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Abstract. In this paper we present a new approach to solve the Min-
imum Independent Dominating Set problem in general graphs which is
one of the hardest optimization problem. We propose a method using
a clique partition of the graph, partition that can be obtained greedily.
We provide conditions under which our method has a better complex-
ity than the complexity of the previously known algorithms. Based on
our theoretical method, we design in the second part of this paper an
efficient algorithm by including cuts in the search process. We then ex-
periment it and show that it is able to solve almost all instances up to
50 vertices in reasonable time and some instances up to several hun-
dreds of vertices. To go further and to treat larger graphs, we analyze a
greedy heuristic. We show that it often gives good (sometimes optimal)
results in large instances up to 60000 vertices in less than 20 s. That
sort of heuristic is a good approach to get an initial solution for our
exact method. We also describe and analyze some of its worst cases.
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1. INTRODUCTION

In discrete optimization, many problems are hard to solve exactly in polynomial
time and need exponential time algorithms. A theoretical goal is to propose ex-
act algorithms with (exponential) complexity as small as possible. However, these
methods are not always implemented and there is no practical information avail-
able on them. In this paper, we propose an exact algorithm to solve a well—known
problem, namely the minimum size independent dominating set. We analyse its
worst-case complexity, implement and experiment it using efficient rules to avoid
to explore useless solutions. For large graphs, we present a greedy heuristic to
compute a solution and show that it is close to the optimal. Let us first define the
problem.

In this paper we consider an undirected, unweighted finite graph G = (V, E)
where V' is the set of its wvertices and E is the set of its edges. If uv is an edged
between vertices u and v then u and v are adjacent or neighbors. A dominating
set in a graph G = (V, E) is a subset D C V such that every vertex v € V\D
is neighbor of at least one vertex in D. An independent set in G is a subset [
of vertices such that no two of them are adjacent. The minimum Independent
Dominating Set (mIDS) problem is to find an independent dominating set of
minimum size in a given graph G. It is known to be NP—hard [3]. Magniis M.
Halldérsson (1993) [4] showed that mIDS problem cannot be approximated under
a factor n'=¢ with € > 0 in polynomial time, unless P = NP (where n is the
number of vertices). In practice, this kind of problem is usual in communication
and network optimization (see for example [8]).

Various studies have already been done on specific families of graphs. In 2012,
Song et al. [14] proposed a criterion to classify the computational complexity of
independent domination on tree convex bipartite graphs; they proved that in some
of these graphs the problem is not NP-Complete. Recently Shiu et al. (2010) [13]
proposed an upper bound on Triangle—free graphs. In 2009, Orlovich et al. [11]
studied 2Ps;—free perfect graphs and in 2007 Julie Havland [6] studied regular
graphs.

For general graphs, the trivial exhaustive O* (2|V‘) complexity has been broken
up in 1988 by Johnson et al. [7]: The notation O*(.) is used to express the non
polynomial part of the complexity of an algorithm (ignoring polynomial factors).

In 2006, Liu and Song [10] developed a smart O*(\/glv‘) time algorithm to solve
this problem on general graphs. They used maximum matchings to partition the
graph and reduce problem complexity. Bourgeois, Escoffier, and Paschos [2] in 2010
devised a branching algorithm that finds the mID.S in O*(294?4V]) running time.

All these works are theoretical since the complexity is evaluated in worst-case
mode and that the algorithms were not implemented and experimented by their au-
thors. In 2011, Anupama Potluri and Atul Negi [12] have computed and compared
the algorithm of Liu and Song [10] with their Intelligent Enumeration Algorithm.

In this paper, we firstly (Sect. 2) present our new approach to solve the mIDS
problem, then we prove that our algorithm tends to have a complexity better than
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any other known algorithm regarding the problem when the graph is large and
dense. We then describe our algorithm (Sect. 3) to compute the mIDS in practice
and we give results of our experimentations. Finally (Sect. 4) we analyze and
experiment polynomial time algorithms to calculate a lower bound and a greedy
heuristic to compute an independent dominating solution on large graphs (up to
60 000 vertices). Note that for future comparisons, our instances and our code are
available online at: http://todo.lamsade.dauphine.fr/spip.php?article4?2.

2. DESCRIPTION OF THE CLIQUE PARTITION APPROACH
AND ITS ANALYSIS

In [10] Liu and Song use maximum matchings to reduce the trivial complexity
O*(2!V1) of the standard branching algorithm for the mIDS problem. In this paper,
we extend/adapt a part of their technique by using a partition of the vertices of the
graph in cliques (a clique is a graph in which every pair of vertices are connected by
an edge) instead of a matching. To describe our method, we need some preliminary
notations and definitions. We call a clique partition of a graph G = (V,E) a
partition of the set V' of vertices into disjoint subsets C' = {C1,...,Cx} (UF_,C; =
V and if ¢ # j, C; N C; = () such that each subgraph induced by C; in G is a
clique (its number of vertices is denoted by ¢; (1 < ¢; < |V])).

A clique partition of any graph G can easily be obtained by a greedy polynomial
algorithm (see Sect. 3.4). Suppose now we have a clique partition C = {C4,...,Cj}
of G.

2.1. CLIQUE PARTITION APPROACH

As each C} is a clique, any independent dominating set has at most one vertex
in each C; (otherwise S would not be an independent). Based on this remark, the
idea of our algorithm is to construct each possible set S composed of at most one
vertexr of each clique of C' and, for each such S to test if S is an independent
(no edge between vertices of G) and if S is a dominating set of G (each vertex
in V\S has at least one neighbor in S). If it is so, we update the minimum size
independent dominating set found from the beginning and return the smallest one
at the end. Note that each test can easily be done in polynomial time.

Doing this construction as described, we generate every possible solution (and
also sets that are not solution) and hence any optimal one.

