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PERFORMANCE ANALYSIS OF SINGLE SERVER
NON-MARKOVIAN RETRIAL QUEUE WITH WORKING

VACATION AND CONSTANT RETRIAL POLICY
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Abstract. This paper analyses an M/G/1 retrial queue with working
vacation and constant retrial policy. As soon as the system becomes
empty, the server begins a working vacation. The server works with
different service rates rather than completely stopping service during a
vacation. We construct the mathematical model and derive the steady-
state queue distribution of number of customer in the retrial group.
The effects of various performance measures are derived.
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1. Introduction

A retrial system consists of a primary service facility and an orbit. Customers
arrive at the service facility at a Poisson rate from main pool. Upon arrival of a
customer, if the server is busy or under repair or on vacation the arrival will join
the retrial group in the orbit and attempt for service again at some time later. Such
situations arise in many communication protocols, local area networks and daily
life situations. In aviation, where a plane finds the runway occupied remakes its
attempt of landing later and in this case the plane is said to be in orbit. In telephone
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where a telephone subscriber who obtains a busy signal repeats the call until the
required connection is made. The detailed overviews of the related references with
retrial queues can be found in the book of Falin and Templetion [1] and the survey
papers, of Artalejo [2, 3]. The single server retrial queue with priority calls have
been studied by Choi et al. [4–6] for many applications in telecommunication and
mobile communication. Artalejo and Gomez−Corral [7] have made a detailed study
on retrial queueing systems.

Vacation models had been the subject of interest in queueing theory in recent
years because of their applications in real life congestion situations such as man-
ufacturing and production, computer and communication systems, service and
distribution systems, etc. A comprehensive and excellent study on the vacation
models can be found in Takagi [8]. For related literature of retrial queues with
vacations, Li and Yang [9] developed an M/G/1 retrial system with server vaca-
tions and M independent identical input sources. Later Artalejo [10] analyzed an
M/G/1 retrial queue with exhausted server vacations, that is the server takes a
vacation only when there are no customers in the orbit. A literature survey on
queueing systems with server vacations can be found in Doshi [11]. Doshi [12] dis-
cussed an M/G/1 system with variable vacations. Batch arrival Markovian single
server queueing systems with multiple vacations were first studied by Baba [13].
Later Senthilkumar and Arumuganathan [14] have analyzed single server batch
arrival retrial queue with general vacation time under Bernoulli schedule and two
phases of heterogeneous service. The variations and extensions of these vacation
models can be referred to Lee et al. [15,16] and Krishna Reddy et al. [17]. Arumu-
ganathan et al. [18] analyzed a steady state non-Markovian bulk queueing system
with N-policy and different types of vacation. Haridass and Arumuganathan [19]
analyzed a batch arrival, bulk service queueing system with interrupted vacation.

A queue with working vacation was first analyzed by Servi and Finn [20], they
obtained the queue length distribution of M/M/1/Wv queue. They discussed a
classical single server vacation model in which a single server works at a different
rate rather than completely stopping during the vacation period. Further, they
applied the model for the performance evaluation of Wavelength Division Multi-
plexing (WDM) optical systems. But they have assumed exponential service time,
which may not be the case always. Subsequently, Kim et al. [21] have analyzed
an M/G/1 queue with exponentially distributed working vacations and obtained
the steady state queue length distribution through the decomposition approach.
Later Wu and Takagi [22] extended Servi and Finns model to an M/G/1 working
vacation in which, both regular service time and the service time in working vaca-
tion are assumed to be generally distributed. Li et al. [23] considered an M/G/1
queue with exponentially distributed working vacations, which is a special case of
that in Wu and Takagi [22]. All the above contributors consider classical queueing
model.

Tien Van Do [24] studied a Markovian retrial queue with working vacation. But
in practice, there must be generally distributed service times which are motivated
by the performance analysis of Media Access Control (MAC) function in wireless
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networks. Wireless MAC protocols often use collision avoidance techniques, in
conjunction with a (physical or virtual) carrier sense mechanism. In carrier sense
mechanism, when a node wishes to transmit a packet, it first waits until the channel
is idle. Nodes hearing RTS(Request-to-Send) or CTS(Clear-to-Send ) stay silent
for the duration of the corresponding transmission. Once channel becomes idle,
the node waits for a randomly chosen duration before attempting to transmit.
This mechanism can be modeled as M/G/1 retrial queueing model with working
vacation model by considering the orbit as pool of packets waiting for transmission
once it senses the idle channel and RTS and CTS as working vacation times. So,
in this paper we introduce an M/G/1 retrial queue with single working vacation
and constant retrial policy. Analytical treatment of this model is obtained using
supplementary variable technique. The probability generating function of number
of customers in the retrial group is obtained.

