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FUZZY MATHEMATICAL PROGRAMMING APPROACH
FOR SOLVING FUZZY LINEAR FRACTIONAL

PROGRAMMING PROBLEM

Chinnadurai Veeramani1 and Muthukumar Sumathi1

Abstract. In this paper, a solution procedure is proposed to solve
fuzzy linear fractional programming (FLFP) problem where cost of the
objective function, the resources and the technological coefficients are
triangular fuzzy numbers. Here, the FLFP problem is transformed into
an equivalent deterministic multi-objective linear fractional program-
ming (MOLFP) problem. By using Fuzzy Mathematical programming
approach transformed MOLFP problem is reduced single objective lin-
ear programming (LP) problem. The proposed procedure illustrated
through a numerical example.
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multi objective linear fractional programming problem, fuzzy mathe-
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1. Introduction

The fields like, financial and corporate planning, production planning, market-
ing and media selection, university planning and student admissions, health care
and hospital planning, etc. often face problems to take decisions that optimize
department/equity ratio, profit/cost, inventory/sales, actual cost/standard cost,
output/employee, student/cost, nurse/patient ratio etc. The above problems can
be solved efficiently through linear fractional programming (LFP) problems. The
coefficients of LFP problems are assumed to be exactly known. In practice, the
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coefficients (some or all) are not exact due to the errors of measurement or vary
with market conditions etc. These situations can be modeled efficiently through
fuzzy linear fractional programming (FLFP).

Many researchers are investigated different kind of FLFP problems so far. The
FLFP problem can be classified into two categories: LFP problem with fuzzy goals
and LFP problem with fuzzy coefficients. Most of the FLFP problems can be mod-
eled and solved by fuzzy goal programming approach (see [1–3,7,9,10,12,13,17]),
but very few authors considered FLFP problem where fuzzy coefficients are fuzzy
numbers. Mehra et al. [11] proposed a method to compute an (α, β) acceptable op-
timal solution where α ∈ [0, 1] and β ∈ [0, 1] is the grade of satisfaction associated
with the fuzzy objective function and with the fuzzy constraints, respectively. Pop
and Stancu Minasian [14], analyzed a method to solve the fully fuzzified LFP prob-
lem, where all the variables and parameters are represented by triangular fuzzy
numbers. Most of the work listed above deal with fuzziness either in the constraint
inequalities and/or in the aspiration levels of the decision makers. To best of our
knowledge, no work has been studied on fuzzy linear fractional programming with
fuzzy coefficients. In this paper, we consider the FLFP problem with cost, techno-
logical coefficient and resources are triangular fuzzy numbers. First the given FLFP
problem is transformed into a deterministic MOLFP problem. This transforma-
tion is obtained by using Zadeh extension principle. By using Fuzzy Mathematical
programming approach transformed MOLFP problem is reduced single objective
linear programming (LP). The rest of our work is organized as follows: In Section 2,
we review some concepts of fuzzy numbers. In Section 3, the method of convert-
ing LFP problem into LP problem is discussed. The procedure for transforming
MOLFP into MOLP problem and Fuzzy Mathematical programming technique is
presented in Section 4. In Section 5, the method for solving FLFP problem using
Fuzzy Mathematical Programming approach is developed. In Section 6, advan-
tages of the developed method is discussed. The proposed procedure illustrated
through a numerical example in Section 6.

2. Some basic notions

In this section, the basic definitions involving fuzzy sets, fuzzy numbers and
operations on fuzzy numbers are outlined.

Definition 2.1. If X is a collection of objects denoted generically by x, then a
fuzzy set Ã in X is a set of ordered pairs

Ã = {(x, μÃ(x))|x ∈ X}

where μÃ(x) is called membership function or grade of membership(also degree of
compatibility or degree of truth) of x ∈ Ã that maps X to [0, 1].

Definition 2.2. The support of a fuzzy set Ã is the set of all points x in X such
that μÃ(x) > 0.
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Figure 1. Membership function for triangular fuzzy number.

Definition 2.3. A fuzzy set Ã is said to be normal if μÃ(x) = 1 for atleast one
x ∈ X .