Each “explored” set S is composed of at most one vertex of each clique of C.
This represents exactly ¢;+1 possibilities for each clique C; of C. Thus, the number
of candidates S tested during our algorithm is exactly:

k
H cz+1

=1

ko

As each test is polynomial, our algorithm runs in O* (H ci+1) >
=1
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2.2. COMPLEXITY ANALYSIS

The goal of this subsection is to show that when G is large and dense enough,
our algorithm tends to have a complexity better than any exponential complexity
of the type AYV| where (A,b) € (N\{0,1},R%). This analysis will be used in
Sections 2.3 and 2.4 to find conditions in which our method has better complexity
than the ones published by Bourgeois, Escoffier, and Paschos [2] (A = 2 and
b = 0.424) and by Liu and Song [10] (4 =3 and b = 0.5).

In a first time we give conditions to have:

k
[ (c+1) <A (2.1)
i=1
Asin (2.1) ¢;,i =1,...,k represent the size of cliques of the partition of V' we
k
have: Zci =|V].
Thezntegers c1,...,c, represent what is called a partition of the integer |V].

More generally, let n > 0 be any positive integer, a partition of n is a list of positive
l

(non null) integers [ni, ..., n;] such that Z n; = n.
i=1
The length of the partition [ng,...,n;] is I. Two lists composed of the same
elements in different orders are equal. We denote by P(n) the set of all partitions
of n and p(n) its size. For example, if n = 5 we have:

P()={[1,1,1,1,1],[1,1,1,2],[1,2,2],[1,1,3],[2,3],[1,4], [5]} and p(5) = 7.

We denote now by Q(|V]) the set (and by ¢(|V]) its size) of partitions of the integer
|V| that do not verify inequality (2.1), when A and b are given. For example, if
A=3and b = %, this is the expression of the complexity of algorithm of [10],
when |V| =5 we get Q(5) = {[1,1,1,1,1],[1,1,1,2],[1,2,2],[1,1,3]}.

We now show that when n tends to infinity, qE % tends to 0 (see Thm. 2.4). This

shows that asymptotically, the proportion of partitions of n violating (2.1) among
all the partitions of n tends to 0.

To do that, we need several preliminary results. Lemma 2.1 gives a sufficient
condition for a partition ¢;,4 = 1,. .., k of |V] to verify inequality (2.1). This proves
that if we can have a partition of |V| in which the average—value of ¢; is greater
than a certain value to determine (denoted by M(A,b) in the Lemma), then the
inequality (2.1) is satisfied.

Lemma 2.1. Let (A,b) € (N\{0,1},R%) then there exists M(A,b) € R such that:

k k
St [[e 1)< 4%

M(A,b) <

wIH
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Proof. Westudy f(z) = A”—fx—1. We get the derivative of f, f/(z) = A® In(A)—

In
7. Let w1 = M Vo > x1, f(z) increases. Moreover as Tlin;o f(z) = oo there

exists g > x1 such that Vo > g, f(z) increases and is greater than 0.

We choose M(A,b) = 4. Now suppose that M(A,b) Z ¢; then:

k
g 1
= = < — . < b.— i
A M(A,b) k;:lcz & g bkigzlc

As we have f(z) = A* — %m— 1>0,Vz > g we get:

i=1C%

ApEE

k k k
11 i 1 S (e +1)
— b= — 1> k > — . == 7
FrEe 1206 A2 1Y e ‘

i=1
We remind the inequality of arithmetic and geometric means (see [15] for e.g.):

k k
Zlﬂl 01%) (2.2)

k 2
Finally using this and because Z ¢; = |V, we obtain H (c;+1) < AV O
i=1 i=1

Lemma 2.1 proves that given A and b, there exists a value h = M(A,b) such
k

k
1
that, if h < — Z ¢; then H (c;+1) < APV Given this value h, we define My, (n)
ks i=1
as the set (and my(n) its size) of partitions [n1,...,n;] € P(n) of n that verify

1
1
h > 7 Z n;, i.e. that have an average value strictly smaller than A and thus that
i=1
do not respect the sufficient condition of Lemma 2.1 (when h = M(A,b)). If we
denote by n = |V| and h = M (A, b), we have Q(n) C My (n) because any partition
1

1
[n1,...,n] of Q(n) verifies h > 7 an otherwise it would satisfy the sufficient
i=1
condition of Lemma 2.1 and thus would verify (2.1), hence would not be in Q(n).
Based on this remark, we prove in what follows that m?—ﬁg) — 0 for n — oo that

is sufficient to get % — 0.

1
We remark that as a partition [ni,...,n] € Mj(n) verifies h > 7 Zni, and

l

as Zm = n we equivalently have [ >
i=1

n
7 this means that Mj(n) is also the set
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n
of partitions of n of length greater than 7 This is why we introduce now the set

P(n, k) (of size p(n,k)) of partitions of n of length k& (k is an integer).
Lemma 2.2. p(n,n —1i) < p(i) for alli € {1,...,n}.

Proof. Let X = [x1,...,2p—i] € P(n,n —1i). Let Z = [z1,..., %] be the list
obtained by subtracting 1 from each element of X and by keeping only values that
are strictly greater than 0 (zx > 1,Vk <1 <n —1).

l n—i
Hence, Z zp = sz —(n—1)=n—(n—1)=1and Z is a partition of i. Now,
k=1 k=1

let X' = [#},...,2],_;] € P(n,n —1), be another partition. We denote by Z’ the
list obtained by the same process from X’. Suppose that Z = Z’. As X and X’
have same length and since Z = 7/, X and X’ have the same number of 1 (that
“disappear” in Z and Z’). The decreasing by one unit of the other I components (I
is the length of Z = Z’) gives Z and Z’. This means that these non 1 components
are equal in X and X’ and thus X = X’ (the order of the elements in the lists are
not important); there is a contradiction with the hypothesis that X # X".

