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A POLYHEDRAL STUDY OF A TWO LEVEL FACILITY
LOCATION MODEL*

MOURAD BAToU! AND FRANCISCO BARAHONA?

Abstract. We study an uncapacitated facility location model where
customers are served by facilities of level one, then each level one facility
that is opened must be assigned to an opened facility of level two. We
identify a polynomially solvable case, and study some valid inequalities
and facets of the associated polytope.

Keywords. Uncapacitated facility location problem, two level facility
location.
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1. INTRODUCTION

We study a two level uncapacitated facility location model. Each customer has
to be assigned to an opened facility of the first level, then each opened facility of
the first level must be assigned to an opened facility of the second level. There
are fixed costs for each assignment, and fixed costs for opening each facility. The
objective is to minimize the total cost. This represents a hierarchical structure with
minor regional depots and major central warehouses. Here we study a polytope
associated with this model, and identify a polynomially solvable case. Surprisingly
the only reference to this model that we found is [10] where an approximation
algorithm has been given for the extension to £ levels.
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A different related model arises when each client must be serviced by a sequence
of k different facilities, each of these sequences has a transportation cost, and each
facility has a fixed cost. An approximation algorithm for this case has been given
in [1]. A polytope associated with the two level version of this last model has been
studied in [2].

Now we give a precise definition of the problem. Let G = (V, A) be a tripartite
directed graph, with V. =V, U ViUV, V;NV; = 0, for i # j; A = Ay U Ay,
Ay C Vo x Vi and Ay C Vi x Vs, Here Vj corresponds to a set of customers, V3
corresponds to a set of potential facilities of level one, and V5 corresponds to a set
of potential facilities of level two. An integer programming formulation of the two
level facility location problem is

min Z c(u, v)z(u,v) + Z fy(v)

(u,v)EA1UA, veVIUV,
Z z(u,v) =1, Yuel (1.1)
(u,w)€AL
z(u,v) <yv), VY(u,v)€ Ay (1.2)
> awv)=yw), Yueh (1.3)
(u,w)EAs
z(u,v) <yv), V(u,v)€ Ag (1.4)

z(u,v) € {0,1}, V(u,v) € A1 U Ay
y(v) €{0,1}, Yo e ViUV

The variable x(u,v) represents the assignment from w to v, the cost of this
assignment is ¢(u, v). The cost of opening a facility v is f(v). Equation (1.1) imply
that each customer should be assigned to one facility of level one. Equation (1.3)
imply that if a facility of level one is opened, then it should be assigned to a facility
of level two. Inequalities (1.2) and (1.4) imply that if a facility is not opened then
no assignment can be made to that facility.

We call two level facility location polytope of G (T LF LP(G)) the convex hull of
all vectors satisfying (1.1)—(1.6). Let P(G) be the polytope defined by (1.1)—(1.4)
and

0 < z(u,

v) <1, V(u,v) € A1 U A, (1.7)
0<y(v) <1,

WG%U%. (1.8)

Clearly TLFLP(G) C P(G), in this paper we characterize the graphs for which
TLFLP(G) = P(G). For this class of graphs the problem is polynomially solvable.
We also study the facial structure of TLFLP(G).

This paper is organized as follows. In Section 2 we give some definitions. In
Section 3 we give some inequalities that are valid for TLFLP(G). In Section 4
we characterize the graphs for which P(G) = TLFLP(G). Section 5 is devoted to
study the facial structure of TLFLP(G).
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2. PRELIMINARIES

In this section we give some definitions and notations. Given a graph G = (V, 4),
a simple cycle C' is an ordered sequence vy, ag, V1, a1, ..., a0;—1,V = Vg, where all
v;’s, for i = 0,...,t — 1, are distinct and such that for 0 < ¢ < t — 1: either v; is
the tail of a; and v; 1 is the head of a;, or v; is the head of a; and v; 41 is the tail
of a;. Let V(C) and A(C) denote the nodes and the arcs of C, respectively. By
setting a; = ag, we associate with C three more sets as below.