Definition 2.4. A fuzzy set Ã on X is convex if and only if μÃ(λx1 +(1−λ)x2) ≥
min(μÃ(x1), μÃ(x2)) for all x1, x2 ∈ X and for all λ ∈ [0, 1] where min denotes
the minimum operator.

Definition 2.5. A fuzzy subset Ã of the real line R with membership function
μÃ : R → [0, 1] is called fuzzy number if

(i) Ã is normal and convex fuzzy set.
(ii) Support of Ã must be bounded.

Any fuzzy number can be described with the following membership function

μÃ(x) =

⎧⎪⎨
⎪⎩

LÃ(x), a ≤ x ≤ b,

RÃ(x), c ≤ x ≤ d,

0 otherwise,

where a ≤ b ≤ c ≤ d, LÃ(x) is increasing and left continuous function on [a, b] and
RÃ(x) is decreasing and right continuous function on [c, d].

Definition 2.6. A triangular fuzzy number Ã is denoted by Ã = (a(1), a(2), a(3))
with a(1) < a(2) < a(3) is a fuzzy set where the membership function can be
defined as

μÃ(x) =

⎧⎪⎪⎨
⎪⎪⎩

x−a(1)

a(2)−a(1) , a(1) ≤ x ≤ a(2),

a(3)−x
a(3)−a(2) , a(2) ≤ x ≤ a(3),

0 otherwise,

whose membership function is shown in Figure 1.
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Definition 2.7. Let ‘∗’ denote any of the four basic arithmetic operations and Ã,
and B̃ denote any two fuzzy numbers. Then, the arithmetic operations through
extension principal is defined as

μÃ∗B̃(Z) =
∨

Z=x∗y

(μÃ(x), μB̃(y)).

Definition 2.8. Let Ã = (a(1), a(2), a(3)) and B̃ = (b(1), b(2), b(3)) be two posi-
tive triangular fuzzy numbers, where a(1), a(2), a(3), b(1), b(2), b(3) ∈ R. Then the
arithmetic operations and scalar multiplications are defined by

(i) Ã + B̃ = (a(1) + b(1), a(2) + b(2), a(3) + b(3));
(ii) Ã − B̃ = (a(1) − b(3), a(2) − b(2), a(3) − b(1));
(iii) KÃ = (Ka(1), Ka(2), Ka(3)), if K is positive = (Ka(1), Ka(3), Ka(2)), if K is

negative.

Remark 2.9. Let Ã = (a(1), a(2), a(3)) and B̃ = (b(1), b(2), b(3)) be any two posi-
tive triangular fuzzy numbers. If Ã ≤ B̃ then a(2) ≤ b(2), a(1) ≤ b(1) and a(3) ≤ b(3).

3. Linear fractional programming problem

In this section, the general form of LFP problem is discussed. Also, Charnes
and Cooper’s [5] linear transformation is summarized.

The linear fractional programming problem can be written as

Max Z(x) =
∑

cjxj+p∑
djxj+q = N(x)

D(x)

subject to (3.1)
x ∈ S = {x ∈ Rn : Ax ≤ b, x ≥ 0}

where j = 1, 2, . . . , n, A ∈ Rm×n, b ∈ Rm, c, d ∈ Rn and p, q ∈ R. For some values
of x, D(x) may be equal to zero. To avoid such cases, one requires that either
{x ≥ 0, Ax ≤ b ⇒ D(x) > 0} or {x ≥ 0, Ax ≤ b ⇒ D(x) < 0}. For convenience,
assume that LFP satisfies the condition that

x ≥ 0, Ax ≤ b ⇒ D(x) > 0. (3.2)

Remark 3.1. The problem (1) is said to be standard concave-convex program-
ming problem, if N(x) is concave on S with N(ζ) ≥ 0 for some ζ ∈ S and D(x) is
convex and positive on S.

Definition 3.2. [6] The two mathematical programming problem (i) Max F (x),
subject to x ∈ S, (ii) Max G(x), subject to x ∈ U will be said to be equivalent iff
there is a one to one map f of the feasible set of (i), onto the feasible set of (ii),
such that F (x) = G(f(x)) for all x ∈ S.
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Theorem 3.3. Assume that no point (z, 0) with z ≥ 0 is feasible for the following
linear programming problem

Max cT z + pt

subject to (3.3)
dT z + qt = 1
Az − bt = 0

t ≥ 0, z ≥ 0, z ∈ Rn, t ∈ R

Now assume that the condition (2), then the LFP (1) us equivalent to linear pro-
gram problem (3).

