
RAIRO-Oper. Res. 48 (2014) 53–74 RAIRO Operations Research

DOI: 10.1051/ro/2013047 www.rairo-ro.org

MANAGING A PATIENT WAITING LIST
WITH TIME-DEPENDENT PRIORITY AND ADVERSE

EVENTS
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Abstract. This paper addresses the problem of managing a waiting
list for elective surgery to decide the number of patients selected from
the waiting list and to schedule them in accordance with the operating
room capacity in the next period. The waiting list prioritizes patients
not only by their initial urgency level but also by their waiting time. Se-
lecting elective surgery patients requires a balance between the waiting
time for urgent patients and that for less urgent patients. The problem
is formulated as an infinite horizon Markov Decision Process. Further,
the study proposes a scheduling procedure based on structural prop-
erties of an optimal policy by taking a sampling-based finite horizon
approximation approach. Finally, we examine the performance of the
policy under various conditions.
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1. Introduction

This work is motivated mainly by previous empirical research suggesting that
the waiting time for urgent patients is significantly shorter than that for non-
urgent patients [30,31,35]. The delayed access to surgery causes the deterioration
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of the patient’s condition, which can increase the likelihood of adverse events such
as emergency admission, death or a change of the attending physician. For exam-
ple, in the case of elective cholecystectomy, the average weekly rate of emergency
procedures is 2.7% for patients waiting 20 weeks or more, but it is 0.9% for those
waiting less than 20 weeks [30]. In addition, previous studies have mentioned the
risk of death or being removed from a surgical waiting list before surgery [15, 29].
The removal of patients from the waiting list affects the waiting time for the others
on the waiting list. This indicates a need for carefully considering the probabil-
ity of adverse events together with the waiting time for patients when building a
surgery schedule.

This paper refers to the patient pathway for elective coronary artery bypass
grafting (CABG) surgery found in Sobolev and Kuramoto ([30]. pp. 17–18). Pa-
tients are placed on a waiting list if they cannot be immediately added to the
current operating room schedule, and the patient remains on the list until his/her
operating room time is scheduled. Every week, each surgical service group selects
some patients from its waiting list on the basis of priority and places the selected
patients on the operating room schedule for the next week. Such a scenario is anal-
ogous to the model proposed by Gerchak et al. [8], in which the scheduler has to
determine how many requests for elective surgery to admit from the waiting list at
the beginning of each day when the capacity is shared with emergency demands.

A problem associated with such a scenario is to decide how many of the patients
on the waiting list should be assigned for the next service period (i.e., block time).
Assigning too many patients to the block time is likely to lead to overtime hours.
On the other hand, planning too few patients to cover the regular capacity may
delay the access to patient care. In this regard, this paper aims to determine
the appropriate number of patients selected for the next available capacity in
consideration of an observed waiting list rather than booking a set of patients. In
particular, we attempt to strike a balance between the waiting times for urgent
patients and that for non-urgent patients by integrating a patient priority that is
determined not only by the urgency level but also by the waiting time.

In Section 2, we first review the literature on patient waiting lists and related
them to this work in the context of surgery scheduling problems. In Section 3,
we formulate the problem as an infinite horizon MDP (Markov Decision Process).
The need to record the dynamic status of patients explodes the problem size in
terms of the state space and the corresponding solution space. It is well known
that the state explosion limits the applicability of an MDP model in practice. To
overcome this obstacle, we exploit structural properties to facilitate understanding
of the characteristics of the value function and the optimal policy. Based on the
theoretical establishments we then proceed to propose a solution procedure that
relies on sampling-based finite-horizon approximation (Sect. 4). The algorithm
estimates the optimal value and provides a non-stationary randomized policy in
an online manner. Section 5 presents the results of the numerical experiments,
which analyze how significantly the dynamic patient status affects the resulting
solution in comparison with decisions that ignore the dynamics.
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2. Literature review

Building a waiting list according to patient priority or urgency level is widely
perceived as an effective way to facilitate access to surgery [13]. Patient priority
determines the relative position of each patient on the waiting list. Although there
is no universal method for prioritizing patients, this study follows the concept
proposed by Testi et al. [33], who prioritized patients by the priority score defined
by c× τ , where τ indicates waiting time and c refers to the initial urgency level for
each patient based on his/her medical and social needs for treatment. Thus, the
patient priority changes as the waiting time increases. Much research has indicated
that the definition of patient priority should include the waiting time, because a
long waiting time may lead to loss of opportunity for quality care. Readers can
refer to MacCormick et al. [19] and Mullen [22] for a survey of prioritizing elective
patients.

While some variants have been considered in the literature, most have ap-
proached the surgery scheduling problem by using the block capacity to assign
patients until the anticipated total duration of all surgical procedures is not over
the planned capacity [6,11,20]. The newsvendor model can effectively address the
decision problems by considering the trade-off between the cost of idle capacity
and the cost of overtime work [18, 24, 32]. Despite its effectiveness in terms of
resource use, the newsvendor approach is limited in that it cannot address the
patient waiting time.

Recent studies have included the waiting time in their models. Everett [7] pro-
posed a simulation-based decision support system for a public hospital that eval-
uates the capacity feasibility for prioritized patients who are scheduled from a
waiting list. Vasilakis et al. [35] evaluated the performance of pooling referrals
comparing to the several individual waiting lists. In general, pooling referrals re-
duces the amount of time needed to schedule the surgery, but it can dramatically
increase the amount of time the patient spends waiting for the surgery for non-
urgent patients. Sobolev et al. [31] conducted a simulation study to compare two
methods for booking elective surgery: booking from waiting lists and the direct
booking of the surgery dates at the time of the decision. They evaluated cancella-
tions and the patient waiting time and demonstrated that booking from a waiting
list can reduce cancellations among urgent patients but that it can increase the
waiting time for non-urgent patients.