2. The mathematical model

In this paper an M/G/1 retrial queue with working vacation and constant retrial
policy is analyzed. The customers arrive according to Poisson process with rate
λ. If the server is busy at the arrival time, the customers join the orbit to repeat
their request later, whereas if the server is idle then the arriving customer begins
its service immediately. The customers in the orbit try for service one by one
with a constant retrial rate γ when the server is idle. The single server takes a
working vacation at times when the customers being served depart from the system
and no customers are in the orbit. The server works with different service rates
rather than completely stopping service during a vacation. The service rate is
μb when the server is not on vacation and μv during working vacation (μv <
μb). Vacation durations are exponentially distributed with parameter η. After
completing a vacation, the server stays idle in the system until a customer arrives
from main pool or from orbit.

Let Sv(x) (sv(x)) {S̃v(θ)} [S0
v(x)] be the cumulative distribution function (prob-

ability density function) {Laplace transform} [remaining service time] of service
during working vacation. Let Sb(x) (sb(x)) {S̃b(θ)} [S0

b (x)] be the cumulative dis-
tribution function (probability density function) {Laplace transform} [remaining
service time] of service when the server is not on working vacation. N(t) denotes
the number of customers in the orbit at time t. The process considered here is a
semi-Markov process which become Markov by including additional random vari-
able as the remaining service time as given by Limnios and Oprisan [25].

The server state is denoted as

C(t) =

⎡
⎢⎢⎢⎢⎣

0, if the server is idle during working vacation

1, if the server is idle and not on working vacation

2, if the server is busy during working vacation

3, if the server is busy and not on working vacation
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Now the system state probabilities are defined as follows:

1) Wn(t) = Pr{N(t) = n, C(t) = 0}, n ≥ 0 is the probability that at time t the
server is idle during vacation and the orbit size n.

2) In(t) = Pr{N(t) = n, C(t) = 1}, n ≥ 0 is the probability that at time t the
server is idle but not on working vacation and the orbit size is n.

3) Qn(x, t)dt = Pr{N(t) = n, C(t) = 2, x ≤ S0
v(t) ≤ x + dt}, n ≥ 0 is the is the

probability that at time t the server is busy during working vacation, the orbit
size is n and the remaining service time of a customer during working vacation
at an arbitrary time is between x and x + dt.

4) Pn(x, t)dt = Pr{N(t) = n, C(t) = 3, x ≤ S0
b (t) ≤ x + dt}, n ≥ 0 is the joint

probability that at time t the server is busy when it is not on working vacation,
the orbit size is n and the remaining service time of a customer when the server
is not on working vacation at an arbitrary time is between x and x + dt.

3. Steady state queue size distribution

To derive the steady state queue size distribution the following equations are
obtained, using supplementary variable technique,

W0(t + Δt) = W0(t)(1 − λΔt − ηΔt) + Q0(0, t)Δt + P0(0, t)Δt

Wn(t + Δt) = Wn(t)(1 − λΔt − ηΔt − γΔt) + Qn(0, t)Δt

I0(t + Δt) = I0(t)(1 − λΔt) + W0(t)ηΔt

In(t + Δt) = In(t)(1 − λΔt − γΔt) + Wn(t)ηΔt + Pn(0, t)Δt

Qn(x − Δt, t + Δt) = Qn(x, t)(1 − λΔt − ηΔt) + λWn(t)sv(x)Δt

+γWn+1(t)sv(x)Δt + λQn−1(x, t)Δt(1 − δn,0)
Pn(x − Δt, t + Δt) = Pn(x, t)(1 − λΔt) + λIn(t)sb(x)Δt + γIn+1sb(x)Δt

+
[∫ ∞

0

Qn(y, t)dy

]
ηsb(x)Δt + λPn−1(x, t)(1 − δn,0)Δt

where δn,0 =
[

0 if n �= 0
1 if n = 0 .

In steady state, we can set W0 = limt→∞ W0(t), I0 = limt→∞ I0(t), Wn =
limt→∞ Wn(t), In = limt→∞ In(t) and limiting densities Qn(x) = limt→∞ Qn(x, t)
for x > 0 and Pn(x) = limt→∞ Pn(x, t) for x > 0.