This shows that for each distinct partition of n of length n — i we can extract

at least one distinct partition of . Then p(n,n — i) < p(i). O

For the next two results, we suppose that A and b are given. We denote by
h = M(A,b), the value of Lemma 2.1 and ¢(n) is also defined according to A
and b.

Lemma 2.3. With the previous notations, we have: mp(n) <1+ p(7).

Proof. As mentioned previously, every partition of P(n) of length greater than 3

has a mean-value strictly less than h. These partitions are the ones of My (n) so:
n

[Ma(m)| = mim) = > pln. k)
T

Because p(n,n) = 1 we can write: my(n) =1+ Z p(n, k).

Now let k =n — i then: my(n) =1+ p(n,n —1).

Then with Lemma 2.2: mp(n) <1+ p(1). O

We are now ready to show that the proportion in P(n) of partitions in Mj(n)
(and thus of Q(n)) tends to 0 when n tends to infinity.
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Theorem 2.4. It holds that: lim M =0

n—o0 p(n)

Proof. As g(n) < my(n) it is sufficient to show that lim ";"7(1") = 0. Lemma 2.3

n—oo P(n)

w[4]
proves my(n) <1+ p(7) and as p(n) is strictly increasing we get:
=1
n n mp(n) 1 (n—1[%]) n
man) <1+ (= [7]) 2 (n=[7]) = T65 < 5+ 5002 (0= 7))
We have lim ﬁ = 0. For the second part of the equation, we use the asymp-
tote of Ramanujan’s formula [1]: p(n) ~ eVE asn — oo.
4n\/—
) e (o TAT-3)
(=T3D Ty (o [Py G TR VAT v
T8, o ) - (- 1) T e
1T /3
and lim nexpﬂ\/Q/_3<\/n_[%-|_ﬁ> = 0. Then: lim n;?g;) =0. U

We can apply these results to compare our complexity with the ones of Liu
and Song [10], O*(\/glv‘) (A = 3,b = 1/2) and those of Bourgeois et al., [2],
O*(204241VI) (A = 2 and b = 0.424). In both cases, our algorithm has better
complexity when the partition in cliques is good; the proportion of partitions of
|V| inducing a complexity greater tends to 0 when the size of G tends to infinity.

Of course, given a specific graph G = (V, F) with n vertices, there are not
always p(n) partitions of the set V. In particular, when G is not dense the number
of possible partitions of V' will be less than p(n). Hence, if the number of partitions
of V is close to p(n) then the probability to obtain a good partition of V' is high.
This is the case when G is dense.

2.3. COMPARISON WITH BRANCHING ALGORITHM: BOURGEOIS et al.

In the article of Bourgeois, Escoffier and Paschos [2], the authors devise a
branching algorithm that computes a mIDS with running time O* (20'424|V|). In
what follows we find a value h such that:

h < Z?:l Ci - rk[(c + 1) < 20.424‘V|
— k 1 —

i=1

Let f(x — 0% —1and f/(z) = 2% In(2) — L. Trivially, f'(z) > 0,Vz > 2

)=2"— )
and f(x) > 0,Vx > 3.03. Then f(z )20,V$23.03
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By using the result of proof of Lemma 2.1, we deduce h = 7.2 and we have:

k
90.424|V] H ¢ +1)

Hence if we find a clique partition of the given graph with an average—value
greater than 7.2, our algorithm has a better exponential factor than 20424V
Moreover Theorem 2.4 proves that the number of partitions with an average—value
less than 7.2 is insignificant in comparison to p(n) when n is large.

2.4. COMPARISON WITH EXACT ALGORITHM OF LIU AND SONG

In [10] the authors develop a simple O*(\/glv‘) algorithm to solve mIDS in
general graphs. We propose a value h such that:

k

k
hé%:‘ﬂ(ciﬂ)g\/ﬁw‘
=1

Let f(z) = 3% — 2z — 1 and f'(z) = 3*In(3) — 2. Trivially, f'(z) > 0,Va > 1
and f(z) > 0,Vz > 1. Then f(z) > 0,Vx > 1.
By using the result of proof of Lemma 2.1, we deduce h = 2 and we have:

k
14
\/5' | H ci+1)
i=1

This means that if we find a clique partition of the given graph with an
average—value greater than 2, our algorithm has a better exponential factor

1%
han \/3‘ l. Moreover Theorem 2.4 proves that the number of partitions with
an average—value less than 2 is insignificant comparing to p(n) when n is large.

3. IMPLEMENTATION AND EXPERIMENTATION OF OUR EXACT
ALGORITHM FOR THE mIDS

In this section we describe precisely our method to compute an mIDS solution.
In the first part, we describe again our exhaustive algorithm to compute the mIDS
based on clique partition (developed in Sect. 2). In the second part, we adapt it
by adding several conditions to reduce the number of solutions that are checked.
We also describe the (already known) greedy heuristic that we use to compute a
first IDS solution before starting our main algorithm. Finally, we implement and
test these methods on several families of graphs.
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3.1. EXHAUSTIVE SEARCH BASED ON CLIQUE PARTITION

In this subsection we give the main notations that will be used throughout the
rest of this section and we remind our exhaustive search that will be improved
in next subsections. We consider that we have a graph G = (V, E) and a clique
partition of G, C' = {C4,...,C} (see Sect. 2.1).