Under the scheme of balancing delayed access to surgery with resource utiliza-
tion, this work formulates the problem using a MDP model. We now provide a brief
review of the literature considering patient priority or multiple types of patients in
their MDP models. In addition to Gerchak et al. [8], who ignored patient priority
in their model, most recent papers relevant to our work include Green et al. [9],
Gupta [10], and Patrick et al. [25]. Green et al. [9] addressed a booking problem in
which outpatients share a diagnostic resource with inpatients. Gupta [10] proposed
a model for an elective surgery booking control problem with multiple patient pri-
ority, but the model left the multi-priority model for the future research area.



56 D. MIN AND Y. YIH

A model given by Patrick et al. [25] attempted to book all patients with multiple
types of urgency levels to fixed scheduling slots of a diagnostic resource within the
maximum recommended waiting time.

Our work mainly differs from these studies in that problems associated with
booking admissions involve the assignment of patients to appointment slots within
a date that has fixed and same length. Such fixed time slots, which have typically
been modeled as an appointment scheduling problem [9,10,25], are not appropriate
for the problem of scheduling surgery patients with random durations, because it
is difficult to determine the number of patients who could receive their surgery
during the block time.

Moreover, our work addresses the time-dependent patient priority, which little
research has focused on. Although Patrick et al. [25] addressed the problem of
scheduling multi-priority patients, their model’s underlying scenario is different
from that in this paper. First, the priority given to a patient at the beginning is
not affected by his or her waiting time. Simulation studies proposed by Vasilakis
et al. [35] and Sobolev et al. [31] demonstrated that the patient priority should
change over time by showing that the time-evolving priority prevents the waiting
time for non-urgent patients from increasing tremendously. Second, because they
ignored waiting costs when patients wait less than the maximum recommended
waiting time, low-priority patients face delayed access to their treatment until the
recommended waiting time. In some cases, however, such delays can increase the
likelihood of low-priority patients becoming emergency patients or even die before
their waiting time reaches the maximum allowance ([30], pp. 117–140). Min and
Yih [21] extended the work given by Gerchak et al. [8] to a multi-priority model, but
their model also assumes a static patient priority. In line of the research interest,
this study assumes that patient priority increases over time.

Further, this study contributes to the literature by considering the probability
of adverse events while waiting. Only few papers have investigated the adverse
events in their outpatient appointment scheduling problems in the forms of late-
ness of doctor arrivals [16], no-shows [23] or demand cancellations [17]. However,
adverse events in outpatient appointment problems are very different from those
in managing waiting lists for surgery. No-shows and cancellations in outpatient
appointment problems are inherent in population behavior and are generally inde-
pendent of outpatient appointment schedules. Some adverse events in the problem
of managing waiting lists, however, may be prevented by shortening the waiting
time.

3. The model

We consider a system that observes a list of patients waiting for surgery at
the beginning of each week. Given such a waiting list, the surgical service group
determines the number of patients scheduled for the next available operating room
time. We formulate this problem as an infinite-horizon MDP model, in which the
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objective is to minimize the expected discounted cost that captures overtime work,
the waiting time, and the risk of adverse events.

We define type-(i, j) patients as those who are given the urgency level i ∈
{1, 2, . . . , I} and have waited for j ∈ {0, 1, 2, . . . , Ji} periods on the waiting list,
where Ji is the maximum waiting time for a patient whose urgency level is i and
assumed to be non-decreasing in i. When a new patient joins the waiting list, an
urgency level is initially given to the patient. The patient’s urgency level remains
the same regardless of the waiting time, but the patient type-(i, j) changes over
time in j. For example, a type-(i, j) patient becomes a type-(i, j +1) patient if the
patient is not scheduled within a given period of time.

Let xt
ij be the number of type-(i, j) patients waiting for surgery at the beginning

of each period t and define st = {xt
ij : 1 ≤ i ≤ I, 0 ≤ j ≤ Ji} as the vector of the

number of patients on the waiting list. A set of patients is selected from st, and
we define ut

ij as the number of type-(i, j) patients selected for scheduling. Thus,
ut = {ut

ij : 0 ≤ ut
ij ≤ xt

ij , 1 ≤ i ≤ I, 0 ≤ j ≤ Ji} is the action for the state st.
Costs are incurred when a patient is not selected in the present decision period.

Previous works have typically assumed a constant penalty without considering the
urgency level for each patient and/or the amount of time the patient spent on the
waiting list. Much research indicates that the waiting time may lead to the loss of
opportunities for care, which can lead to higher costs from additional treatments
and a lower quality of life, and to productivity loss (e.g., income loss). To address
this issue, we introduce a unit period penalty cw(i, j) for the postponement of a
type-(i, j) patient. Thus, cw(i, j) is employed to represent the priority score for
type-(i, j) patients. When urgency levels are ordered from most urgent to least
urgent, cw(i, j) is strictly decreasing in i and increasing in j. However, it is not
necessary to assume that it is linearly increasing in i and j. This idea is consistent
with the typical way in which previous studies have prioritized patients on the
waiting list [22, 33].

Patients face the risk of leaving the waiting list before they are admitted for
surgery, and this risk generally increases as the waiting time increases. We consider
this risk by introducing the cost cr arising when any type of patient leaves while
waiting. The cost cr is separated from the postponement cost cw(i, j) rather than
including it in the cw(i, j), because the patient who leaves the waiting list not
only incurs a cost but also affects the waiting list (i.e., the state). To represent
the number of patients leaving the waiting list, we introduce a binomial random
variable zt

ij with parameters (xt
ij − ut

ij) and αij , where αij is the probability
that a patient who is not admitted at time t leaves the waiting list. Thus, zt

ij is
represented as

zt
ij ∼ B(xt

ij − ut
ij , αij) =

(
xt

ij − ut
ij

k

)
αk

ij(1− αij)xt
ij−ut

ij−k,

where k = 0, 1, . . . , xt
ij − ut

ij .