e We denote by C the set of nodes v;, such that v; is the head of a;_1 and also
the head of a;, 1 <1i <t.

e We denote by C the set of nodes v;, such that v; is the tail of ¢;_1 and also
the tail of a;, 1 < i <t.

e We denote by C the set of nodes v, such that either v; is the head of a;_; and
also the tail of a;, or v; is the tail of a;_1 and also the head of a;, 1 <i <.
Notice that |C| = |C|. A cycle will be called g-odd if |C| + |C| is odd, otherwise it
will be called g-even. A cycle C' with V(C) = C is a directed cycle. The notion of
g-odd (g-even) cycles generalizes the notion of odd (even) directed cycles. Also a

cycle C' is called d-odd (d-even) if |C| is odd (even).

A polyhedron is called integral if all its extreme points are integral. A polytope
is a bounded polyhedron. An inequality ax < « is called wvalid with respect to
a polyhedron P, if P C {z|ax < a}. Valid inequalities are useful if they cut off
factional extreme points of a linear programming relaxation of an integer program-
ming problem. If az < « is valid for a polyhedron P, then F = {x € P|axr = a}
is called a face of P. A facet of P is a maximal face of P. If an inequality defines
a facet, it can be viewed as a “strongest” valid inequality.

Given a vector x € R¥, we denote by z(S) the sum Y s z(e). We denote by
(1 the subgraph of G induced by Vy U V3. We also denote by G2 the subgraph
of G induced by Vi U Va. For a directed graph G = (V, A) and a set W C V, we
denote by 61 (W) the set of arcs (u,v) € A, with u € W and v € V' \ W. We write
0% (v) instead of 5% ({v}).

For a directed graph H = (W, B), we call the (one level) facility location polytope
of H (FLP(H)) the convex hull of all vectors satisfying

Z x(u,v) +y(u) <1 VYueW,
(u,v)eA
z(u,v) <y(v) Y(u,v) € B,
y(v) € {0,1} YveW,
x(u,v) € {0,1} V(u,v) € B.

This polytope was studied in [4], and a class of valid inequalities was given as
follows. If C' is a g-odd cycle of H, then the inequality below is valid for FLP(H).

> ala) - Y ulw) < AL (2.)

acA(C) vel
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For a family of inequalities, the separation problem consists of given a vector (T, ),
finding an inequality in this family that is violated by (Z, %), if there is any. An
algorithm for the separation of inequality (2.1) was given in [4], its complexity
is O(|W|?|BJ?). An extension of these inequalities to the two level case will be
studied in the next section.

For an undirected graph U = (W, E), the stable set polytope is the convex hull
of all vectors satisfying

x(i) + x(j) < 1 for every edge {i,j} € E,
x(i) € {0,1} for every node i € V.

3. VALID INEQUALITIES

In this section we present three families of valid inequalities for TLF LP(G) and
discuss their separation problem.

3.1. d-ODD CYCLE INEQUALITIES

Lemma 3.1. If C' is a d-odd cycle, then the following inequality is valid for
TLFLP(G).

Y ) - Y ul) - et Ae) < DL @

wel,(u,v)EA(C) vel vel

Proof. From inequalities (1.1)—(1.4) and (1.7)—(1.8) we obtain

z(u,v) —y(v) <0, for every arc (u,v) € A(C), ve CUC,
y() — (6T (v)) =0, veC,
(6% (v)) < 1,forv e C,
—x(u,v) <0, for (u,v) € 6 (u)\ A(C), forue CUC.
Their sum gives
2 Y z(ww) =2 ylv) -2 2(6T(v)\ A(C) <[C].
uel,(u,w)EA(C) vel vel

Dividing by 2 and rounding down the right hand side, as in Chvétal’s proce-
dure [8], we obtain inequality (3.1). O