Let S be any independent dominating set (IDS) of G. As S is an independent set
and as each C; induces a clique, we have: |C; NS| < 1. The idea of our exhaustive
method is to construct each subset S of V' having at most one vertex in each C;
(thus satisfying |C; N S| < 1, Vi € {1,...,k}), to check if it is an IDS and, at
the end, to return the one with minimum size. We are sure to get the optimal
one since this constructs each IDS. The number of candidate sets produced and
tested is then Hle (|Ci| + 1). Note that our method can be implemented using a
recursive branching algorithm, exploring cliques of C' one by one in a given order,
that we fix here as: C7, then Cs, etc. until Cj. At each recursive level 7, there are
|Ci]+1 choices: one vertex of C; or no vertex to be included in the current solution
under construction (the exhaustive search examines all these choices). When an
IDS is found, the best solution found from the beginning is updated (replaced by
the current solution if it is better).

To initialize the best solution, we just need any IDS of G. For some efficiency
considerations, we choose the solution constructed by a greedy heuristic (explained
later in Sect. 3.3).

3.2. ADDING CUTS TO OUR EXHAUSTIVE SEARCH BASED ON CLIQUE PARTITION

In Section 3.1 we described our general search method. We now improve it
by adding cuts in this recursive exhaustive scheme. This technique is inspired
by the well known Branch and Bound heuristic (see for e.g. [9]). This helps us
to avoid many candidate sets that are useless to consider and to cut into this
recursive branching algorithm. To illustrate our approach and cuts, we will use
Gexample = (V, E), an undirected graph with 13 vertices and 21 edges (Fig. 1). In
the same figure bold edges form one possible clique partition (note that 8 is the
only vertex in clique Cj).

Here are our cuts that we add to our general method.

“Domination” Cut: If at step i all vertices are already dominated we do not
need to explore further. We cut the exploring branch at this point. Sup-
pose, at the beginning, we have a clique partition C = {{1,2,3,4},
{5,6,7},{8},{9,10,11},{12,13}} of the graph Grxample of Figure 1. Now sup-
pose that the execution is at recursive level 4 and that the current solution
is S = {1,5,8,11}. Figure 2 gives a graphical representation of the situation
(edges into the cliques are not drawn). At this current step, the solution S
already dominates all the graph (and is independent) then no need to proceed
further in subsequent recursive searching steps.
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G Example

Step 4

F1cUre 2. Clique Partition: Domination Cut.

“Only Dominated by Its Own Clique” Cut: We consider one vertex v in clique C;

and its neighbors. Now suppose it has all its neighbors in clique C;. We deduce
that every solution S that does not have at least one vertex in Cj;, cannot
dominate v. That means we can ignore the branch of the searching process
with no vertex of C;.

“Last Chance to Dominate” Cut: Each vertex can only be dominated by a limited

number of vertices (its neighbors). From a given clique partition, each vertex
can only be dominated by a limited number of cliques (containing its neigh-
bors). Then from a given ordered clique partition (Cy,Ca,...,Cy), for each
vertex we compute (in a pre—processing phase) an index containing the num-
ber of the last clique that contains at least one of its neighbors. We use this
index to detect non dominated vertices that cannot longer be dominated. More
precisely, suppose we have a current solution S at step i, and that there is one
non dominated vertex v in clique Cj, with k < ¢ and v does not have neighbors
in cliques C,,, ¥m > i. Then v cannot longer be dominated and it is useless to
continue with current solution. For example, from the previous clique partition
C, suppose that at step 3 (clique 3) we have the current solution S = {5}. In
this cases whatever we do at Step 3, Steps 4 and 5, solution .S will be unfeasible
because vertex 2 can never be dominated (Fig. 3).

“Minimum Size” Cut: This is a classical and simple cut in a minimum optimiza-

tion problem. In each step we compare the size of the current candidate solution
with the best known solution found in previous steps. We also cut branches if
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fosi @00 b ben b

R ’ e
C; C; Cs Cs

FiGure 3. Clique Partition: Last Chance to Dominate.

the current solution is already larger than the last one. It avoids all solutions
that will not be better than the best known.

The three first cuts previously presented only reduce the number of unfeasible
solutions. If we only use them, we have an enumerating algorithm for IDS and
mlIDS. The “Minimum size” cut is the only cut reducing the number of feasible
solutions.

3.3. FIRST FEASIBLE SOLUTION: GREEDY HEURISTIC (GH)

As described in previous subsections, our method needs a first feasible solution
to start and to serve as the current best solution (for the last cut rule). We have
implemented a Greedy Heuristic (GH) to construct it. At each step of the GH
algorithm, we add into the current solution S a non dominated vertex u having
the maximum number of non dominated neighbors, then we mark these neighbors
and u itself as dominated. We repeat that step until all vertices are dominated. It
is easy to see that this ensures to have an IDS of G.

We will show in the experimental Section 3.5 that GH constructs pretty good
solutions in general. But we also show in Sections 3.3.1 and 3.3.2 that there are
particular graphs for which the solutions it returns are far from the optimal.

3.8.1. Special star graph

Let k be an integer. Let Gspeciaistar = (V, E) be the graph containing |V| = k*—
k + 1 vertices. It is constructed as follows. A vertex a has k neighbors: uq, ..., ug.
Each u; has k — 1 neighbors: a and v; 1,...,v; x—2 (see Fig. 4).

It is easy to see that GH constructs a feasible solution with 1+ k(k —2) vertices
(selecting first vertex a of higher degree then all the remaining non dominated ver-
tices v; ;) while the optimal solution has only k vertices (u1, ..., uy are sufficient).
Figure 5 gives an example of these solutions when k = 4 (the worst solution has 9
vertices while the best has only 4 vertices).