We assume that αij is strictly decreasing in i and increasing in j.
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Let τ be the total surgery duration when the action ut is taken. Then τ is a
random variable that follows a probability distribution denoted by fu∗(τ), where
fu∗(τ) is defined by the u-fold convolution of an individual distribution based
on the i.i.d.(independent and identically distributed) assumption. The cumulative
distribution function (CDF) of τ is denoted by Fu∗(τ). Although the surgery
duration is dependent on surgery type, which may not reflect the real world, we
assume that the distribution of individual patients’ procedure time is independent
and identical without sacrificing all the properties discussed in this work. Relaxing
this assumption on identical surgery duration affects only the definition of Fu∗(τ).

The surgical service group aims to schedule as many patients as possible to
minimize costs associated with their postponements. However, overtime costs are
incurred when the total surgery duration is over the regular capacity B, which
is the total available time including every detail of surgery operations. Let co(τ)
be the penalty for exceeding the regular capacity when the total surgery duration
is τ . Thus, the total expected overtime cost under the decision ut is given by∫ ∞

B
co(τ)(τ−B)dFu∗(τ). Further, let co(τ) take the following form when we define

the maximum allowable overtime work as (T −B):

1. if τ ≤ B, then co(τ) = 0
2. if B < τ < T , then co(τ) > 0, ∂

∂τ co(τ) ≥ 0, and ∂2

∂τ2 co(τ) ≥ 0 [10], and
3. if τ ≥ T , then co(τ) = M <∞, where M is an arbitrary large number.

For a given state-action pair (st, ut), the present period expected cost function
is written as follows:

Ect(st, ut) =
∫ ∞

B

co(τ)(τ −B)dFu∗(τ) +
I∑

i=1

Ji∑
j=0

(1− αij)cw(i, j)
(
xt

ij − ut
ij

)

+
I∑

i=1

Ji∑
j=0

crαij

(
xt

ij − ut
ij

)

=
∫ ∞

B

co(τ)(τ −B)dFu∗(τ)

+
I∑

i=1

Ji∑
j=0

[(1− αij)cw(i, j) + αijcr]
(
xt

ij − ut
ij

)
. (3.1)

Note that the expected number of type-(i, j) patients leaving the waiting list is
given by the mean of the binomial distribution that is αij(xt

ij −ut
ij). Based on the

assumption about co(τ) and the fact that F (u+1)∗(τ) ≤ Fu∗(τ) for ∀τ ∈ R+, we
can show that Ec(s, u) is piecewise-linear and convex in ut [21].

Now, we consider the arrival of new requests. Let dt
ij be new demand requests

of type-(i, j) patients arrived in period t. We assume that {dt
ij : t = 1, 2, . . .}

is a sequence of i.i.d. random variables following the Poisson distribution with
parameter λij . Because only new patients are added to the list, dt

i,j = 0 unless
j = 0.
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The state transition is defined by xt+1
ij+1 = xt

ij −ut
ij − zt

ij +dt
ij . Since zt

ij and dt
ij

are independent of each other, the transition probability is given as follows:

P (st+1|st, ut) =
I∏

i=1

Ji∏
j=0

xt
ij−ut

ij∑
k=0

P (zt
ij = k)P

(
dt

ij = xt+1
ij − xt

ij + ut
ij + k

)
.

Finally, for a given initial state s, φu(s) denotes the expected infinite horizon
discounted cost under policy u. Then,

φu(s) = lim
T→∞

E

[
T∑

t=1

γt−1ct(st, ut|s)
]

, (3.2)

where γ (0 ≤ γ < 1) is the discount factor.
The optimal policy u∗(s) is the one that minimizes the cost φu(s) starting in

the initial state s. That is,

φu∗(s) = min
u∈U(s)

φu(s),

where U(s) is a set of all admissible policies for the state s.

4. Solution procedure

While MDP models are used in a wide range of applications, it is computa-
tionally too expensive to find an optimal policy within a reasonable amount of
time. Therefore, Min and Yih [21] employed the structural properties of the op-
timal policy for designing computational algorithms to eliminate efforts to search
non-optimal action and state spaces. The resulting decrease in the search space
facilitates the procedure and improves computational efficiency, but the solution
procedure also becomes ineffective when the size of the problem increases. To ad-
dress this issue, we propose an iterative search procedure that provides an instance
of an optimal solution in an online manner for a given initial state.

The underlying idea of the proposed iterative search procedure is to sequen-
tially admit patients while the marginal cost is decreasing by adding a patient. To
support this idea, we first show the convexity and monotonicity of a value function.

4.1. Analysis of structural properties

The total expected discounted cost in (2) leads to the following optimality
equation with a finite-horizon N :

vn(sn) = inf
un∈U(sn)

E{cn(sn, un) + γvn+1(sn+1)}, for n = 1, 2, . . . , N − 1, (4.1)

where vn(sn) is a value function with state sn, which denotes the minimum ex-
pected cost for the tail subproblem starting in period n and ending in period N .
Without loss of generality, we assume vN (sN ) = 0 for all sN .
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To keep the notation simple, we drop the superscript or subscript of a vector
in some cases. Let Jn(s, u) = E[cn(s, u) + γvn+1(s − u − z + d)], so that vn(s) =
minu∈U(s) Jn(s, u).