In the next section we show fractional vectors in P(G) that are separated from
TLFLP(G) by inequality (3.1). Now we discuss how to solve the separation prob-
lem for inequality (3.1). Assume that (Z,7) is a vector of P(G). We first build a
graph H = (W, B), where W =V, U V{ U V3, and

Vi={[venu{v’|ven},
B = {(u,v) [ (u,v) € A1} U{(v",w) | (v,w) € A2} U{(v,0") [v € V1}.
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So the graph H is obtained by splitting every node in Vj into two copies, and
adding an arc from the first copy to the second copy. Now we build a vector
(2',y') as follows,

2 (u,v") = F(u,v), V(u,v) € Ay,
(V" w) = z(v,w), VY(v,w) € A,
(0" =1-gW), Ve,

y'(w) =g(w), Ywe Vs,
y'(v') =g(v), YveWn,
Yy (") =1-g5@), YveW

We need the following two lemmas.

Lemma 3.2. There is a one to one correspondence between d-odd cycles in G and
g-odd cycles in H.

Proof. Let C be a d-odd cycle of G, we build a cycle C' in H as below. For every
arc (u,v) € A(C) N Ay we add (u,v") to C’, for every arc (v,w) € A(C) N Az we
add (v”,w) to C'. Finally for every node v € C' we add the arc (v/,v") to C.
Notice that |C’] is even, thus C” is g-odd.

On the other hand if D’ is a g-odd cycle of H we obtain a cycle D in G by
shrinking every arc (v/,v”) in D into a single node. Clearly D is d-odd. O

Lemma 3.3. The vector (Z,§) violates an inequality (3.1) if and only if (z',y’)
violates an inequality (2.1).

Proof. Assume that there is a violated inequality (3.1), and let C' be the corre-
sponding cycle of G. Let C be the associated cycle in H. We have that |C’| = |C],

€' =2|C], and 3, 5(0) = Xpecn ¥ (0).
For every node v € C, we have 2/ (v/,v") =1 — z(6"(v)). Thus

Yo wwv) =Y #ETN\AC)+ICl= Y @(ww),

u€l, (u,v)€A(C) vel (uw)EA(C)
and the lemma follows. O

Therefore the separation problem for inequalities (3.1) reduces to the separation
problem for inequalities (2.1) in the graph H. This can be done with the algorithm
of [4].

3.2. CUT INEQUALITIES

Let S C V such that SNV # (). The following inequality is valid for TLFLP(G).

2(67(9)) + y(Van §) > 1. (3.2)
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To see the validity, consider a 0—1 vector (z,y) of TLFLP(G). If (Vo N S) = 0,
then at least for one arc (u,v) € §7(S) we should have Z(u,v) = 1.

Consider now the separation problem, and suppose that we are given a nonneg-
ative vector (2/,y’). We add an extra vertex ¢ and the arcs (w,t) for all w € V5.
Then we define capacities ¢ for each arc as follows.

c(u,v) = 2’ (u,v) V(u,v) € A; U As,
y'(w) Yw € Va.

c(w, t)

Next we fix a node u € V; and find a set of nodes S, with w € S, ¢t ¢ S that
minimizes ¢(07(S)). This can be done with a minimum cut algorithm in O(|V|?)
time, see [3]. There is a violated inequality if and only if there is a set S with

]
¢(67(S)) < 1. This procedure should be repeated for every node u € Vj.

3.3. MATCHING INEQUALITIES

The following is an adaptation of a family of inequalities given in [2]. Suppose
that G; admits a matching M where for every node in V; there is an arc in M
incident to it, then the following inequality is valid for TLFLP(G).

Z x(u,v) + Z y(v) > 2. (3.3)

(u,v)eM veVy

To see the validity, consider the case when from all the nodes in V; there is exactly
one, v, whose variable y(v) takes the value one. Then we should have z(u,v) = 1,
for (u,v) € M.

The separation problem for a vector (Z, ) can be solved by assigning the weight
Z(u,v) + y(v) to each arc (u,v) € Ay, then one should find a minimum weight
matching that saturates every node in V.