Consider the two related problems

Max tN(z/t)
subject to (3.4)

A(z/t) − b ≤ 0
tD(z/t) = 1

t > 0, z ≥ 0

and

Max tN(z/t)
subject to (3.5)

A(z/t) − b ≤ 0
tD(z/t) ≤ 1
t > 0, z ≥ 0

where (4) is obtained from (1) by the transformation t = 1/D(x), z = tx and (5)
differs from (4) by replacing the equality constraint tD(z/t) = 1 by an inequality
constraint tD(z/t) ≤ 1.

Theorem 3.4. Let for some ζ ∈ S, N(ζ) ≥ 0, if (1) reaches a (global) maximum
at x = x∗, then (5) reaches a (global) maximum at a point (t, z) = (t∗, z∗), where
z∗/t∗ = x∗ and the objective functions at these points are equal.

Theorem 3.5. If (1) is a standard concave-convex programming problem which
reaches a (global) maximum at a point x∗, then the corresponding transformed
problem (5) attains the same maximum value at a point (t∗, z∗) where z∗/t∗ = x∗.
Moreover (5) has a concave objective function and a convex feasible set.

Suppose that

Max Z(x) = N(x)
D(x)

subject to (3.6)
x ∈ S = {x ∈ Rn : Ax ≤ b, x ≥ 0}
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where N(x) is concave and negative for each x ∈ S, D(x) is concave and positive
on S, then

Maxx∈S
N(x)
D(x)

⇔ Minx∈S
−N(x)
D(x)

⇔ Maxx∈S
D(x)
−N(x)

here −N(x) is convex and positive. Therefore, the problem (6) is converted
into standard concave-convex programming problem. Hence applying the Theo-
rem (3.1) the problem (6) is transformed to the following linear programming
problem:

Max tD(z/t)
subject to (3.7)

A(z/t) − b ≤ 0
−tN(z/t) ≤ 1
t > 0, z ≥ 0.

4. Multi-objective linear fractional programming
problem

In this section, a procedure for converting MOLFP problem in to MOLP prob-
lem is discussed.

The MOLFP problem can be written as follows:

Max Zi(x) =
∑

cjxj+p∑
djxj+q = Ni(x)

Di(x)

subject to (4.1)
x ∈ S = {x ∈ Rn : Ax ≤ b, x ≥ 0}

where i = 1, 2, . . . , k, j = 1, 2, . . . , n, A ∈ Rm×n, b ∈ Rm, c, d ∈ Rn and p, q ∈ R.
Mathematical analysis of converting MOLFP problem into MOLP problem is

discussed below:

4.1. Mathematical analysis [4]

Let, I be the index set such that I = {i : Ni(x) ≥ 0 for some x ∈ S} and
Ic = {i : Ni(x) < 0 for some x ∈ S}, where I ∪ Ic = {1, 2, . . . , k}. Let D(x) be
positive on S where S is non-empty and bounced. Let us take the least value of
1/(dix + qi) is t for i ∈ I and least value of 1/ − (ci + pi) is t for i ∈ Ic. That is,

∩i∈I
1

dix + qi
= t and ∩i∈Ic

−1
cix + pi

= t

which is equivalent to

1
dix + qi

≥ t for i ∈ I and
−1

cix + pi
≥ t, for i ∈ Ic. (4.2)
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By using the transformation z = tx(t > 0), Theorems (3.2) and (3.3) and
using (9), MOLFP problem (8) may be written as follows:

Max gi(z, t) = {tNi(z/t), for i ∈ I;
tDi(z/t), for i ∈ Ic}

subject to (4.3)

tDi(z/t) ≤ 1, for i ∈ I

−tNi(z/t) ≤ 1, for i ∈ Ic

A(z/t) − b ≤ 0,

t ≥ 0, z ≥ 0.