3.8.2. Special two subsets graph

Let k be an integer. Gsrs = (V, E) is a graph with 2k + 1 vertices. Vertex a has
k+ 1 neighbors: b, ¢c and vy, ..., v;_1. Vertex b has k neighbors: a and vy, ..., v_1.
Vertex ¢ has k neighbors: a and us,...,ux_1 (see Fig. 6).
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GSpeciaIStar GSpeciaIStar

FIGURE 5. Special Star
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FIGURE 7. Special Two
FIGURE 6. Special Two Subsets Graph Subsets Graph: Exam-
ple for k=4

Applying GH gives a feasible solution with k vertices (a and w1, ..., ug—1) while
the optimal solution has only 2 vertices (b and ¢). Figure 7 provides an example
with k& = 4 (the worst solution has 4 vertices while the best has 2 vertices).

3.4. CREATION OF A CLIQUE PARTITION OF (G

Our method needs a clique partition of G. We use a simple greedy algorithm,
Stochastic Greedy Approach (SGA), to construct it.

Let us call free vertexr a vertex that is not in a clique C;. At the beginning of
SGA, all vertices are free and SGA stops when no vertex is free. SGA creates a
clique C; with a free random vertex v. SGA adds iteratively into the current clique
C; one of the common free neighbors of all vertices in C; until there are no more.
Then it creates a new clique C;y1 with a new free vertex randomly selected (if
there is one; otherwise stop) and continues the process. Figure 1 illustrates one of
possible clique partitions for graph Gexample-

3.5. COMPUTATIONAL EVALUATION

In this subsection we present computational results of our method described in
Section 3.2 on various graphs. Our software is implemented in C language. We
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TABLE 1. Results: Random Graphs With Probability 0.1.

n = 80 90 100 110
NbEzec 10 10 0 5
Greedy_time 0.00 0.00 0.00 0.00
|Greedy] 16 14 13 15
Opt_time 740.20  8049.50  38460.00 126985.00
Opt_size 10 11 12 12
NbUpdate 5.00 3.00 1.00 3.00

have evaluated it on hundreds of different graphs that we describe in the following
subsection.

Our graphs have been created with Maple software and then imported as in-
put by our C program. Each instance is executed 10 times on an AMD Opteron
Processor 2352 clocked at 2.1 GHz, with different seeds to have average values.

The tables in the following subsections present our experimental results. The
number of vertices of the graphs is denoted by n. Each line contains: The number
of executions “NbExec” (this number can be less than 10 because some executions
have exceed), the running time of Greedy Heuristic (GH) “Greedy_time” in sec-
onds (average value), the size of the solution constructed by the GH “|Greedy|”,
the running time of our algorithm “Opt_time” in seconds (average value), the size
of the mIDS solution “Opt_size” and the number of improvements done by our
algorithm “NbUpdate” (average value) between the greedy initial solution and the
final one.

3.5.1. Random graphs

We use the classical random graphs model: For an integer n and a probabil-
ity p, we have a graph with n vertices and each possible edge is generated with
probability p.

Table 1 reports statistics for a probability p = 0.1. The running time rises very
fast from 740 s for 80 vertices to more than 126 000 s (almost one and a half days)
for 110 vertices.

Figure 8 summarizes a part of the experimentations: The running time is on the
vertical-axis and the number of vertices on the horizontal—axis. Only probabilities
0.2, 0.3 and 0.4 are shown. We can see that our software can solve large graphs in
reasonable running time when p is larger than 0.3.

3.5.2. Random tree graphs

According to previous results, we note that our algorithm is slower when p is
small, i.e. when G has low density. This is why we now test it on Random Tree
Graphs. A tree is an undirected connected graph with n vertices and n — 1 edges
(so very sparse).
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TABLE 2. Results: Random Tree Graphs.

n=>50 55 60 65 70 75
NbExec 10 10 10 10 10 10
Greedy_time 0.00 0.00 0.00 0.00 0.00 0.00
|Greedy| 18 20 23 26 27 30
Opt_time 2.90 5.30 4190 37.20 210.70 881.30
Opt_size 17 20 23 24 26 26
NbUpdate 1.00 0.00 0.00 2.00 1.00 4.00

Table 2 reports results for different number of vertices. For 50 vertices, the
running time is less than 3 s. We are able to solve instances with up to 75 vertices
in less than 15 minutes. We also can note that GH is very efficient here: Its size is
very close of the optimal, for a quasi null time.

We extend our tests on Path Graphs which are particular trees: Results are
similar even if our method seems to take more computational time to find mIDS
solution.

3.5.3. Hypercube graphs

We have seen that our method is efficient on dense graphs. We now test our
software on Hypercube Graphs. For any integer d, a hypercube is a graph G =
(V,E) with |[V| = 2¢ and |E| = 297!d. Each vertex is labeled by a vector of d
components of {0,1} and two vertices are connected if and only if their vectors
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TABLE 3. Results: Hypercube Graphs.

n=4 8 6 32 64

NbEzec 10 10 10 10 10
Greedy_time 0.00 0.00 0.00 0.00 0.00
|Greedy| 2 2 4 8 16
Opt_time 0.00 0.00 0.00 0.00 423.30
Opt_size 2 2 4 8 12
NbUpdate 0.00 0.00 0.00 0.00 2.60

TABLE 4. Grid Graphs: Results Comparison.

n =25 36 49 56
Opt_time 0.00 0.00 9.90 630.00
Opt_size 7 10 12 16
NbUpdate 1.00 2.70 4.10 3.60
IEA 1.00 254.00 141242.00 —

Liu and Song Algorithm  11.00  39225.00 - —

differ on exactly one component. Hypercube Graphs are slightly dense and all
vertices have exactly the same degree d (no side effect). In spite of its density, the
maximum size of cliques is 2. Thus, our method does not benefit of large cliques.

Table 3 reports results for different number of vertices. We show that we can
solve a large Hypercube Graphs (of 64 vertices) in reasonable running time (ap-
proximately 7 min). For smaller Hypercube Graphs, the solution is found almost
instantaneously.