4. ON THE INTEGRALITY OF P(G)

In this section we characterize the graphs for which P(G) = TLFLP(G). Let
Vo be the set of nodes v € Vy with |6%(v)| = 1. Let V; be the set of nodes in V;
that are adjacent to a node in Vj. Clearly the variables associated with the nodes
in V; should be fixed, i.e., y(v) = 1 for all v € V. Let V3 be the set of nodes in V3
that are adjacent to a node v € V; with |6+ (v)| = 1, we should have y(w) = 1 for
all w € Va. Let us denote by G the subgraph induced by V' \ V4 after removing all
the arcs (u,v) € A with v € V;. We are going to prove the following.

Theorem 4.1. The polytope P(G) is integral if and only if each cycle of G is
d-even.
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First suppose that G contains a cycle C that is d-odd. Let us define a fractional
vector as follows:

g()—lﬂ,\WE(éUO)

glv) = Yo e CNW.

Z(a) = 1/2 Va € A(C).

gv) =1, Yvel\V(C).

For every node u € V; \ V(C), we look for an arc (u,v) € 67 (u), we set

Z(u,v) = y(v). If [T (u)| > 2 and y(v) = 1/2, we pick another arc (u,w) and

set Z(u,w) = 1/2. Then we set j(u) = (57 (u)).

e For every node u € V; \ V(C), we look for an arc (u,v) € 6" (u), if g(v) =1
we set Z(u,v) = 1. If j(v) = 1/2 then there is another arc (u,w) € §¥(u) with
y(w) =1 or y(w) = 1/2, then we set Z(u,v) = z(u,w) =1/2.

e For every node u € V4 N C, we look for an arc (u,v) € 6% (u) and set Z(u,v) =
1/2.

e For every other arc a, we set Z(a) = 0.

It is easy to see that (Z,7) € P(G). Since

Y Ew) - Y aw) - Y @A) = £

weC,(u,w)eA(C) ve o

(e}

vel

we have that (Z,y) violates an inequality (3.1) that is valid for TLFLP(G). So
P(G) # TLFLP(G).

Now we assume that G has no d-odd cycle. First we need to introduce a related
polytope studied in [4]. Let H = (W, B) be a directed graph, and let Q(H) be the
polytope defined below.

Z z(u,v) +y(u) =1 YueW, (4.1)
(u,w)€A
z(u,v) <y(v) V(u,v) € B, (4.2)
0<y(w) <1 YoeWw, .
z(u,v) >0 V(u,v) € B. (4.4)

In [4] we proved the following.
Theorem 4.2 [4]. If H does not contain a g-odd cycle, then Q(H) is integral.

In order to use Theorem 4.2 we have to transform G to a directed graph H such
that G has no d-odd cycle if and only if H has no g-odd cycle. This will be done
in the following three steps.

e For every arc a = (u,v) with v € V} U V4, replace it by (u,v,), where v, is a
new node.

e Split every node v € Vi, replacing it by v and v”, and adding an arc (v',v").
Also every arc (u,v) is replaced by (u,v’), and every arc (v, w) is replaced by
(0", w).
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e For every node w € (V2 \ V2), add a node w’ and an arc (w,w’).

Let H be this new graph. The goal here is to make a correspondence between
some extreme point of Q(H) and those of P(G). If we consider any solution in
Q(H), then its restriction on the variables associated with G may not belong to
P(G). To have the desired correspondence we study a face of Q(H) defined as
follows.

y(u) = 0, for each node u € Vj,
x(v 0 ) y(v""), for each arc (v',v") with v € V7,
y(v") = 1, for each node v’ such that v € V;,

First notice that since G has no d-odd cycle, then H has no g-odd cycle. There-
fore, from Theorem 4.2, Q(H) is an integral polytope. The polytope P(G) is ob-
tained from the face of Q(H) defined above, by projecting the variables associated
with extra nodes and extra arcs. Thus the proof of Theorem 4.1 is complete.