4.2. Fuzzy mathematical programming approach for solving MOLFP

In an extension of classical linear programming with objective functions repre-
sented by fuzzy sets, the complete solution set (z, t) from theoretically well defined
membership function expression μD(z, t) =

⋂k
i=1 μi(z, t), Zimmermann [19] proved

that, if μD(z, t) had a unique maximum value μD(z∗, t∗) = MaxμD(z, t), then
(z∗, t∗) which is an element of complete solution set (z, t) can be derived by solv-
ing a classical linear programming with one variable λ. If i ∈ I, then membership
function of each objective function can be written as

μi(tNi(z/t)) =

⎧⎨
⎩

0, tNi(z/t) ≤ 0,
tNi(z/t)

Zi
, 0 ≤ tNi(z/t) ≤ Zi,

1, tNi(z/t) ≥ Zi.

(4.4)

If i ∈ Ic, then membership function of each objective function can be written as

μi(tDi(z/t)) =

⎧⎨
⎩

0, tDi(z/t) ≤ 0,
tDi(z/t)

Zi
, 0 ≤ tDi(z/t) ≤ Zi,

1, tDi(z/t) ≥ Zi.

(4.5)

Using Zimmermann’s min operator the model (8) transformed to the crisp model as

Max λ (4.6)
μi(tNi(z/t)) ≥ λ, for i ∈ I

μi(tDi(z/t)) ≥ λ for i ∈ Ic

tDi(z/t) ≤ 1, for i ∈ I

−tNi(z/t) ≤ 1, for i ∈ Ic

A(z/t) − b ≤ 0,

t ≥ 0, z ≥ 0, 0 < λ ≤ 1.
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5. Fuzzy linear fractional programming problem

In this section, a procedure for solving fuzzy linear fractional programming
(FLFP) problem where the cost of the objective function, the resources and the
technological coefficients are triangular fuzzy numbers, is discussed.

Let us consider the fuzzy linear fractional programming problem

Max Z̃ =
∑

c̃jxj + p̃∑
d̃jxj + q̃

subject to (5.1)∑
ãijxj ≤ b̃i, i = 1, 2, . . . , m

xj ≥ 0, j = 1, 2, . . . , n

we assume that, c̃j , p̃, d̃j , q̃, b̃i, ãij are triangular fuzzy numbers for each
i = 1, . . . , m and j = 1, . . . , n. Therefore, the problem (14) can be written as

Max Z̃ =

∑
(c(1)

j , c
(2)
j , c

(3)
j )xj + (p(1), p(2), p(3))

∑
(d(1)

j , d
(2)
j , d

(3)
j )xj + (q(1), q(2), q(3))

subject to (5.2)∑
(a(1)

ij , a
(2)
ij , a

(3)
ij )xj ≤ (b(1)

i , b
(2)
i , b3

i ), i = 1, 2, . . . , m

xj ≥ 0, j = 1, 2, . . . , n.

By using Zadeh’s extension principle of fuzzy numbers, the problem (15) reduce
to an equivalent MOLP problem as follows:

Max Z1 =

∑
c
(1)
j xj + p(1)

∑
d
(3)
j xj + q(3)

Max Z2 =

∑
c
(2)
j xj + p(2)

∑
d
(2)
j xj + q(2)

Max Z3 =

∑
c
(3)
j xj + p(3)

∑
d
(1)
j xj + q(1)

subject to (5.3)∑
a
(1)
ij xj ≤ b

(1)
i∑

a
(2)
ij xj ≤ b

(2)
i∑

a
(3)
ij xj ≤ b

(3)
i , i = 1, 2, . . . , m

xj ≥ 0, j = 1, 2, . . . , n

which is a MOLFP problem.
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Let us assume that Z1(x), Z2(x) and Z3(x) ≥ 0 for the feasible region. Hence
by using the above procedure (in Sect. 4) the MOLFP problem can be converted
into the following MOLP problem.

Max g1(z, t) =
∑

c
(1)
j zj + p(1)t

Max g2(z, t) =
∑

c
(2)
j zj + p(2)t

Max g3(z, t) =
∑

c
(3)
j zj + p(3)t

subject to (5.4)∑
d
(3)
j zj + q(3)t ≤ 1

∑
d
(2)
j zj + q(2)t ≤ 1

∑
d
(1)
j zj + q(1)t ≤ 1

∑
a
(1)
ij zj − b

(1)
i t ≤ 0

∑
a
(2)
ij zj − b

(2)
i t ≤ 0

∑
a
(3)
ij zj − b

(3)
i t ≤ 0 i = 1, 2, . . . , m

zj , t ≥ 0, j = 1, 2, . . . , n.