3.5.4. Grid graphs

In the goal of comparing our method with the experimentations of Potluri and
Negi [12], we evaluated our method on several Grid Graphs from 5 x 5 to 8 x 8.
Table 4 summarizes the comparison with the algorithm of Liu and Song [10] and the
Intelligent Enumeration Algorithm (IEA) of Anupama Potluri and Atul Negi [12].
We give their running time in seconds. Note that Anupama Potluri and Atul Negi
execute their programs on a server having Intel(R) Xeon(TM) CPU 3.00 GHz dual
processor quad core with 8GB RAM which is more powerful than our equipment.

We remind that our results are average values of 10 executions. Clearly IEA
is faster than graph matching algorithm of Liu and Song because it does not go
through all the enumerating solutions. It is so clear that our method is better to
find mID.S than the two others. While the TEA tests each solution to determine
if it is or if it is not an IDS, we ignore a lot of non IDS solutions, thanks to our
cuts. Then for 49 vertices, our algorithm takes 9.90 s running time while IEA takes
more than one day.
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TABLE 5. Results: Special Star Graph.

n =21 91 211 381 601
NbEzec 10 10 10 10 10
Greedy_time 0.00 0.00 0.00 0.00 0.00
|Greedy| 16 81 196 361 576
Opt_time 0.00 0.00 3.70 227.00 8485.10
Opt_size 5 10 15 20 25
NbUpdate 4.80 9.90 14.30  19.60 24.70

3.5.5. Special star graphs

The Special Star Graph is a family of graphs we have found to trick the Greedy
Heuristic (see Sect. 3.3.1). Table 5 reports results of experiments on these partic-
ular graphs. GH gives naturally very bad results. But the rest of our method is
able to correct quickly this bad initial solution up to 381 vertices. The last case
(n =601) can be solved in less than 2h30.

3.5.6. Special two subsets graphs

Special Two Subsets Graph is another family of graphs on which the Greedy
Heuristic gives very bad results (see Sect. 3.3.2). However our clique partition
method is very efficient to improve this initial solution. It solves mIDS problem
quasi instantaneously (in less than one second in our experiments) on such graphs
up to 901 vertices. This can be explained as follows: As the best solution is of size
2 and as it is quickly found, the Minimum Size cut (see Sect. 3.2) avoids all the
branches of the searching process containing solutions larger than 2 (which means
a lot of branches).

3.5.7. Analysis

To conclude on this, we can note that Greedy Heuristic is very fast (less than 1 s)
and very efficient (often close to the optimal) except on some specific families of
graphs specially designed in that matter. In the following section, we will analyze
its effectiveness on large graphs. A second point to note is that our cuts are very
efficient; They allow us to construct optimal solutions in reasonable time for graphs
up to 75 vertices and in at most a few hours for graphs with 150 vertices. But we
also note that for some large sparse graphs our method could not be applied
(too long). Moreover on Grid Graphs which is a (sparse) classical topology in
communication and network optimization, we obtained much better results than
two other recent methods experimented in the literature.

4. GREEDY HEURISTIC APPROACH AND LOWER BOUND
FOR THE mIDS

We have previously shown that our exact algorithm was able to find optimal
solutions but when the size of the graph increases the processing time becomes
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too high. To try to treat graphs of large size we deeper analyze in this section the
Greedy Heuristic (see Sect. 3.3; we remind that GH was used to find an initial
solution in our exact method) to quickly construct an IDS and try to evaluate its
quality. For that, it would be useful to compare this IDS to the optimal one. But
as this is not possible, we compare it here to a lower bound of the optimal.

In Section 4.1 we present our (polynomial) algorithm LWB that computes a
lower bound for the mI DS problem. In Section 4.1.1 we prove that LWB calculates
a lower bound of mIDS problem. In Section 4.1.2 we describe the worst behavior
of LWB.

In the following section our goal is to evaluate solutions produced by GH using
the lower bound from LWB algorithm. We have proved in Sections 3.3.1 and 3.3.2
that there exist families of graphs for which the greedy solution can be very large
compared to optimal. However we experimentally show in Section 4.2 that in
practice/average they are close, even for very large graphs, meaning that GH is
an interesting algorithm to construct IDS of pretty good quality in graphs of large
size.

4.1. LOWER BOUND

In this subsection we give a polynomial algorithm that computes a lower bound
for the mIDS problem. Before that, we need to define some preliminary notations.
We remind that G = (V, F) is any graph and C = {C4,...,Cy} is any clique
partition of G. We denote by d(C;) the maximum degree of vertices in C;: d(C;) =
maz{d(u),u € C;}. We call degenerative clique partition, the particular clique
partition of G in which each clique is reduced to only one vertex.

We describe now our algorithm called LWB. Without loss of generality we
suppose C' = {C,...,Cy} is sorted in decreasing order of maximal degree:
d(Cy) > ... > d(Cj). LWB builds its solution by adding successively one ver-
tex of maximal degree u; of C; (d(u;) = d(C;)) in the natural order (1,2,...)
in a set S initially empty. LWB stops when Z d(u) > |V| —|S|. We denote by

u€eS
Sp ={u1,...,up} (with p < k) the solution returned by the algorithm (we do not

assert that S, is a mIDS). LWB is clearly polynomial.
4.1.1. LWB Gives a Lower Bound

Theorem 4.4 proves that |S,| is a lower bound of mIDS problem in G.
Property 4.1. A set S CV werifies property 4.1, if:

1 1SNC| <1,Vie{l,... k).
2.3 d(u) > V] - |S].

ues

Lemma 4.2. Let S be any dominating set of G. We have Z d(u) > |V =S|
ucsS
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Proof Let E,u:(S) be the number of edges between S and V\S, then we have

out Zd U

u€eS
As S is a dominating set of G, there are at least |V| — |S| edges between S and

V\S and |V|—=|S| < Euut(S). Combining both inequalities the lemma follows. [
Lemma 4.3. S, is the smallest subset of V' wverifying Property 4.1.