Theorem 4.1. If vN+1(s) = 0 for all s, then Jn(s, u) is jointly convex in s and
u, and vn(s) is convex in s for all n = 1, 2, . . . , N .

Proof. See Appendix �
Lemma 4.2. The value function vn(s) is non-decreasing in xi,j ∈ s for all i, j.

Proof. Proof is given by induction. For n = N − 1, because the single-period cost
function Ec(s, u) given in (1) is non-decreasing in xij ∈ s and vN (s) = 0, vN−1(s)
becomes non-decreasing in xij ∈ s. If the property is assumed to be hold for
n = N − 2, we can conclude that vN−3(s) is non-decreasing in xij ∈ s. �

In the infinite horizon case, v(s) = limn→∞ vn(s) and the resulting stationary
policy is also optimal [2]. Thus, the convexity holds for the infinite horizon model as
well. The convexity and monotonicity of the value function shown in Theorem 1
and Lemma 1 lead to the lower bound of the optimal infinite-horizon solution.
Providing a lower bound eliminates the need for evaluating any infeasible solutions
below the lower bound. Proposition 1 proves that the single-period solution is the
lower bound.

Proposition 4.3. For any state s, the optimal number of patients selected from
the waiting list is more than the optimal single-period solution. That is,

u0
ij ≤ u∗

ij for all i, j and therefore ||u0||1 ≤ ||u∗||1,
where u0

ij ∈ u0 and u∗
ij ∈ u∗ represent the optimal single-period solution and the

optimal infinite-horizon solution for the state s, respectively.

Proof. Let Δij be a unit vector for which the (i, j)-th element is one and the
others are zero. Then, because u0 is an optimal solution for E[c(s, u)], the following
inequality holds:

E[c(s, u0)− c(s, u0 −Δij)] ≤ 0.

Now, we assume u0
ij = u∗

ij + 1 for ∃i, j and ||u0||1 = ||u∗||1 + 1, which means
that the optimal infinite horizon solution is less than u0, and then the following
inequality holds:

J(s, u0)− J(s, u0 −Δij) > 0, for ∃i, j
⇔

∫ ∞

B

co(τ)(τ −B)

× dFu∗(τ) −
∫ ∞

B

co(τ)(τ −B)dF (u−1)∗(τ)− [(1 − αijcw(i, j) + αijcr]

+ γE[v(s− u0 − z + d)− v(s− u0 + Δij − z′ + d)] > 0
⇔E[c (s, u0)− c (s, u0 −Δij)]

+ γE[v (s− u0 − z + d)− v (s− u0 + Δij − z′ + d)] > 0,
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where z ∼ B(s− u0, α) and z′ ∼ B(s− u0 + Δij , α).
However, v(s − u0 − z + d) − v(s − u0 + Δij − z′ + d) ≤ 0 by Lemma 1, and

E[c(s, u0)− c(s, u0−Δij)] ≤ 0. Thus, J(s, u0)− J(s, u0−Δij) ≤ 0 which conflicts
with the assumption u0

ij = u∗
ij + 1. �

In contrast to the clear identification of the minimum number of patients se-
lected from the waiting list, the upper bound is not easy to be found. While the
precise placement of the upper bound is unclear, the intuition based on the capac-
itated operating room model supports the existence of an upper bound. Because
the maximum overtime work is given as T −B, the schedule accepts no more than
the number of patients for which the total surgery duration is over T .

The following Proposition 2 shows the structure of an optimal policy. The first
part of Proposition 2 presents the monotone property of the optimal policy, which
states that more patients should be admitted if there are more patients on the
waiting list. The remaining of Proposition 2 regulates the number of patients added
to the operating room schedule and specifies an optimal policy for managing the
waiting list. The second part of Proposition 2 describes that at most one patient
will be admitted when the size of the waiting list increases by 1. The intuition
behind the last part is that the decision relies not only on the overall demand, and
the decision may differ from others whose state has the same cardinality. In other
words, if we have more patients who incur higher cost while the size of surgery
waiting list remains the same, then more patients will be added to the operating
room schedule.

Proposition 4.4. Let u∗(s) be the optimal policy for a state s. Then, the following
statements hold:

1. The optimal policy u∗(s) is non-decreasing in s. That is, u∗
ij ≤ u′

ij for all i, j,
where u∗

ij ∈ u∗(s) and u′
ij ∈ u∗(s + Δij).

2. If xij increases by 1, then the optimal decision for the type-(i, j) patient u∗
ij

increases by at most 1. u∗
ij ≤ u′

ij ≤ u∗
ij + 1, where u∗

ij ∈ u∗(s) and u′
ij ∈

u∗(s + Δij).
3. For a state s, u∗

kl ≥ u′
kl for all k, l, where u′

kl ∈ u(s+Δmn) and u∗
kl ∈ u(s+Δij)

if (1− αij)cw(i, j) + crαij ≥ (1− αmn)cw(m, n) + crαmn.

Proof. See Appendix. �

4.2. Approximation-based iterative search procedure

The proposed iterative search procedure starts from the optimal solution of a
single-period model (i.e., the lower bound shown in Proposition 1). Because J(s, u)
is convex in u, one additional patient of type-(i, j) added to the operating room
schedule reduces the expected marginal gain presented by ∂

∂uij
J(s, u) = J(s, u)−

J(s, u + Δij) as a result of increases in the expected overtime cost and decreases
in the expected costs associated with the waiting time. Thus, the procedure keeps
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adding patients to the schedule as long as the expected marginal gain is non-
negative.