Solving the transformed MOLP problem for each objective function we obtain g1,g2

and g3. Let, Z1(z, t) ≥ g1, Z2(z, t) ≥ g2 and Z3(z, t) ≥ g3. Using the membership
function defined in (11) and (12) the above model reduces the to the crisp model
as follows:

Maxλ∑
c
(1)
j zj + p(1)t − Z∗

1λ ≥ 0
∑

c
(2)
j zj + p(2)t − Z∗

2λ ≥ 0
∑

c
(3)
j zj + p(3)t − Z∗

3λ ≥ 0 (5.5)
∑

d
(3)
j zj + q(3)t ≤ 1

∑
d
(2)
j zj + q(2)t ≤ 1

∑
d
(1)
j zj + q(1)t ≤ 1

∑
a
(1)
ij zj − b

(1)
i t ≤ 0

∑
a
(2)
ij zj − b

(2)
i t ≤ 0

∑
a
(3)
ij zj − b

(3)
i t ≤ 0

zj , t, λ ∈ (0, 1], i = 1, 2, . . . , m, j = 1, 2, . . . , n.
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5.1. Algorithm

The proposed approach for solving FLFP problem can be summarized as follows:

Step 1. The FLFP problem is converted into MOLFP problem using Zadeh’s
extension principle of fuzzy numbers.

Step 2. The MOLFP problem is transformed into MOLP problem using the
method proposed by Charnes and Cooper [5].

Step 3. Maximize each objective function Zi (i = 1, 2, 3), subject to the given
set of constraints. Let Z∗

i (i = 1, 2, 3), be the maximum value of Zi

(i = 1, 2, 3) respectively.
Step 4. Examine the nature of Z∗

i (i = 1, 2, 3). If Z∗
i ≥ 0 (for some i), then i ∈ I,

and if Z∗
i ≤ 0 (for some i), then i ∈ Ic.

Step 5. For i ∈ I, then we may assume the maximum aspiration level is Z∗
i and

i ∈ Ic, then we may assume the maximum aspiration level is −1/Z∗
i .

Step 6. Using the membership function defined in (11) and (12) the MOLP prob-
lem reduces the to the crisp model.

6. Advantages of the proposed method

The existing FLFP models [1–3, 7, 9, 10, 12, 13] can be used fuzziness either in
the constraint inequalities and/or in the aspiration levels of the decision makers.
The proposed work has been studied on FLFP model with fuzzy coefficients. The
discussed model can be solved using the defuzzification approach. Some times the
solution obtained by defuzzification method and proposed approach are same. But
in literature there are many defuzzification methods are used. Each one have own
merits and demerits. Hence the selecting defuzzification method is a difficult one.
Also, we provide the mathematical analysis of the proposed method. Therefore,
proposed method is analytically correct. The main advantage of the proposed
methodology to solve FLFP problem always yields an efficient solution, reduces
the complexity in solving FLFP problem and easy computational.

7. Numerical example

Example 7.1. A company manufactures two kinds of products A and B with
profit around 5 and around 3 dollar per unit, respectively. However the cost for
each one unit of the above products is around 5 and around 2 dollars respectively.
It is assume that a fixed cost of around 1 dollar is added to the cost function due
to expected duration through the process of production. Suppose the raw material
needed for manufacturing product A and B is about 3 units per pound and about
5 units per pound respectively, the supply for this raw material is restricted to
about 15 pounds. Man-hours per unit for the product A is about 5 h and product
B is about 2 h per unit for manufacturing but total Man-hour available is about
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10 h daily. Determine how many Products A and B should be manufactured in
order to maximize the total profit.

In this case, let x1 and x2 to be the amount of units of A and B to be produced.
Then the above problem can be formulated as:

Max Z =
5̃x1 + 3̃x2

5̃x1 + 2̃x2 + 1̃
subject to (7.1)

3̃x1 + 5̃x2 ≤ 1̃5
5̃x1 + 2̃x2 ≤ 1̃0

x1, x2 ≥ 0.