Proof. By construction of S, with our algorithm LWB, there is at most one vertex
in each C;: |S, N C;| < 1. Moreover LWB stops when Z d(u) > |V| —|S,]|, thus

u€Sy
Sp verifies Property 4.1.

We have Zd ) >|V]| —pand Zd ) < |V|—=m,¥Ym < p.
i=1 i=1
Suppose there exists a set S = {vi,...,vp}, smaller than S, (|S| < |S,])

verifying Property 4.1. We denote by C, the clique in C’ that contains v;.

Then Zd ) > |V| —m and thus: Zd >Zd

=1
This is a contradlction with the fact that C' was sorted in decreasing order of

maximal degree. Thus S}, is the smallest subset of V' that verifies Property 4.1. [

Theorem 4.4. Let S,,ips be a solution of mIDS then |Syips| > Syl

Proof. As S;,1ps is a dominating set, by Lemma 4.2 it verifies Z d(u) >
UESmIDS

[V |—=|Smips|- Moreover as Sy, rps is independent | Sy, rpsNC;| < 1,Vi € {1,...,k}.

Hence S,,rps verifies Property 4.1. However Lemma 4.3 proves that S, is the

smallest subset of V' that respects Property 4.1, and hence |S,,rps| > [Spl- O

4.1.2. Degenerative clique partition Is always the worst

Theorem 4.5 proves that the degenerative clique partition (cliques are reduced
to only one vertex) gives the worst lower bound with LWB.

Theorem 4.5. The lower bound found by LWB with the degenerative clique parti-
tion is always smaller than or equal to the lower bound found with any other clique
partition.

Proof. Let C, be the degenerative clique partition of G and Cy, = {z;},i =
L,...,|V|. W.lo.g. we suppose that d(x1) > ... > d(xy|). Now let C = C1,...,Cp,
be any other sorted clique partition (non degenerative) of G with m < |V| and
yi,t = 1,...,m a vertex in clique C; such that d(y;) = d(C;).

From the construction of the two previous clique partitions we have d(y;) <
d(z;),i=1,...,m. Then the theorem is verified. a
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Path of k vertice

FIGURE 9. Lower Bound: Clique Partition.

In what follows we will use the graph G of Figure 9 to show that in some
particular cases the difference between the lower bounds can be very large. Let k
be an even not null integer. The graph has 2k 4+ 1 vertices and is composed, at
the left of vertex 1, of a path of k vertices and at its right, including 1 itself, of a
clique of k + 1 vertices.

Now consider a first clique partition C1 = {C1y,...,Cly 241} sorted in de-
creasing order of maximal degree, with |C11| = k + 1 (C1; is the whole clique of
k + 1 vertices) and |C1;| = 2,Vi € {2,...,k/2 + 1} (k/2 cliques of size 2 in the
path of k vertices). We have d(C1y) = k+1 and d(C1;) =2,Vi € {2,...,k/2+1}.
Algorithm LWB returns only one vertex of the big clique of k& + 1 vertices and
[(k —1)/3] vertices of the other cliques of size 2. This leads to a solution of size
p = 14[(k — 1)/3] that gives a lower bound of mID.S with this clique partition C1.

Now consider a degenerative clique partition C2 in which each vertex is a clique
(there are 2k + 1 such cliques). C2 is sorted in decreasing order of maximal degree.
This time, algorithm LWB returns a solution containing only two vertices of the
big clique: Sy = {u1,u2} with d(u1) = k + 1 and d(uz) = k then the lower bound
of mIDS with the clique partition C2 being only 2.

The lower bound of the first clique partition C'1 depends on k while the lower
bound of the second clique partition C2 is a constant. This example shows how
the choice of the clique partition can impact the quality of our lower bound.

4.2. COMPUTATIONAL EVALUATION

In this section we present a summary of the key aspect of our different compu-
tational results with Greedy Heuristic (GH) and Lower Bound algorithm (LWB).
We have implemented our algorithms in C language. We have evaluated several
large graphs from 200 vertices to 60 000 vertices.

As in Section 3 each instance is executed 10 times on an AMD Opteron Processor
2352 clocked at 2.1 GHz.

In the following tables we present our experimental results. The number of
vertices of the graphs is denoted by n. Each line contains: The size of the solution
constructed by the GH “|Greedy|”; The lower bound with degenerative clique
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TABLE 6. Results: Random Graphs with 10000 vertices.

Prob 0.001 0.006 0.01 005 01 O
1

|Greedy| 1774 559 338 93 47
ILWBV| 558 144 77 18 10 2
[LWBC| 5587 144 77 18 10 2
Std. Dev.  0.46 0 0 0 0 0

TABLE 7. Results: Random Graphs With Probability 0.001.

n=5x10%2 10> 2x10° 4x10® 6x10®° 8x10°

|Greedy| 383 626 942 1239 1499 1636
|LW BV| 238 307 385 459 502 541

|LW BC)| 326.8 338.2 391.5 460.6 503 542.3
Std. Dev. 0.6 2.89 1.02 1.02 0 0.46

TABLE 8. Results: Random Graphs With Probability 0.001.

n=10x10% 20x10® 30x10® 40x 10> 50 x 10° 60 x 103

|Greedy| 1774 2214 2443 2659 2811 2955
|LW BV 558 631 670 698 716 732
|LW BC)| 558.7 631 671 698 716 732
Std. Dev. 0.46 0 0 0 0 0

partition “|[LW BV|”; The average size of the lower bounds with random clique
partitions “|LWBC|” and its standard deviation “Std. Dev”. Note that average
size and standard deviation are calculated from 10 executions of the same instance:
Thus we obtain 10 different solutions with 10 different clique partitions.