Now the above equations under steady state conditions can be written as follows:

(λ + η)W0 = Q0(0) + P0(0) (3.1)
(λ + γ + η)Wn(0) = Qn(0) (3.2)

λI0 = ηW0 (3.3)
(λ + γ)In(0) = Wn(0)η + Pn(0) (3.4)
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−d
dx

Qn(x) = − (λ + η)Qn(x) + λWn(0)sv(x)

+ γWn+1(0)sv(x) + λQn−1(x)(1 − δn,0) (3.5)

−d
dx

Pn(x) = − λPn(x) + λIn(0)sb(x) + γIn+1(0)sb(x)

+ λPn−1(x)(1 − δn,0) +
[∫ ∞

0

Qn(y)dy

]
ηsb(x). (3.6)

Assume that
Laplace transform(Pn(x)) = P̃n(θ) =

∫ ∞
0

e−θxPn(x)dx;
Laplace transform(Qn(x)) = Q̃n(θ) =

∫ ∞
0

e−θxQn(x)dx.

Taking Laplace transform on steady state equations (5) and (6), we have

θQ̃n(θ) − Qn(0) = (λ + η)Q̃n(θ) − λWn(0)S̃v(θ) − γWn+1(0)

× S̃v(θ) − λQ̃n−1(θ)(1 − δn,0) (3.7)

θP̃n(θ) − Pn(0) = λP̃n(θ) − λIn(0)S̃b(θ)

− γIn+1(0)S̃b(θ) − λP̃n−1(θ)(1 − δn,0) − Q̃n(0)ηS̃b(θ). (3.8)

The following generating functions are helpful in deriving the probability generat-
ing function of orbit size.

W (z, 0) =
∞∑

n=0

Wn(0)zn; I(z, 0) =
∞∑

n=0

In(0)zn;

Q̃(z, θ) =
∞∑

n=0

Q̃n(θ)zn; Q(z, 0) =
∞∑

n=0

Qn(0)zn (3.9)

P̃ (z, θ) =
∞∑

n=0

P̃n(θ)zn; P (z, 0) =
∞∑

n=0

Pn(0)zn

where |z| ≤ 1.
Multiplying equations (1) and (3) by z0, equations (2), (4), (7) and (8) by zn,

taking summation from n = 0 to ∞ and using (9), we get,

(λ + η)W (z, 0) + γ(W (z, 0) − W0) = Q(z, 0) + P0 (3.10)

λI(z, 0) + γ(I(z, 0) − I0) = ηW (z, 0) + (P (z, 0) − P0) (3.11)

(θ − (λ + η) + λz) Q̃(z, θ) = Q(z, 0)− λW (z, 0)S̃v(θ) −
(γ

z

)
(W (z, 0) − W0)S̃v(θ)

(3.12)

(θ − λ + λz)P̃ (z, θ) = P (z, 0)−
(
λ +

(γ

z

))
S̃b(θ)I(z, 0) +

(γ

z

)
× S̃b(θ)I0 − Q̃(z, 0)ηS̃b(θ). (3.13)
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Theorem 3.1. The probability generating function P (z) of number of customers
in orbit is given by,

P (z) =

W (z, 0)

[
(λz − (λ + η))(−λ + λz) + (λ + γ/z)(S̃v(λ + η − λz))

η(S̃b(λ − λz) − 1) + (λ + γ/z)S̃v(λ + η − λz)(−λ + λz)

]

+I(z, 0) [(λz − (λ + η))(−λ + λz)

+(λ + (γ/z))(S̃b(λ − λz) − 1)(λz − (λ + η))
]

+W0

[
(γ/z)η(S̃v(λ + η − λz) − 1)(1 − S̃b(λ − λz))

+(γ/z)(S̃v(λ + η − λz) − 1)(λz − λ)
]

+I0

[
(γ/z)(1 − S̃b(λ − λz))(λz − (λ + η))

]
(λz − (λ + η)) (−λ + λz)

where

W (z, 0) =
W0[γ − (γ/z)S̃v(λ + η − λz)] + p0

(λ + η + γ) − (λ + (γ/z))S̃v(λ + η − λz)

I(z, 0) =

W (z, 0)[η(λz − λ − η) + (λ + γ/z)S̃v(λ + η − λz)ηS̃b(λ − λz)]

+[γI0 − p0 − (γ/z)S̃b(λ − λz)I0](λz − λ − η)

−(γ/z)W0[S̃v(λ + η − λz) − 1][ηS̃b(λ − λz)]