The most challenging part of the procedure is that it is not trivial to determine
both ∂

∂uij
J(s, u) and Δij (i.e., the type of patient that should be the next to be se-

lected). Because the value function v(s) that is unknown for all states s, but which
should be available for the calculation of the marginal gain. To address this issue,
we approximate the value function by employing a sampling-based finite-horizon
approximation method, not by seeking true value functions. This approximation
procedure is referred to as the “Rollout procedure” [3,5,14,26]. An example of this
approximation method in the healthcare field can be found in Thompson et al. [34].

In each period, a set of random samples are used to estimate the value function,
and a better policy is selected based on the estimation. Formally, suppose that we
estimate J(s, u) for the current state s by using the sample average ĴN (s, u) for
the finite horizon N , then

ĴN (s, u) = Ec(s, u) + γ
1
M

M∑
m=1

Q̂∗
N−1(sm), (4.2)

and Q̂∗
n(s) is defined by

Q̂∗
n(s) = inf

u∈U(s)

{
Ec(s, u) + γ

1
M

M∑
m=1

Q̂∗
n−1(sm)

}
,

where n = 1, 2, . . . , N , M is the sample size, Q̂∗
0(s) = 0 for all s, and sm is the

next state simulated by the sample m.
The solution given by Equation (4) is a nonstationary stochastic policy [14].

Moreover, the resulting stochastic policy is interpreted as an approximate receding
N -horizon control for the infinite horizon model in the context of the “rolling hori-
zon procedure”[12]. This implies that the optimal solution for the infinite horizon
model can be approximated by solving a sufficiently long finite horizon problem.
A number of studies examining the rolling horizon procedure have indicated that
both the optimal solution and costs for finite horizon approximation converge to
the true optimal infinite horizon solution and costs as the horizon approaches to
infinity [4, 27].

Now we are ready to present the iterative search procedure. This procedure
iteratively allocates patients into the operating room schedule until the estimated
marginal gain becomes negative. The final procedure is given as follows:

Iterative Search Procedure: Sampling-based N-horizon Approxima-
tion

1. Initialize
(a) Obtain the optimal single-period solution u0(s0), where s0 is the initial

state.
(b) Let u be the current solution and set u = u0(s0). Set sr = s0 − u.
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2. Calculate the expected marginal gain
(a) If sr is not equal to the vector of all zeros, then continue.

Otherwise, go to Step 4.
(b) Estimate the marginal gain

∂
∂uij

Ĵ(s0, u) = Ĵ(s0, u) − Ĵ(s0, u + Δij) for each i ∈ {1, 2, . . . , I} and j =
max{j : xr

ij > 0, j ∈ {0, 1, . . . , Ji}}, where xr
ij is a set of elements in sr.

(c) Set Δ∗
ij = argmaxi

∂
∂uij

Ĵ(s0, u).
3. Evaluate the estimated marginal gain

(a) If ∂
∂uij

Ĵ(s0, u) ≥ 0, then u← u + Δ∗
i,j , sr ← sr −Δ∗

ij and go to Step 2.
Otherwise, go to Step 4.

4. Stop the iteration, and u is the final solution.

5. Evaluation of an optimal policy

This section summarizes the results of numerical experiments that we conduct
to show an optimal policy and to evaluate the effects of uncertainty considered in
the model.

5.1. Estimating model parameters

The test problem is constructed by using the data from the literature [30,35] and
by considering an actual regional hospital with some reasonable modifications. For
simplicity, we consider only the case of two urgency levels: urgent and non-urgent
(i.e., I = 2).

Because of the lack of actual data, we arbitrarily choose all the cost parameters
(e.g., cw(i, j), cr, and co(τ)), but make some reasonable modifications. cw(i, 0) in-
dicates an urgency level initially given to each patient, and we estimate the ratio
of cw(1, 0) to cw(2, 0) from the data on the number of patients selected from the
waiting list per week because the decision maker expedites those surgical proce-
dures that incur higher costs. According to the data on elective CABG surgery
from Sobolev and Kuramoto [30], the weekly number of urgent patients admit-
ted is approximately three times greater than that for non-urgent patients. For
other surgery types, the ratio of weekly admission for the most urgent patients
to the least urgent patients is three to six. In this study, we set cw(1, 0) to be
three times greater than cw(2, 0), and arbitrarily set cw(2, 0) as 2. Furthermore,
we assume cw(i, j) to be linearly increasing in j with the coefficient w, and we
vary a coefficient w from 0 to 7. Thus, cw(i, j) is written by:

cw(i, j) = (6− (i− 1)× 3) + w × j, where w ∈ R+.

Intuitively the cost cr incurred as a result of emergency surgery or death of a pa-
tient is at least greater than the total expected cost of the patient remaining in the
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waiting list. Under this intuition, cr is estimated by its relationship with cw(i, j):

αijcr ≥ (1 − αij)cw(i, j) + (1− αij+1)2cw(i, j + 1) + · · ·+ (1 − αiJi)
Ji−jcw(i, Ji)

≥ (1 − αij)cw(i, j) + (1− αij)2cw(i, j) + · · ·+ (1 − αij)Ji−jcw(i, j)

=
1− αij

αij
(1− (1− αij)Ji−j)cw(i, j).

Here Ji is derived from the estimated probability that a CABG surgery patient
remains on the waiting list. According to the data in Sobolev and Kuramoto [30],
in the case of patients with urgent status, the probability is approximately zero
when the waiting time was about 40 weeks. By contrast, the probability for non-
urgent patients is approximately 90% at the waiting time of 50 weeks. Thus, based
on the estimated probability, we roughly decide that J1 = 40 and J2 = 50.