We can also state the following.

Theorem 4.3. The two level facility location problem is polynomially solvable for
graphs G such that G has no d-odd cycle.

In order to decide if G has a d-odd cycle, we start with G and split the nodes in
Vi \‘71 as in Section 3.1. Let H be the new graph. We have seen that G has a d-odd
cycle if and only if H has a g-odd cycle. In [4] we gave a polynomial algorithm to
find a g-odd cycle in a graph, if there is any; this algorithm can be applied to H.

5. ON THE FACIAL STRUCTURE OF T'LFLP(G)

Let H be a bipartite graph H = (U; UUs, B = Uy x Us). The uncapacitated
facility location polytope of H (UFLP(H)) is the convex hull of all vectors satis-
fying

Z z(u,v) =1, Yuel (5.1)
(u,v)EB
z(u,v) <y(v), VY(u,v)€ B (5.2)
z(u,v) € {0,1}, V(u,v) € B .
y(v) € {0,1}, Vv e Us. (5.4)

The facial structure of UFLP(H) has been studied in [5—7,9] and others. In this
section we extend some of these results to the two level case. Here we assume that
Ay = Vo x V1, As = Vi x Vo, First we study the dimension of TLFLP(G). Let
m = |Vy|, n = |Vi| and p = |V2|. In what follows, we suppose that n > 1 and p > 1.
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Theorem 5.1. The dimension of TLFLP(G) is mn+p —m + np.

Proof. Since equations (1.1) and (1.3) are linearly independent, the dimension of
TLFLP(G) is at most mn +p — m + np.

Now suppose that TLFLP(G) C {(z,y) |ax + by = a}. Adding multiples of
equations (1.3), we may assume that b(v) = 0 for all v € V3. Also adding multiples
of equations (1.1) we may assume that a(u,v9) = 0 for a fixed node vy € V; and
all u € Vp. Let (2%, y') be defined as follows.

u,v9) =1, Yu €V,

<

0,wo) = 1, for a fixed node wy € Vo,

z(

z (vo,

y*(vo) = y*(wo) =1,
z(

y(

We have that ax! + by! = a. Now for w € Vo, w # wy, let (22,3?) be the vector
obtained from (z!,y') by setting y(w) = 1. Since ax? +by? = «, we have b(w) = 0,
for w € Vo, w # wy. Since (z!,y') can also be built with a node different from wo,
we also have b(wg) = 0.

Now starting from (22,9%) let (2,9%) be the vector obtained by setting
x(vg, wp) = 0 and z(vg, w) = 1. Since ax® + by = «, we have a(vy, wp) = a(ve, w)
for w € Vo, w # wq. Since the same construction can be done with a node different
from vy, we have that a(v,wy) = a(v,w) for w € Va, w # wy, for any node v € V4.

Now starting from (z',y'), set z(v,w) = 1, y(v) = 1, y(w) = 1, for a node
v € Vi, v # vg, and a node w € Vo, w # wy. Denote by (z*,y*) this new vector,
we have that az* + by* = «, therefore a(v,w) = 0. Since the same construction
can be done with nodes different from vy and wy, we have that a(v, w) = 0 for all
v € Vy, and all w € V5.

Finally, starting from (z!,y'), set z(u,v) = 1, y(v) = 1, for a node u € Vj,
v eV, v # vy, x(v,wg) = 1, x(u,v9) = 0. Let (2°,9°) be this new vector. Since
az® + by® = a, we have that a(u,v) = a(u,vg) = 0. Since u and v can be chosen
arbitrarily, we have a(u,v) = 0 for all u € V5 and all v € V3.

