
RAIRO-Oper. Res. 49 (2015) 243–264 RAIRO Operations Research

DOI: 10.1051/ro/2014032 www.rairo-ro.org

A STRAIGHT PRIORITY-BASED GENETIC ALGORITHM
FOR A LOGISTICS NETWORK

Mehrdad Mehrbod
1
, Zhaojie Xue

2
, Lixin Miao

1

and Wei-Hua Lin
3

Abstract. Closed-loop logistics (forward and reverse logistics) has re-
ceived increased attention of late due to customer expectations, greater
environmental concerns, and economic aspects. Unlike previous works,
which consider single products or single periods in multi-objective func-
tion problems, this paper considers a multi-product multi-period closed-
loop logistics network with regard to facility expansion as a facility
location-allocation problem, which is closer to real-world scenarios.
A multi-objective mixed integer nonlinear programming formulation
is developed to minimize the total cost, the product delivery time, and
the used product collection time. The model is linearized by defining
new variables and adding new constraints to the model. Then, to solve
the model, a priority-based genetic algorithm is proposed that uses
straight encoding and decoding methods. To assess the performance of
the above algorithm, its final solutions and CPU times are compared
to those generated by an initial priority-based genetic algorithm from
the recent literature and the lower bound obtained by CPLEX. The
numerical results show that the straight priority-based genetic algo-
rithm outperforms the initial priority-based genetic algorithm at least
in terms of obtaining a reasonable quality of final solutions for closed-
loop logistics problems.

Keywords. Closed-loop logistics, multi-objective decision making,
genetic algorithm, forward and reverse logistics.

Mathematics Subject Classification. 90B06.

Received June 27, 2012. Accepted May 12, 2014.

1 Research Center for Modern Logistics, Graduate School at Shenzhen, Tsinghua University,
Shenzhen 518055, P.R. China. mehrbod.mehrdad@gmail.com, lxmiao@tsinghua.edu.cn

2 Department of Transportation Engineering, College of Civil Engineering, Shenzhen
University, 518060 Shenzhen, P.R. China. xuezhaojie@126.com
3 Department of Systems and Industrial Engineering, The University of Arizona, AZ 85721
Tucson, USA. whlin@email.arizona.edu

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2014

http://dx.doi.org/10.1051/ro/2014032
http://www.rairo-ro.org
http://www.edpsciences.org

244 M. MEHRBOD ET AL.

1. Introduction

In recent times, due to increasing environmental and social concerns, along
with the economic benefits to be gained, an increasing number of companies have
begun to focus on reverse logistics in addition to forward logistics. Forward lo-
gistics encompasses material supply, production, distribution and consumption.
In the case of reverse logistics, the flow of used products includes collection, in-
spection/separation, recovery, disposal, and redistribution. Such a network com-
bination is considered to be a closed-loop logistics (CLL) network. At a planning
level, different decision-making problems arise in CLL networks. One of these is
the facility location-allocation problem. This type of problem includes designing
the logistics configuration, selecting the facility location, assigning facilities and
determining the flow quantities between facilities and consumers.

First presented by Maŕın and Pelegŕın [12], research on CLL began to appear
in scholarly journals from the late 1990s. Among CLL research, the minimization
of total costs is the most commonly used single objective [8,16]. In contrast, profit
maximization has received much less attention from researchers [4,11]. Real-world
network design problems are often characterized by multiple and conflicting ob-
jectives. Network responsiveness is an important issue in reverse logistics. It is
undesirable for customers to retain used products for an extended period of time
because of the related holding costs. Therefore, companies should consider cus-
tomer satisfaction in addition to cost minimization. Of around 50 papers in the
area of CLL networks we have reviewed, a majority centered on a formulation
and solution method for a single-objective problem. Upon closer examination, we
found only three papers that considered a multi-objective problem. Lee et al. [10]
developed a multi-objective model for single-product single-period CLL. Two ob-
jective functions were considered: (1) to maximize the quantity of the returned
products and (2) to minimize the total cost. A fuzzy goal programming approach
was applied to determine the compromise solution for the multi-objective model.
A genetic algorithm (GA) with two sub-algorithms was then developed to solve
the problem. Pishvaee et al. [15] used mixed integer linear programming to develop
a multi-objective single-product single-period model that included minimizing the
total costs and maximizing the responsiveness of a logistics network. To solve the
proposed model, a memetic algorithm with a dynamic local search mechanism was
designed to find the non-dominated set of solutions. Pishvaee and Torabi [17] pro-
posed a possibilistic mixed integer programming model to address a single-product
multi-period (only for the demand parameter) CLL under uncertainty. The pri-
mary objectives included a total cost minimization, and the minimization of the
total tardiness of the delivered products. To solve the proposed model, an inter-
active fuzzy solution approach was developed by combining a number of efficient
solution approaches from the recent literature.

Based on the aforementioned considerations, this paper proposes a multi-
product multi-period model for a multi-objective CLL network, along with the pos-
sibility of facility expansion. In particular, instead of using the initial priority-based

A STRAIGHT PRIORITY-BASED GENETIC ALGORITHM 245

encoding method commonly used in GAs, we develop a new priority-based encod-
ing GA with its corresponding decoding method to enhance the performance of
the solution approach.

The remainder of this paper is organized as follows. First, we develop a general-
ized mixed integer non-linear programming formulation to design the multi-period,
multi-product, and multi-objective CLL network. The model is then linearized
and a straight priority-based GA (SPGA) is designed to solve the model. Then,
a computational experiment is conducted to compare the results obtained using
the initial priority-based genetic algorithm (IPGA), the linear relaxation, and the
SPGA. Finally, conclusions and further research are discussed.