Because the cumulative risk of becoming emergency surgery or death increases
almost linearly with the waiting times [30], αij is defined as αij = 1

ai
× j, where

ai is the unit increment of the probability. In the case of elective cholecystectomy
surgery, although the probability of emergency surgery is low during the first 4
weeks (approximately 2%), it increases dramatically to 40% when the waiting time
is 40−52 weeks. In terms of CABG surgery, approximately 10% of urgent patients
and only 4% of non-urgent patients undergo emergency surgery or die when the
waiting time is over 50 weeks. We vary ai from 20 to 300 (i.e., αij is between
0.003 × j and 0.05 × j) and investigate the effects of the risk associated with
leaving the waiting list.

We set the regular operating room capacity at 780 min for each period (i.e.,
B = 780 min), and the maximum overtime is arbitrarily given as 180 min (i.e.,
T −B = 180 min). Overtime work is allowed with the overtime costs co(τ) when
the total surgery duration is τ . co(τ) is defined as tk× τ , where tk is the coefficient
of the unit overtime cost that doubles every 30 min during overtime. The subscript
k denotes different levels of the capacity constraint. We define three levels of the
capacity constraints. The initial value of tk is 0.25, 0.4 and 0.8, respectively. Note
that co(τ) =∞ when τ reaches at the maximum allowable overtime.

Instead of assuming a particular distribution, the distribution of surgery du-
ration is derived from actual data of surgery procedures that we compiled over
3 700 cases during a seven-month period. While the surgery duration depends on
surgery type and the patient’s condition, we assume that all the patients in the
same surgical service group follow the same distribution. For instance, according
to the data on the distribution of urology surgery duration, the mean is 64 min,
the standard deviation is 52 min and the skewness is 2.11. A set of surgery du-
rations is randomly selected from the distribution of urology surgery durations to
calculate the expected overtime.

We determine the arrival of new patients by using data from Vasilakis et al. [35].
Their simulation method models new arrivals as having a Poisson distributions
with parameters 6 and 7 for urgent and non-urgent levels, respectively.
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Table 1. Convergence of the objective value (φ∗) with different values of N .

N 1 2 3 4 5 6 7 8

φ∗ 2616.4 7202.8 10 394.8 12 850.8 14 479.3 15 372.1 15 717.4 15 892.4

Δφ∗ – 4586.4 3192.0 2456.0 1628.5 892.8 345.3 175.0

Δφ∗(%) – 40.9 22.2 14.6 8.8 4.6 1.8 0.9

5.2. The behavior of the iterative search procedure

This section verifies the theoretical results established in Section 4. We first run
numerical experiments with different values of N to determine the appropriate
value by observing the convergence of the objective value. Table 1 shows that the
average objective value stabilizes over 5 replications with 10 samples at each stage
(i.e., M = 10) when N is expanded to 8 periods. We perform 10 replications for
each problem by using different streams of random numbers and use the same set
of seeds for the random number generation for other experiments (i.e., common
random numbers are used).

Solution quality and computation time are sensitive to the values of M and N ,
and thus those two elements require close attention. For a fixed value of N , a large
sample of M reduces the solution variance [5], and we have shown that a larger N
better approximates the true cost. According to the computational experiments,
M over 10 provides stable outcomes for any given N . The average computational
time is about 30 s per iteration for N = 6 and increases exponentially with N .
Thus, we use N = 5 for further experiments despite better solution quality with a
lager value of N .

With N = 5, it takes, on average, less than 10 s per iteration. An optimal
single-period solution is found within one second regardless of the problems size
that is primarily defined by the number of patients on the waiting list. Because
this procedure generally iterates less than 10 times, the total computational times
is not over 90 s. Although the solution procedure proposed by Min and Yih [21]
outperforms the conventional value iteration procedure, it takes approximately
500 s to obtain a policy in the case of 20 patients on the waiting list. Note that
problem size has no substantial effect on the proposed iterative search procedure.
This indicates that the proposed procedure may be particularly effective for large
problems.

Noteworthy is the convexity of J(s, u). Figure 1 plots the estimated marginal
gain from adding patients to the operating room schedule. The results of the
numerical experiments summarized in Section 5 indicate that with each iteration,
the iterative search procedure improves the solution based on this convexity. The
estimated marginal gain becomes negative when 8 more patients are added to the
single-period optimal solution. Thus, the final solution is determined by adding 7
patients to the single-period optimal solution.
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Figure 1. Monotone decrease of marginal gain.

The results of each iteration indicate that the total cost is strictly decreasing
before the final solution. However, it is not necessarily true that the estimated
marginal gain also strictly decreases at each iteration. A nonstationary stochas-
tic policy due to the sampling-based approximation yields the non-monotone
behaviors.

5.3. The policy

This section introduces an optimal policy obtained by using the iterative search
procedures presented in Section 4.2. Recall that the major interest in this work is
to determine the number of patients admitted for surgery from the waiting list.

To provide a better understanding of the optimal policy, we consider a special
case in which cw(i, j) is constant in j and αij = 0 for all i and j, that is, a case of the
static-priority model. Figure 2 illustrates an example of optimal policy obtained
by the modified value iteration method of which a detailed description is found in
Min and Yih [21]. Each point indicates the total number of patients selected from
the waiting list corresponding to the total number of patients waiting. The solid
line is the number of admitted patients determined from the model that does not
discriminate between different patient priorities. The number of admitted patients
varies not only by the number of patients waiting for surgery but also by that
belonging to each patient type. As the number of urgent patients on the waiting
list increased, the policy tends to allocate more patients to the capacity.

5.4. Effects of time-dependent priority

In this section, we assess the effects of the time-dependent patient priority by
conducting simple simulation experiments that process patients according to the
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Figure 2. Optimal Policy: the static-priority model, cw(1, j) =
240, cw(2, j) = 80, cw(3, j) = 40.