This shows that there is no equation linearly independent from (1.1) and (1.3)
that is satisfied by all vectors in TLFLP(G), thus its dimension is mn+p—m+np
and its affine hull is defined by (1.1) and (1.3). O

Recall that G is the subgraph induced by Vy U Vi, and G5 is the subgraph
induced by V; U V5.
5.1. FACETS ASSOCIATED WITH UFLP(G4)

The following theorem shows that all facets of UFLP(G;) give facets of
TLFLP(G).
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Theorem 5.2. If

Z a(u,v)z(u,v) + Z b(v)y(v) < « (5.5)

(u,w)€AL veEV]
defines a facet of UFLP(G1), then it also defines a facet of TLFLP(G).

Proof. Clearly this inequality is valid for TLFLP(G). Let F be the facet of
UFLP(Gy) defined by (5.5), and let F’ be the face of TLFLP(G) defined by (5.5).
Let us assume that

F' c {(z,y)lex + dy = B},

where cx 4+ dy < ( is valid for TLFLP(G).

Let v € V4, the inequality y(v) > 0 does not define a facet of UFLP(G1), see [9].
Thus there is a 0—1 vector (z,y") in F with y(v) = 1. For each node v' € V; with
y'(v") = 1, we define 2% (v, wp) = 1, y¥(wp) = 1, where wy is a fixed node in V5.
Then we set 2V (u, w) = 0 for every other arc (u, w) € Az, and y”(w) = 0 for every
other node w € V4. This new vector (z¥,§") belongs to F”.

Starting from (z¥, g"), pick a node w € Va, w # wy, and set y(w) = 1. Since this
new vector also belongs to F’, we have d(w) = 0. Since the node wy was chosen
arbitrarily, and the same construction can be done with a different node, we have
that d(w) = 0 for all w € V5.

Now starting again from (Z",3"), set xz(v,wp) = 0 and z(v,w) = y(w) = 1,
where w € Va, w # wp. Since this new vector also belongs to F”, we have c¢(v, w) =
¢(v,wp). Thus we have that c¢(v,w) = Ay, for all w € V5. We repeat this for all
v € V and we have c¢(v,w) = A\, for all v € V1 and w € V5.

Thus cx 4+ dy < 3 can be written as

Z c(u,v)x(u,v) + Z (d(v) + A)y(v) < 6. (5.6)

(u,v)€AL veVL

Thus (5.6) defines a face of UFLP(G1). Since (5.5) defines a facet of UFLP(Gy),
then (5.6) can be obtained by taking a positive multiple of (5.5) and adding mul-
tiples of equations (1.1). This shows that (5.5) defines a facet of TLFLP(G). O

Corollary 5.3. The following inequalities define facets of TLFLP(QG).

Proof. These inequalities define facets of UFLP(G1), see [9)]. O
Corollary 5.4. Inequalities (3.3) define facets of TLFLP(G).

Proof. It follows from Theorems 6 and 8 in [2] that (3.3) define facets of
UFLP(G). O
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5.2. FACETS ASSOCIATED WITH UFLP(G3)

Let UFLP'(G2) the relaxation of UFLP(G3) obtained by replacing equa-
tions (5.1) by inequalities, that is the convex hull of the solutions of the system
below

Z z(v,w) <1, Yvel,
(v,w)€A2
z(v,w) <ylw), Y(v,w) € As,
z(v,w) € {0,1}, V(v,w) € A,
y(w) € {0,1}, Vw € V.

Notice that any facet of UFLP(G2) is contained in a facet of UFLP'(G2).
In [9], it has been seen that the polytope UF LP’'(G2) corresponds to a stable set
polytope. Define g(w) = 1 — y(w) for each node w € Va, then the system above
may be rewritten as follows:

Z z(v,w) <1, Yvel, (5.7)
(v,w)€Az
z(v,w) +gy(w) <1, V(v,w) € Ag, (5.8)
z(v,w) € {0,1}, V(v,w) € A, .
y(w) € {0,1}, Vw € V. (5.10)

Let A be the 0—1 matrix associated with the constraints (5.7) and (5.8). An
undirected graph H, called the intersection graph of A, is built containing a node
for each variable z:(v, w) € As and a node for each variable §. For any two variables
(v,w1) and (v,wy) where (v,wq) and (v,ws) are arcs of Gy, we have an edge
between the corresponding nodes; thus there is a maximal clique K(v) for each
node v € V;. Also for every variable x(v,w) there is an edge between the node
associated with z(v,w) and the node associated with y(w). We have the following
well known result.