(λz − λ − η)[(λ + γ) − (λ + (γ/z))S̃b(λ − λz)]
·

Proof. The probability generating function P (z) of number of customers in orbit
at an arbitrary time instant can be expressed as follows:

P (z) = W (z, 0) + I(z, 0) + P̃ (z, 0) + Q̃(z, 0). (3.14)

Using equations (10), (11) and (12) we derive the expressions for
W (z, 0), I(z, 0), P̃ (z, 0), Q̃(z, 0) as (complete derivation is given in appendix)

W (z, 0) =
W0[γ − (γ/z)S̃v(λ + η − λz)] + p0

[(λ + η + γ) − (λ + (γ/z))S̃v(λ + η − λz)]
(3.15)

I(z, 0)=

W (z, 0)
[
η(λz−λ−η)+(λ+γ/z)S̃v(λ+η−λz)η × S̃b(λ−λz)

]
+

[
γI0 − p0 − (γ/z)S̃b(λ − λz)I0

]
(λz − λ − η) − (γ/z)

×W0

[
S̃v(λ + η − λz) − 1

] [
ηS̃b(λ − λz)

]
(λz − λ − η)

[
(λ + γ) − (λ + (γ/z))S̃b(λ − λz)

] (3.16)
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P̃ (z, 0) =

[λW (z, 0) + (γ/z)(W (z, 0)− W0)][S̃v(λ + η − λz) − 1]

η[S̃b(λ − λz) − 1]

+(λ + (γ/z))I(z, 0)[S̃b(λ − λz) − 1][λz − λ − η]

−(γ/z)(S̃b(λ − λz) − 1)I0[λz − (λ + η)]
[λz − (λ + η)][−λ + λz]

(3.17)

Q̃(z, 0) =
[λW (z, 0) + (γ/z)(W (z, 0)− W0)][S̃v(λ + η − λz) − 1]

[λz − (λ + η)]
· (3.18)

Substituting the equations (15)−(18) in (14) we get

P (z)=

W (z, 0)

[
(λz − (λ + η))(−λ+λz) + (λ+γ/z)(S̃v(λ+η−λz))

η(S̃b(λ−λz) − 1)+(λ+γ/z)S̃v(λ+η−λz)(−λ+λz)

]

+I(z, 0) [(λz − (λ+η))(−λ+λz)

+(λ + (γ/z))(S̃b(λ − λz) − 1)(λz − (λ + η))
]

+W0

[
(γ/z)η(S̃v(λ + η − λz) − 1)(1 − S̃b(λ − λz))

+(γ/z)(S̃v(λ + η − λz) − 1)(λz − λ)
]

+I0

[
(γ/z)(1 − S̃b(λ − λz))(λz − (λ + η))

]
(λz − (λ + η)) (−λ + λz)

· (3.19)

�

3.1. Stability condition

On using the condition limz→1 P (z) = 1 in equation (19) we derive the steady
state condition as γ > λ2

μb−λ (which coincides with the stability condition given by
Tien Van Do [24])

4. Performance characteristics

In this section, some useful performance measures of the proposed model such
as probability that the server is idle during working vacation and not working
vacation, the probability that the server is busy during working vacation and
when not in working vacation are derived. And also the mean orbit size Lv during
working vacation, the mean orbit size Lb when the server is not on working vacation
are studied.
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(i) The probability that the server is idle during working vacation:
Using equation (15) and applying limit z → 1 we get Piv probability that the
server is idle during working vacation as,

Piv =
W0γ(1 − S̃v(η) + p0

(λ + γ)(1 − S̃v(η)) + η
· (4.1)

(ii) The probability that the server is idle but not on working vacation:
Using equation (16) and applying limit z → 1, we get Pinv probability that
the server is idle and not on working vacation as

Pinv =

W0γη
[
(λSv1 + ηSb1)(1 − S̃v(η)) − η

]
+I0γη

[
(λ + γ)

(
1 − S̃v(η

))
+ η][Sb1 − 1]

+p0

[
(λ + γ)(ηSb1(S̃v(η) − 1) + λ

(
S̃v(η)

)]
+ γ(η − λ)

ηγ[(λ + γ)(1 − S̃v(η)) + η][Sb1 − 1]
· (4.2)

(iii) The probability that the server is busy during working vacation:
Using equation (18) and applying limit z → 1 we get Pbv, the probability
that the server is busy during working vacation as

Pbv =

[
1 − S̃v(η)

]
[(λ + γ)p0 − ηγW0]

η
[
(λ + γ)(1 − S̃v(η)) + η

] · (4.3)

(iv) The probability that the server is busy but not on working vacation:
Using equation (17) and applying limit z → 1 we get Pbnv, the probability
that the server is busy when not on working vacation as

Pbnv = {[(λ + γ)(1− S̃v(η)) + η0][1− S̃v(η)] + (λ + γ)Pinv − γ}(Sb1/λ) (4.4)

where Sb1 = λE(Sb); Sv1 = λ
∫ ∞
0

te−ηtsv(t)dt.
(v) The mean orbit size LQ:

Let Lv and Lb denote the mean orbit size during working vacation and regular
busy period respectively. Since the expressions are too large the numerical
values of Lv and Lb are calculated using Mathematica.