Figure 3. Effects of the time-dependent priority on the waiting time.

solution obtained through the proposed procedure. As shown in Figure 3, the
time-dependent priority (i.e., cw(i, j) < cw(i, j + 1)) reduces the waiting time for
less urgent patients while increasing it for more urgent patients. Considering the
waiting time in determining priority allows less urgent patients to occupy the op-
erating room capacity earlier to prevent cost associated with the waiting time from
increasing. In the case of the static-priority setting (i.e., cw(i, j) = cw(i, j+1)), the
waiting time for less urgent patients increases substantially because patients with
higher urgency level are always admitted first and only the remaining capacity is
given to patients with lower urgency level.
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Figure 4 illustrates the behavior of a policy to different levels of ai (the coef-
ficient for αij representing the risk of adverse events) defined in Section 5.1. The
policy exhibits a convex shape (i.e., the number of patients admitted for surgery is
initially decreasing and then increasing) in αij . A small ai value (i.e., a high prob-
ability that a patient leaves the waiting list while waiting) shortens the waiting
list, but there are substantial increases in costs associated with their departure.
These cost increases allow the model to allocate more patients into the operating
room schedule. In addition, a large probability removes many patients from the
waiting list with constant cost cr, which makes the marginal increment of the to-
tal cost small when the probability becomes fairly large. On the contrary, when
ai is relatively large, only a small number of patients are expected to leave the
waiting list, increasing the waiting time and eventually leading to higher costs in
the future. Therefore, patients are slightly more likely to be admitted for surgery
when the risk of patients leaving the waiting list is small.

The solutions for different ai values indicates that the number of patients
selected from each urgency level ui depends on the probability αij . For exam-
ple, (u1, u2) = (7.0, 3.6) for (a1, a2)=(60, 120) on average. The solution becomes
(u1, u2) = (4.6, 6.6) when a1 = 120 while a2 remains as 120.

As shown in Figure 4, which shows different levels of the capacity constraints,
a strong capacity constraint mitigates the effects of αij implying that under a
strong capacity constraint, there is little room for overtime work and thus for
allocating more patients. When tk = 0.8, the solution is almost independent of
the probability. It implies that a strong capacity constraint weakens the effects of
considering the time-dependent patient priority.

6. Conclusion

This work proposes a model for managing a surgery waiting list that takes into
account the dynamic patient status, which is formulated as the time-dependent
cost of surgery postponements and the probability of patients leaving the waiting
list, to select an appropriate number of patients from the waiting list. The decision
attempts to minimize an expected infinite horizon discounted cost that captures
overtime work, the waiting time, and the risk of adverse events.

There are several possible extensions to our model. Although the results indi-
cate that the proposed procedure is computationally efficient, there is a need for
an analysis of the complexity of the proposed algorithms. In line of this research
interest, the iterative search procedure evaluates only one patient at each iteration
(i.e., single-step size). Thus, further research should develop a procedure in which
multiple patients are allocated at each iteration (i.e., multiple-step size). A proce-
dure reflecting the multiple-step size should significantly reduce the computation
time, but the step size needs to be carefully determined since a long step-size over
the final solution may increase the number of iterations.

Another potential route of extension is to use previously acquired data for es-
timating the marginal gain, ∂

∂uij
J(s, u). The software application can easily keep
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(a) Total num. of patients Admitted

(b) Total cost

Figure 4. Effects of αij and capacity constraints.

track of all resulting data elements, including Q̂∗
n(s) in equation (4) and corre-

sponding solutions. In general, the procedure can utilize a large amount of data
that specifies how the function Q̂∗

n(s) is implicitly defined for the next procedure,
and it will remove the amount of efforts needed for evaluating marginal gains. In
this sense, the idea is extensible to another procedure that separates the training
phase for approximating true value functions from the acting phase that runs the
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iterative search procedure without estimating marginal gains. It is unclear how the
value function could be approximated, but Powell [26] described several methods
for approximating value functions, which are generally referred to as approximate
dynamic programming (ADP).

Appendix

Proof of Theorem 4.1

Proposition 4.3. The single-period cost function E[c(s, u)] is jointly convex in s
and u. �

Proof. The function
∫ ∞

T
co(τ)(τ −B)dFu∗(τ) is convex and increasing in τ for all

B ≥ 0 [8]. Note that the total amount of service time τ is strictly increasing u.
Because c(s, u) is the sum of two convex functions, c (s, u) is also convex in u.
Furthermore, E[c (s, u)] is convex in xi,j ∈ s. �

Theorem 4.1. If vN+1(s) = 0 for all s, then, Jn(s, a) is jointly convex in s and u
and vn(s) is convex in s for all n = 1, 2, . . . , N . �

Proof. The proof is given by induction on n. Here vN+1(s) and JN (s, u) are convex
by assumption and Proposition 4.3. Assuming that the results hold for n, vn(s)
and Jn(s, u) are convex. We now show that the results hold also for n−1. Because
both vn(s) and c (s, u) are convex, Jn−1(s, u) is also convex. The convexity of
Jn−1(s, u) supports that vn−1(s) is convex. �

Proof of Proposition 4.4

Proof. 1. To keep notation simple, instead of u∗(s), let u denote an optimal so-
lution for a state s. If we assume u∗

mn > u′
mn for ∃m, n, then the following

inequality holds:

J(s + Δij , u)− J(s + Δij , u−Δmn)

=
∫ ∞

B

co(τ)(τ −B)dFu∗(τ)

−
∫ ∞

B

co(τ)(τ −B)dF (u−1)∗(τ) − (1− αmn)cw(m, n)− αmncr

+ γE[v(s + Δij − u−B(s + Δij − u, α) + d)
− v(s− u + Δij + Δmn −B(s− u + Δij + Δmn, α) + d)] ≥ 0.
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By the convexity and monotonicity of the value function,

J(s + Δij , u)− J(s + Δij , u−Δmn)

<

∫ ∞

B

co(τ)(τ −B)dFu∗(τ)

−
∫ ∞

B

co(τ)(τ −B)dF (u−1)∗(τ) − (1− αmn)cw(m, n)− αmncr

+ γE [v(s− u + Δij −B(s− u + Δij , α) + d)− v(s− u + 2Δij

−B(s− u + 2Δij , α) + d)]

<

∫ ∞

B

co(τ)(τ −B)dFu∗(τ) −
∫ ∞

B

co(τ)(τ −B)dF (u−1)∗(τ)

− (1− αij)cw(i, j)− αijcr

+ γE[v(s− u− B(s− u, α) + d)− v(s− u + Δij −B(s− u + Δij , α) + d)]
= J(s, u)− J(s, u−Δij).