Theorem 5.5. [9] The convex hull of the feasible solutions of (5.7)—(5.10) is
ezactly the stable set polytope of H.

To establish the theorem that shows that all facets of UFLP'(G2) give facets
of TLFLP(G), we need the lemma below.

Lemma 5.6. If ax+by < « defines a facet F of UFLP'(Gs), then there is a 0—1
vector (Z,y) € F' such that

Zi(v,w) =1, forallve V.

Proof. Here we follow the approach of [9] associating a stable set polytope with
UFLP'(G2). Let SSP(H) the stable set polytope of H. The facets of UFLP'(G2)
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correspond to the facets of SSP(H). For a “trivial” facet of SSP(H) defined by
x(s) > 0, we just pick a node different from s in every maximal clique of H.

Now we have to consider a nontrivial facet of SSP(H) defined by az < a.
We have that a > 0, o > 0. Let 2"V be the incidence vector of a stable set of
H such that az"' = a. We may assume that W is a maximal stable set. Since
> wev, T(w) < [Va] does not define a facet, we may assume that 2" (wg) = 0 for
some node wy € Va. So for every clique K (v) we can try to add to W the node
associated with (v, wp), if this is not possible it is because another node in K (v) is
already in W. Thus we may assume that for each v € V; there is a node in K(v)
that belongs to W. ([l

Theorem 5.7. If

Z a(v,w)z(v,w) + Z b(w)y(w) < « (5.11)

(v,w)€eAs weVa

defines a facet of UFLP'(G2), then it also defines a facet of TLFLP(QG).

Proof. Clearly (5.11) is valid for TLFLP(G). Let F be the facet of UFLP'(G2)
defined by (5.11), and let F’ be the face of TLFLP(G) defined by (5.11). Let us
assume that

F' c {(x,y)|cx + dy = 3},

where cx + dy < 3 is valid for TLFLP(G).

Let (Z,y) be the vector defined in Lemma 5.6. Starting from this vector, fix a
node vg € V4 and set x(u,vg) = 1 for all u € Vy. Set x(u,v) = 0 for every other
arc (u,v) € Gp, and y(v) = 1 for all v € V4. Denote by (Z,¢) this new vector. We
have that (Z,7) € F’. Starting from (Z,¢), pick a node v; € Vi, v1 # v, a node
ug € Vo and set z(ug,vg) = 0, x(up,v1) = 1. Denote by (&, ) this last vector. We
have that (Z,9) € F’, thus ¢(ug,vo) = ¢(ug,v1). Since v1 was chosen arbitrarily,
we have ¢(ug, vg) = ¢(up, v) for all v € V;. Since up was chosen arbitrarily, we have
c(u,v) = A, for all uw € Vy and all v € V7.

Therefore by adding multiples of equations (1.1) to cz + dy < (3, we obtain a
new inequality

de+dy<p, (5.12)

with ¢/(u,v) = 0 for all u € Vp and all v € V4. By adding multiples of equa-
tions (1.3), we may assume that d’(v) =0 for all v € V3.

Thus (5.12) defines a face of UFLP’(G2). Since this is a full dimensional poly-
tope, we have that (5.12) is a positive multiple of (5.11). Therefore (5.11) defines
a facet of TLFLP(G). O
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Corollary 5.8. The following inequalities define facets of TLFLP(Q).

y(u) = Z z(u,v) <1 YueW

.’E( 7'0) < y(’U), V(u,v) € Ay
7’0) Z 07 V(’LL,’U) S A2
y(v) <1, Yvels.

Proof. These inequalities define facets of UFLP'(Gs), see [9]. O
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