Lv = lim
z→1

d
dz

[W (z, 0] + Q̃(z, 0)]

Lb = lim
z→1

d
dz

[I(z, 0) + P̃ (z, 0)]·

Hence the mean orbit size is given by LQ = Lv + Lb.
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(vi) Mean waiting time in the retrial queue: W = LQ

λ .

5. Special cases

Further, by specifying service time random variables as Exponential, Erlang
and Hyper Exponential distribution, some special cases of this model are discussed
below:
Case I. Single server retrial queue with working vacation (Exponential service
time both for the service during working vacation and for the service when the
server is not on working vacation) and constant retrial policy.

If the service times are assumed to be Exponential with probability density
si(x) = uie−uix where ui(i = 1, 2) is the parameter and ui > 0, x ≥ 0 then

S̃b(λ − λz) =
(

u1

u1 + λ − λz

)

S̃v(λ + η − λz) =
(

u2

u2 + λ + η − λz

)
·

Substituting in (19), the PGF of the retrial queue size distribution for single
server retrial queue with working vacation and constant retrial policy is given

P (z)=

W (z, 0)

⎡
⎢⎢⎣

(λz−(λ+η)) (−λ+λz) + [λ+γ/z]
((

u2
u2+λ+η−λz − 1

))

η
(

u1
u1+λ−λz

)
−1)+(λ+γ/z)

(
u2

u2+λ+η−λz −1
)

(−λ+λz)

⎤
⎥⎥⎦

+I(z, 0) [(λz − (λ + η)) (−λ + λz) + (λ

+(γ/z))
((

u1
u1+λ−λz

)
− 1

)
(λz − (λ + η))

]

+W0

[
(γ/z)η

((
u2

u2+λ+η−λz

)
− 1

)(
1 −

(
u1

u1+λ−λz

))

+(γ/z)
((

u2
u2+λ+η−λz

)
− 1

)
(λz − λ)

]

+I0

[
(γ/z)

(
1 −

(
u1

u1+λ−λz

))
(λz − (λ + η))

]
(λz − (λ + η)) (−λ + λz)

(5.1)

where

W (z, 0) =
W0

[
γ − (γ/z)

(
u2

u2+λ+η−λz

)]
+ p0

(λ + η + γ) − (λ + (γ/z))
(

u2
u2+λ+η−λz

)
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I(z, 0) =

W (z, 0)
[
η(λz − λ − η) + (λ + γ/z)

(
u2

u2+λ+η−λz − 1
)

η
(

u1
u1+λ−λz

)]
+[γI0 − p0 − (γ/z)

(
u1

u1+λ−λz

)
I0](λz − λ − η) − (γ/z)

×W0[
(

u2
u2+λ+η−λz

)
− 1]

[
η

(
u1

u1+λ−λz

)]
(λz − λ − η)

[
(λ + γ) − (λ + (γ/z))

(
u1

u1+λ−λz

)] .

Case II. Single server retrial queue with working vacation (Erlang service time
both for the service during working vacation and for the service when the server
is not on working vacation) and constant retrial policy.

If the service times are assumed to be Erlang with probability density function
si(x) = (kiui)

ki xki−1e−kiuix

(ki−1)! ; i = 1, 2; ui > 0; x > 0 and ki is the positive integer and
ui is the parameter then

S̃b(λ − λz) =
(

u1k1

u1k1 + λ − λz

)k1

S̃v(λ + η − λz) =
(

u2k2

u2k2 + λ + η − λz

)k2

·

Substituting in (19), the PGF of the retrial queue size distribution for single
server retrial queue with working vacation and constant retrial policy is given by

P (z) =

W (z, 0)

⎡
⎢⎢⎢⎢⎢⎣

(λz−(λ+η))(−λ+λz)+[λ+γ/z]
((

u2k2
u2k2+λ+η−λz

)k2−1
)

