to Philippe Baptiste who
kindly provide us with his problem instances, as well as the detailed report of his exper-
iments.

References

[1] H. Aissi, M.A. Aloulou and M.Y. Kovalyov, Minimizing the number of late jobs on a single
machine under due date uncertainty. J. Sched. 14 (2011) 351–360.

[2] M.A. Aloulou and F. Della-Croce, Complexity of one machine scheduling problems under
scenario-based uncertainty. Oper. Res. Lett. 36 (2008) 338–342.



46 C. BRIAND AND S. OURARI

[3] P. Baptiste, Polynomial time algorithms for minimizing the weighted number of late jobs
on a single machine when processing times are equal. J. Sched. 2 (1999) 245–252.

[4] P. Baptiste, L. Peridy and E. Pinson, A branch and bound to mininimze the number of late
jobs on a single machine with release time constraints. Eur. J. Oper. Res. 144 (2003) 1–11.

[5] P. Baptiste, F. Della Croce, A. Grosso and V. T’kindt, Sequencing a single machine with
due dates and deadlines: an ILP-based approach to solve very large instances. J. Sched. 13

(2010) 39–47.
[6] C. Briand, S. Ourari and B. Bouzouia, An efficient ILP formulation for the single machine

scheduling problem. RAIRO Oper. Res. 44 (2010) 61–71.
[7] J. Carlier, Problèmes d’ordonnancements à durées égales. QUESTIO 5(4) (1981) 219–228.
[8] M. Chrobak, C. Dürr, W. Jawor, L. Kowalik and M. Kurowski, A Note on scheduling equal-

length jobs to maximize throughput. J. Sched. 9 (2006) 71–73.
[9] S. Dauzère-Pérès and M. Sevaux, An exact method to minimize the number of tardy jobs

in single machine scheduling. J. Sched. 7 (2004) 405–420.
[10] F.S. Erenay, I. Sabuncuoglu, A. Toptal and M.K. Tiwari, New solution methods for single

machine bicriteria scheduling problem: Minimization of average flowtime and number of
tardy jobs. Eur. J. Oper. Res. 201 (2010) 89–98.

[11] J. Erschler, G. Fontan, C. Merce and F. Roubellat, A new dominance concept in scheduling
n jobs on a single machine with ready times and due dates. Oper. Res. 31 (1983) 114–127.

[12] M.R. Garey and D.S. Johnson, Computers and intractability, a guide to the theory of
NP-completeness. W. H. Freeman and Company (1979).

[13] W. Guohua and P.-C.Y. Benjamin, Single machine scheduling to minimize total weighted
earliness subject to minimal number of tardy jobs. Eur. J. Oper. Res. 195 (2009) 89–97.

[14] R.M. Karp, Reducibility among combinatorial problems. in Complexity of Computer Com-
putations, edited by R.E. Miller and J.W. Thatcher. Plenum Press, New York (1972) 85–103.

[15] H. Kise, I. Toshihide and H. Mine, A solvable case of the one-machine scheduling problem
with ready and due times. Oper. Res. 26 (1978) 121–126.

[16] E.L. Lawler, Scheduling a single machine to minimize the number of late jobs. Preprint,
Computer Science Division, University of California, Berkeley (1982).

[17] E.L. Lawler, A dynamic programming algorithm for preemptive scheduling of a single ma-
chine to minimize the number of late jobs. Ann. Oper. Res. 26 (1990) 125–133.

[18] J.Y. Lee, Y.D. Kim, Minimizing the number of tardy jobs in a single-machine scheduling
problem with periodic maintenance. Comput. Oper. Res. 39 (2012) 2196–2205.

[19] J.K. Lenstra, A.H.G. Rinnooy Han and P. Brucker, Complexity of machine scheduling prob-
lems. Ann. Discrete Math. 1 (1977) 343–362.

[20] R. M’Hallah and R.L. Bulfin, Minimizing the weighted number of tardy jobs on a single
machine with release dates. Eur. J. Oper. Res. 176 (2007) 727–744.

[21] R. M’Hallah, Bulfin, R.L., Minimizing the weighted number of tardy jobs on a single ma-
chine. Eur. J. Oper. Res. 145 (2003) 45–56.

[22] M.J. Moore, An n job, one machine sequencing algorithm for minimizing the number of late
jobs. Manag. Sci. 15(1) (1968) 102–109.

[23] S. Ourari and C. Briand Conditions de dominance pour le problème à une machine avec
minimisation des travaux en retard” 9ème Congrès de la Société Française de Recherche
Opérationnelle et d’Aide à la Décision (ROADEF’08), Clermont-Ferrand (France) 351–352
(2008).

[24] N.H. Tuong, A. Soukhal and J.-C. Billaut, Single-machine multi-agent scheduling problems
with a global objective function. J. Sched. 15 (2011) 311–321.

[25] L. Yedidsion, D. Shabtay, E. Korach and M. Kaspi, A bicriteria approach to minimize num-
ber of tardy jobs and resource consumption in scheduling a single machine. Int. J. Product.
Econom. 119 (2009) 298–307.


	Introduction
	Related works
	A dominance theorem for the SMSP
	A MIP for finding a feasible job sequence
	Dominance conditions for 1|rj|Uj 
	A MIP formulation for the 1|rj|Uj problem
	Numerical experiments
	Conclusion
	References