Because u is an optimal solution for the state s and minimizes J(s, u), J(s, u)−
J(s, u−Δij) ≤ 0. Then J(s+Δij , u

∗(s))−J(s+Δij , u
∗(s)−Δmn) < J(s, u)−

J(s, u −Δij) ≤ 0. It contradicts to the assumption J(s + Δij , u
∗(s)) − J(s +

Δij , u
∗(s) − Δmn) ≥ 0 representing u∗

mn > u′
mn. In a concluding manner,

u∗
mn ≤ u′

mn for all m, n, where u∗
mn ∈ u∗(s) and u′

mn ∈ u∗(s + Δmn).
2. Because u is an optimal solution for the state s, the following inequality holds:

J(s, u + Δij)− J(s, u) ≥ 0

⇔
∫ ∞

B

co(τ)(τ −B)dF (u+1)∗(τ)

−
∫ ∞

B

co(τ)(τ −B)dFu∗(τ) − (1− αij)cw(i, j)− αijcr

+ γE[v(s− u−Δij −B(s− u−Δij , α) + d)
− v(s− u−B(s− u, α) + d)] ≥ 0.

Assume that uij is increased by 2 while xij is increased by 1.

J(s + Δij , u + 2Δij)− J(s + Δij , u + Δij)

=
∫ ∞

B

co(τ)(τ −B)dF (u+2)∗(τ) −
∫ ∞

B

co(τ)(τ −B)dF (u+1)∗(τ)

− (1− αij)cw(i, j)− αijcr

+ γE[v(s− u−Δij −B(s− u−Δij , α) + d)
− v(s− u− B(s− u, α) + d)]

≥
∫ ∞

B

co(τ)(τ −B)dF (u+1)∗(τ)

−
∫ ∞

B

co(τ)(τ −B)dFu∗(τ) − (1− αij)cw(i, j)− αijcr
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+ γE[v(s− u−Δij −B(s− u−Δij , α) + d)
− v(s− u−B(s− u, α) + d)]
= J(s, u + Δij)− J(s, u) ≥ 0.

Thus, J(s + Δij , u + 2Δij) ≥ J(s + Δij , u + Δij) and it means that u + 2Δij

cannot be an optimal solution for the state s + Δij .
3. Let J1 be a function corresponding to the state s + Δij so that u∗(s + Δij) =

argminu∈U(s+Δij) J1(s + Δij , u). Similarly, let J2 be a function for the state
s + Δmn and it satisfies u∗(s + Δmn) = arg minu∈U(s+Δmn) J2(s + Δmn, u).
Because u∗(s + Δij) is an optimal solution for the state s + Δij , for ∃k, l,

J1(s + Δmn, u(s + Δij)) ≤ J1(s + Δmn, u(s + Δij) + Δkl)

⇔ (1− αkl)cw(k, l) + αklcr ≤
∫ ∞

B

co(τ)(τ −B)dF (u+1)∗(τ)

−
∫ ∞

B

co(τ)(τ −B)dFu∗(τ) + γE{v(s + Δmn −Δkl

− u(s + Δij)− z1 + d)− v(s + Δmn − u(s + Δij)− z2 + d)}, (A.1)

where z1 ∼ B(s− u(s + Δij), α) and z2 ∼ B(s− u(s + Δij) + Δij , α).
If we assume u∗

kl < u′
kl for ∃k, l, where u′

kl ∈ u(s +Δmn) and u∗
kl ∈ u(s + Δij),

then

J2(s + Δmn, u(s + Δij)) > J2(s + Δmn, u(s + Δij) + Δkl)

⇔ (1 − αkl)cw(k, l) + αklcr >

∫ ∞

B

co(τ)(τ −B)dF (u+1)∗(τ)

−
∫ ∞

B

co(τ)(τ − B)dFu∗(τ)

+ γE{v(s + Δmn −Δkl − u(s + Δij)− z3 + d)
− v(s + Δmn − u(s + Δij)− z4 + d)}, (A.2)

where z3 ∼ B(s+Δmn−Δkl−u(s+Δij), α) and z4 ∼ B(s+Δmn−u(s+Δij), α).
From (5) and (6),

v(s + Δmn −Δkl − u(s + Δij)− z1 + d)− v(s + Δmn − u(s + Δij)− z2 + d) >

v(s + Δmn −Δkl − u(s + Δij)− z3 + d)− v(s + Δmn − u(s + Δij)− z4 + d).
(A.3)

However, because of the monotonicity of the value function shown in Lemma
1, Inequality (7) does not hold.
Therefore, the assumption u∗

kl < u′
kl does not hold, and u∗

kl ≥ u′
kl for all k, l,

where u′
kl ∈ u(s + Δmn) and u∗

kl ∈ u(s + Δij) if (1 − αij)cw(i, j) + crαij ≥
(1− αmn)cw(m, n) + crαmn. �
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