η(
(

u1k1
u1k1+λ−λz

)k1 − 1)+(λ+γ/z)

×
[(

u2k2
u2k2+λ+η−λz

)k2 − 1
]

(−λ + λz)

⎤
⎥⎥⎥⎥⎥⎦

+I(z, 0) [(λz − (λ + η))(−λ + λz) + (λ + (γ/z))

×
((

u1k1
u1k1+λ−λz

)k1 − 1
)

(λz − (λ + η))
]

+W0

[
(γ/z)η

((
u2k2

u2k2+λ+η−λz

)k2 − 1
)(

1 −
(

u1k1
u1k1+λ−λz

)k1
)

+(γ/z)
((

u2k2
u2k2+λ+η−λz

)k2 − 1
)

(λz − λ)
]

+I0

[
(γ/z)

(
1 −

(
u1k1

u1k1+λ−λz

)k1
)

(λz − (λ + η))
]

(λz − (λ + η)) (−λ + λz)
· (5.2)
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Case III. Single server retrial queue with working vacation (Hyper Exponential
service time both for the service during working vacation and for the service when
the server is not on working vacation) and constant retrial policy.

If the service times are assumed to be Hyper Exponential with probability
density function s(x) = cue−ux + (1 − c)we−wx where x > 0, u > 0, w > 0; 0 ≤
c ≤ 1, then

S̃b(λ − λz) =
(

u1c

u1 + λ − λz

)
+

(
w1(1 − c)

w1 + (λ − λz)

)

S̃v(λ + η − λz) =
(

u2c

u2 + λ + η − λz

)
+

(
w2(1 − c)

w2 + (λ + η − λz)

)
·

Substituting in (19), the PGF of the retrial queue size distribution for single server
retrial queue with working vacation and constant retrial policy is obtained.

6. Numerical results

In this section to justify the theoretical results obtained, we present some nu-
merical results. To study the effect of arrival rate λ and retrial rate γ on the mean
orbit size LQ and the mean waiting time W the following notations are used and
some assumptions are made:

(i) Average arrival rate λ = 0.3.
(ii) Service rate during working vacation μv.
(iii) Regular service rate (when the server is not on working vacation)μb.
(iv) Vacation duration is exponential with parameter η.
(v) Retrial rate γ.

Table 1, Figures 1 and 2 represent the effect of retrial rate γ on the mean orbit size
and the mean waiting time W . The service times are considered as exponential,
Erlang-2 and Hyper exponential with parameters λ = 0.3, μv = 0.2, μb = 1, and
η = 2.

It is observed that:

* Mean orbit size is decreasing when retrial rate increases.
* Mean waiting is decreasing when retrial rate increases.

Table 2, Figures 3 and 4 represent the effect of arrival rate λ on the mean orbit size
and the mean waiting time W. The service times are considered as Exponential,
Erlang-2 and Hyper exponential with parameters γ = 0.6, μv = 0.2, μb = 1,
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and η = 2. It is observed that:

* Mean orbit size is increasing when arrival rate increases.
* Mean waiting time is increasing when arrival rate increases.

Table 3, Figures 5 and 6 represent the effect of service rate μb on the mean orbit size
and the mean waiting time W . The service times are considered as Exponential,
Erlang-2 and Hyper exponential with parameters λ = 0.3, γ = 0.6,μv = 0.2 and
η = 2. It is observed that:

* Mean orbit size is decreasing when service rate μb increases.
* Mean waiting time is decreasing when service rate μb increases.

Table 4 represents the effect of retrial rate γ on the probability that the server is
busy during working vacation with λ = 0.1, μv = 0.2, μb = 0.9 and η = 2 when
the service time distribution follow Exponential, Erlang-2 and Hyper exponential
respectively. It is observed that probability that the server is busy during working
vacation is increasing when retrial rate increases.

Table 5 represents the effect of retrial rate γ on the probability that the server is
busy and not on working vacation with λ = 0.1, μv = 0.2, μb = 0.9 and η = 2 when
the service time distribution follow Exponential, Erlang-2 and Hyper exponential
respectively. It is observed that probability that the server is busy and not on
working vacation is increasing when retrial rate increases.

Table 6 represents the effect of retrial rate γ on the probability that the server
is idle during working vacation with λ = 0.1, μv = 0.2, μb = 0.9 and η = 2 when
the service time distribution follow Exponential, Erlang-2 and Hyper exponential
respectively. It is observed that probability that the server is not occupied during
working vacation is decreasing when retrial rate increases.