Let us assume that 5̃ = (3, 5, 7), 3̃ = (2, 3, 4), 5̃ = (4, 5, 6), 2̃ = (1, 2, 3), 1̃ =
(0, 1, 2), 3̃ = (2, 3, 4), 5̃ = (3, 5, 7), 1̃5 = (11, 15, 19), 5̃ = (4, 5, 6), 2̃ = (1, 2, 3) and
1̃0 = (8, 10, 12).

Then the problem (12) can be written as

Max Z =
(3, 5, 7)x1 + (2, 3, 4)x2

(4, 5, 6)x1 + (1, 2, 3)x2 + (0, 1, 2)
subject to (7.2)

(2, 3, 4)x1 + (3, 5, 7)x2 ≤ (11, 15, 19)
(4, 5, 6)x1 + (1, 2, 3)x2 ≤ (8, 10, 12)

x1, x2 ≥ 0.

The above FLFP problem is equivalent to the following MOLFP problem

Max Z1 =
3x1 + 2x2

6x1 + 3x2 + 2

Max Z2 =
5x1 + 3x2

5x1 + 2x2 + 1

Max Z3 =
7x1 + 4x2

4x1 + x2

subject to
2x1 + 3x2 ≤ 11 (7.3)
3x1 + 5x2 ≤ 15

4x1 + 7x2 ≤ 19
4x1 + x2 ≤ 8
5x1 + 2x2 ≤ 10
6x1 + 3x2 ≤ 12
x1, x2 ≥ 0.
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Here, it is observed that Z1(x), Z2(x) and Z3(x) ≥ 0 for the feasible region. The
above MOLFP problem is equivalent to the following MOLP problem

Max {g1(z, t) = 3z1 + 2z2

g2(z, t) = 5z1 + 3z2

g3(z, t) = 7z1 + 4z2}
subject to

6z1 + 3z2 + 2t ≤ 1
5z1 + 2z2 + t ≤ 1

4z1 + z2 ≤ 1
2z1 + 3z2 − 11t ≤ 0
3z1 + 5z2 − 15t ≤ 0
4z1 + 7z2 − 19t ≤ 0

4z1 + z2 − 8t ≤ 0
5z1 + 2z2 − 10t ≤ 0
6z1 + 3z2 − 12t ≤ 0

z1, z2, t ≥ 0.

If the MOLFP problem is solved for each of the objective function one by one. Let
Z1(z, t) ≥ 27/50, Z2(z, t) ≥ 5/4 and Z3(z, t) ≥ 27/25.

Using the membership function defined in (11) and (12) the above model reduces
to the linear programming problem as follows:

Maxλ

150z1 + 100z2 − 27λ ≥ 0

25z1 + 15z2 − 4λ ≥ 0
175z1 + 100z2 − 27λ ≥ 0

6z1 + 3z2 + 2t ≤ 1
5z1 + 2z2 + t ≤ 1

4z1 + z2 ≤ 1
2z1 + 3z2 − 11t ≤ 0
3z1 + 5z2 − 15t ≤ 0
4z1 + 7z2 − 19t ≤ 0
4z1 + z2 − 8t ≤ 0

5z1 + 2z2 − 10t ≤ 0
6z1 + 3z2 − 12t ≤ 0

z1, z2, t ≥ 0, λ ∈ (0, 1].

The problem is solved and the solution of the above problem is z1 = 0, z2 = 0.27,
t = 0.1 and λ = 0.99. Hence the solution of the original problem is x1 = 0, x2 = 2.7
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8. Concluding remarks

In this paper, a method of solving the FLFP problems, where the cost of the
objective function, the resources and the technological coefficients are triangular
fuzzy numbers, is proposed. In the proposed method, FLFP problem is transformed
to a MOLFP problem and the resultant problem is converted to a LP problem, us-
ing Fuzzy Mathematical programming method. An illustrative numerical example
is given to justify the proposed theory.

Some of the possible future directions are given as follows: A stochastic approach
of the above problem can be studied and the comparison between the approaches
can be carried out. Further the proposed approach can be extended for solving
linear fractional programming problems, where the cost of the objective function,
the resources and the technological coefficients are trapezoidal fuzzy numbers or
non linear membership functions and solving fuzzy multi-objective linear fractional
programming problems.

Acknowledgements. The authors would like to thank anonymous referees for the con-
structive suggestions that has improved both the quality and clarity of the paper.
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