4.2.1. Random graphs

In Section 3 we have defined the classical random graphs model that we use
here. As it was said previously GH is very fast for all of our experimentations. On
several 10 000—vertices graphs, the running times do not exceed 1 s.

Table 6 reports statistics for graphs with 10000 vertices. As expected size of
GH rises when probability is small. The |LW BV| and |LW BC| are often equal
(more than 90% of tested graphs) and standard deviations are tiny: reaching 0.46
for probability 0.001. Tables 7 and 8 report statistics for random graphs with
probability 0.001 with 500 vertices to 60000 vertices. GH remains efficient when
compared to the lower bound. We can see also that for small and sparse graphs
LWB with clique partition is clearly better than LWB used with degenerative
clique partition. However the difference is marginal when n is large.
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TABLE 9. Results: Random Tree Graphs.

n=10x10° 20x 10> 30x 10> 40 x 103

|Greedy| 4065 8078 12153 16 156
|LW BV | 2164 4314 6467 8614
|LW BC)| 2175 4337.6 6500.8 8657
Std. Dev. 1.18 2.42 2.6 2.39

TABLE 10. Results: Grid Graphs.

n=10x 10> 20x10® 30x10® 40 x 10°

Dim. 100 x 100 100 x 200 100 x 300 100 x 400
|Greedy] 3303 6604 9954 13303
|LW BV| 2000 4000 6000 8000
|LW BC/| 2000 4000 6000 8000
Std. Dew. 0 0 0 0

TABLE 11. Results: Grid Graphs.

n=10x 10> 20x10® 30x10® 40 x 10°

Dim. 10 x 1000 10 x 2000 10 x 3000 10 x 4000
|Greedy] 3333 6666 10000 13333
|LW BV| 2000 4000 6000 8000
|LW BC/| 2000 4000 6000 8000
Std. Dewv. 0 0 0 0

4.2.2. Random Tree Graphs

According to the previous results, the standard deviation is small when G has
low density. Thus we now test our software on Random Tree Graph.

Table 9 reports results for trees with 10 000 vertices to 40 000 vertices. For each
execution the running time is less than 20 s. Standard deviation is tiny and we
notice that GH gives solutions close (factor at most 2) from lower bound.

4.2.3. Grid Graphs

Tables 10 and 11 report results for different kinds of grid graphs. The running
time is always less than 20 s. As the previous graphs we can see that GH gives
good solutions when compared to the lower bound. Moreover LWB with any type
of clique partition give exactly the same results because grid graphs are almost
regular graphs.

4.2.4. Hypercube Graphs

As seen before, GH seems to be efficient on sparse and regular graphs. Then it is
interesting to apply GH and LWB algorithm on hypercube graphs (see Sect. 3.5.3
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TABLE 12. Results: Hypercube Graphs.

n=38 16 32 64 128 256 32768 65536

|Greedy] 2 4 8§ 16 16 32 2048 4096
|Opt.| 2 4 8§ 12 16 32 2048 4096
|LWBV| 2 4 6 10 16 29 2048 3856
|LW BC| 2 4 6 10 16 29 2048 3856
Std. Dev. 0 0 0 0 0 0 0 0

for definition). In 1993, Harary and Livingston [5] proved that for d = 28 — 1 or
d = 2* (k integer) the independent dominating number is 2¢*. Thus we can now
compare our methods with the optimal solution.

Table 12 reports results for different sizes of hypercube graphs for which we can
compute or calculate the size of the optimal. We show that GH and also LWB
algorithm are efficient: GH finds 7 of 8 optimal solutions and LWB gives 5 of 8
optimal solutions. The running times do not exceed 11 s for graphs with more than
65000 vertices.

4.2.5. Analysis

With these tests, we have confirmed that Greedy Heuristic is very fast: All
our executions take less than 20 s of computational time. Experiences show that
solutions produced by Greedy Heuristic do not exceed 5 times the lower bound
which means they are within a factor at most 5 of an optimal solution. We have
also seen that the lower bounds do not change very much for the same graph: The
standard deviation of 10 executions on the same graph with 10 different clique
partitions does not exceed 1%.

5. CONCLUSION AND PERSPECTIVES

The Minimum Independent Dominating Set problem is one of the hardest op-
timization problems since it is NP—Hard and cannot even be approximated with
a factor better than n!~¢ with € > 0 in polynomial time, unless P = N P (see [4]).
In this paper, we proposed an exact algorithm to solve it in any graph G. We did a
worst case analysis and gave conditions by which our method has lower complexity
than other ones (in particular [2,10]).

In the perspective to have a practical tool running on any graph, we imple-
mented our generic method by adding cuts that avoid to explore useless branches
of the searching tree. We experimented our software on several families of graphs.
The conclusion is that we are able to solve the problem on graphs with up to
50 vertices (and even more, up to several hundreds vertices for some of them)
in reasonable time. Moreover, we have compared our approach with experiments
done on two other algorithms on Grid Graphs: Results show that our method is
much better on the studied cases. We have also shown that the Greedy Heuristic
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can handle large graphs and constructs solutions close from the optimal (in experi-
ments, the ratio between the greedy solution and the lower bound was less than 5).
The fact that GH is a good algorithm was already conjectured; it is confirmed in
most of our experiments but we however proved with analytical arguments that
for some particular graphs it can be very bad.

The non polynomial part of the complexity of our exact algorithm depends on
the size of the cliques in a clique partition of G (that can be constructed greedily
in a first phase). We made the observation that the order of the cliques and the
order of the vertices in each clique can have an impact on the duration of the
execution. Our goal is now to find these best orders in a pre—processing phase,
before using them in our method.

A final perspective is to adapt our general method to other independent or
dominating problems.
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