Table 7 represents the effect of retrial rate γ on the probability that the server
is idle during working vacation with λ = 0.1, μv = 0.2, μb = 0.9 and η = 2 when
the service time distribution follow Exponential, Erlang-2 and Hyper exponential
respectively. It is observed that probability that the server is not occupied and not
on working vacation is decreasing when retrial rate increases.

7. Conclusion

In this paper a single server retrial queue with general retrial time, single work-
ing vacation and constant retrial policy is analyzed under the condition of stability.
Some system performance measures are computed in steady state. Numerical illus-
trations are also presented. For future research one can consider the same model
when the vacation time follows a phase-type distribution.
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Table 1. Retrial rate γ versus Mean Orbit Size LQ and mean waiting time W .

γ Exponential Erlang-2 Hyper-exponential
LQ W LQ W LQ W

0.5 0.5972 1.9907 0.5321 1.7738 0.5919 1.9730
0.6 0.4828 1.6093 0.4249 1.4164 0.4796 1.5986
0.7 0.4058 1.3525 0.3525 1.1749 0.4043 1.3476
0.8 0.3495 1.165 0.2994 0.9981 0.3495 1.1651
0.9 0.3061 1.0201 0.2583 0.8609 0.3074 1.0245
1 0.271 0.9032 0.2249 0.7499 0.2735 0.9116
1.1 0.2418 0.8059 0.1971 0.6571 0.2454 0.8179
1.2 0.2168 0.7227 0.1733 0.5775 0.2214 0.7381
1.3 0.195 0.6501 0.1524 0.5079 0.2006 0.6686
1.4 0.1757 0.5857 0.1338 0.4461 0.1822 0.6072
1.5 0.1583 0.5278 0.1171 0.3902 0.1656 0.5521

Table 2. Arrival rate λ versus mean orbit Size LQ and mean waiting time W .

λ Exponential Erlang-2 Hyper-exponential
LQ W LQ W LQ W

0.1 0.0165 0.165 0.0112 0.1121 0.0149 0.1487
0.15 0.0685 0.4567 0.0566 0.3771 0.0421 0.2809
0.2 0.1664 0.8321 0.1429 0.7148 0.0909 0.4543
0.25 0.3362 1.3448 0.2929 1.1714 0.1767 0.7067
0.3 0.6309 2.0133 0.5522 1.8407 0.3369 1.1229
0.35 1.1784 3.3669 1.0312 2.9464 0.8166 2.3333
0.4 2.3793 5.9482 2.0759 5.1899 1.519 3.7975
0.45 6.4691 14.3757 5.6154 12.4786 4.8432 10.7627

Table 3. Service rate μb versus mean orbit Size LQ and mean waiting time W .

μb Exponential Erlang-2 Hyper-exponential
LQ W LQ W LQ W

1.1 0.3842 1.2806 0.3397 1.1324 0.3310 1.1032
1.2 0.3145 1.0483 0.2791 0.9304 0.2397 0.7991
1.3 0.2629 0.8765 0.2340 0.7801 0.1803 0.6011
1.4 0.2235 0.7449 0.1993 0.6644 0.1392 0.4641
1.5 0.1924 0.6413 0.1719 0.5729 0.1094 0.3648
1.6 0.1674 0.5579 0.1496 0.4988 0.0871 0.2901
1.7 0.1468 0.4895 0.1313 0.4378 0.0697 0.2322
1.8 0.1297 0.4324 0.1160 0.3867 0.0559 0.1864
1.9 0.1153 0.3842 0.1030 0.3434 0.0448 0.1493
2.0 0.1029 0.3430 0.0919 0.3063 0.0356 0.1187
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Table 4. Retrial rate γ versus the probability that the server is
busy during working vacation Pbv.

γ Pbv

Exponential Erlang-2 Hyper exponential
0.2 0.0393 0.0392 0.0393
0.3 0.0400 0.0399 0.0399
0.4 0.0403 0.0403 0.0403
0.5 0.0404 0.0404 0.0404
0.6 0.0404 0.0404 0.0404
0.7 0.0404 0.0404 0.0404
0.8 0.0404 0.0404 0.0404
0.9 0.0404 0.0404 0.0404

Table 5. Retrial rate γ versus the probability that the server is
busy during but not on working vacation Pbnv.

γ Pbnv

Exponential Erlang-2 Hyper exponential
0.2 0.0095 0.0098 0.0097
0.3 0.0144 0.0149 0.0148
0.4 0.0187 0.0193 0.0192
0.5 0.0224 0.0229 0.0228
0.6 0.0253 0.0258 0.0257
0.7 0.0275 0.0280 0.0279
0.8 0.0291 0.0296 0.0295
0.9 0.0303 0.0306 0.0306

Table 6. Retrial rate γ versus the probability that the server is
idle during working vacation Piv.

γ Piv

Exponential Erlang-2 Hyper exponential
0.2 0.0032 0.0034 0.0033
0.3 0.0031 0.0033 0.0033
0.4 0.0030 0.0032 0.0032
0.5 0.0030 0.0032 0.0032
0.6 0.0029 0.0031 0.0030
0.7 0.0029 0.0031 0.0030
0.8 0.0028 0.0030 0.0029
0.9 0.0028 0.0029 0.0029

Table 7. Retrial rate γ versus the probability that the server is
idle but not on working vacation Pinv.

γ Pinv

Exponential Erlang-2 Hyper exponential
0.2 0.0711 0.1030 0.0961
0.3 0.0609 0.1030 0.0944
0.4 0.0499 0.1030 0.0917
0.5 0.0389 0.1020 0.0888
0.6 0.0279 0.1007 0.0857
0.7 0.0168 0.0996 0.0826
0.8 0.0057 0.0983 0.0793
0.9 0.0056 0.0968 0.0758
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Figure 1. Retrial rate γ verses mean orbit size LQ.
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Figure 2. Retrial rate γ verses mean waiting time W .
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Figure 3. Arrival rate λ verses mean orbit size LQ.
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Figure 4. Arrival rate λ verses mean waiting time W .
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Figure 5. Service rate μb verses mean orbit size LQ.
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Figure 6. Service rate μb verses mean waiting time W .
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Appendix A.

The derivation of equations (15), (16), (17) and (18)
Substituting θ = (λ + η − λz) in equation (12) we have

Q(z, 0) = λW (z, 0)S̃v(λ + η − λz) + (γ/z)(W (z, 0)− W0)S̃v(λ + η − λz). (A.1)

Substituting for Q(z, 0) from equation (26) into equation (12) we have

Q̃(z, 0) =
[λW (z, 0) + (γ/z)(W (z, 0)− W0)][S̃v(λ + η − λz) − 1]

λz − (λ + η)
(A.2)

which is equation(18).
Substituting for Q(z, 0) from equation (26) into equation (10), we get

W (z, 0) =
W0[γ − (γ/z)S̃v(λ + η − λz)] + P0

[(λ + η + γ) − (λ + (γ/z))S̃v(λ + η − λz)]
(A.3)

which is equation (15).
Substituting for θ = λ − λz in the equation (13) we obtain

P (z, 0) = (λ + (γ/z))S̃b(λ − λz)I(z, 0)− (γ/z)S̃b(λ − λz)I0 + Q̃(z, 0)ηS̃b(λ − λz).
(A.4)

Substituting for Q̃(z, 0) from equation (27) into equation (29) we get,

P (z, 0) =

⎛
⎜⎜⎝

λ + (γ/z))(S̃b(λ − λz)I(z, 0)−
(γ/z)S̃b(λ − λz)I0 + [λW (z, 0) + (γ/z)(W (z, 0)− W0)]

×[S̃v(λ + η − λz) − 1]ηS̃b(λ − λz)

⎞
⎟⎟⎠

λz − (λ + η)
· (A.5)

Substituting for P (z, 0) from equation (30) into equation (13) we obtain

P̃ (z, 0) =

[λW (z, 0) + (γ/z)(W (z, 0)− W0)]

×[S̃v(λ + η − λz) − 1]η[S̃b(λ − λz) − 1]

+(λ + (γ/z))I(z, 0)[S̃b(λ − λz) − 1][λz − λ − η] − (γ/z)

×(S̃b(λ − λz) − 1)I0[λz − (λ + η)]
[λz − (λ + η)][−λ + λz]

(A.6)

which is equation (17).
Substituting for P (z, 0) from equation (30) into equation (11) we get,

I(z, 0) =

W (z, 0)[η(λz − λ − η) + (λ + γ/z)S̃v(λ + η − λz)ηS̃b(λ − λz)]
+[γI0 − p0 − (γ/z)S̃b(λ − λz)I0](λz − λ − η)
−(γ/z)W0[S̃v(λ + η − λz) − 1][ηS̃b(λ − λz)]

(λz − λ − η)[(λ + γ) − (λ + (γ/z))S̃b(λ − λz)]
(A.7)

which is equation (16).
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