2. Research problem

2.1. Problem definition

The integrated forward/reverse logistics network discussed in this research prob-
lem is a multi-stage logistics network that includes plants, retailers, distribution,
collection, recovery, and recycling centers.

Figure 1 shows that, in the forward flow, a certain number of new products (QI,
QJ) are shipped from plants to retailers through distribution centers to meet the
demand of each retailer. Plants and retailers are assumed to be predetermined and
fixed. In the reverse flow, a certain number of returned products (QK) are collected
in collection centers and, after testing, the recoverable products (QL) are shipped
to recovery centers. Scrapped products (QS) are shipped to recycling centers. The
recovery process is performed in recovery centers, and recovered products (QR) are
inserted in the forward network and are considered to be identical to new products.
By means of this strategy, the excessive transportation of returned products (espe-
cially scrapped products) is prevented, and the returned products can be shipped
directly to the appropriate centers. Thus, the network is a CLL network. In such an
integrated logistics network, hybrid centers offer potential cost savings compared
to separate distribution and collection centers. The network, therefore, considers
a hybrid distribution-collection center in which both distribution and collection
centers are established at the same location. This model, unlike the existing loca-
tion models, considers facility expansion over time in order to manage the network
based on the trade-offs for various situations. By means of this change, we can
increase the utilization rate of facilities and decrease the total cost, in addition to
making our problem closer to real life.

We consider a decision horizon that includes multiple-periods and multiple-
products in the proposed model. The flow quantities during each period between
facilities that belong to different echelons are determined according to demand,
returns and other periodic-based parameters. As such, this paper assumes that
the demand for the products, the number of returned products, and the number
of unrecoverable used products are known over the planning time horizon.

246 M. MEHRBOD ET AL.

Figure 1. Model flow of a closed-loop logistics network.

The other main assumptions used in this problem formulation are as follows:

a) All products returned by the retailers must be collected, and all of the demand
of the retailers must be satisfied.

b) Products are shipped through a pull mechanism and returned products are
shipped through a push mechanism in the forward and reverse sides of the
network, respectively.

c) A recycling center is a storage place for scrapped products. Based on our re-
search teams experience, any processing costs in such centers are very small
compared with other costs. Therefore, we do not consider any processing costs
(such as the storage cost) for this type of facility.

d) There are no missing products in the forward logistics process.
e) We assume that the rates of returned and recoverable products are not constant

for various reasons such as product quality, or the market situation in each
period.

f) Fixed savings cost happens when a distribution center and a collection center
are opened at the same location in the same period (hybrid facility).

To design the CLL network, two objective functions are considered: (1) to minimize
the total cost and (2) to minimize the total delivery and collection time. The
first objective is related to supply chain network efficiency and the second to
network responsiveness. The second objective enables the supply chain to satisfy
the customers expected delivery and collection times. These two objective functions
conflict with each other. Optimizing the network involves trade-offs between these
two objectives.

2.2. Model formulation

The following notation is used in the formulation of the CLL problem.

A STRAIGHT PRIORITY-BASED GENETIC ALGORITHM 247

I, i\J, j\K, k\L, l\R, r\S, s\P, p\T, t: set and index of plants \distribution cen-
ters \retailers \collection centers \recovery centers \recycling centers \products
\time periods;

ACp: per unit storage space requirement for product p;
ARt

kp: percentage of product p returned by retailer k in period t;
ASt

p: unrecoverable percentage of product p in period t;
CD\CC: cost of a delay in product delivery \collection per product per unit of

time;
CIip: maximum production capacity of plant i for product p;
CJj\CLl\CRr\CSs: maximum capacity of distribution center j \collection center

l \recovery center r \recycling center s;
DP t

kp: demand for product p from retailer k in period t;
ECt

kp: expected collection time of product p from retailer k in period t;
EDt

kp: expected delivery time of product p to retailer k in period t;
EJ t

j\ELt
l\ERt

r: operating cost for standard expansion on distribution center j
\collection center l \recovery center r in period t;

FHt
h: fixed savings cost associated with opening a distribution center and a col-

lection center at location h in period t, h ∈ H, H ⊂ J, H ⊂ L;
FJ t

j\FLt
l\FRt

r\FSt
s: fixed cost of opening distribution center j \collection center

l \recovery center r \recycling center s in period t;
GJj\GLl\GRr: standard expansion size of distribution center j \collection center

l \recovery center r;
MJ t

j\MLt
l\MRt

r: maximum number of times in period t for which GJj\GLl\GRr

can occur;
PIip: manufacturing cost per unit of product p at plant i;
PJjp\PLlp: processing cost per unit of product p at distribution center j

\collection center l;
PRrp: remanufacturing cost per unit of product p at recovery center r;
TCklp: collection time of product p from retailer k by collection center l;
TDjkp: delivery time of product p from distribution center j to retailer k;
Dt = {j |TDjkp ≥ EDkp } and Ct = {l |TCklp ≥ ECkp } at period t;
TIijp\TJjkp\TKklp\TLlrp\TSlsp\TRrjp: transportation cost per unit of product p

from i to j \j to k \k to l \l to r \l to s \r to j.

Decision variables:

QIt
ijp: quantity of product p shipped from plant i to distribution center j in

period t;
QJ t

jkp: quantity of product p shipped from distribution center j to retailer k in
period t;

QKt
klp: quantity of product p shipped from retailer k to collection center l in

period t;
QLt

lrp: quantity of product p shipped from collection center l to recovery center r
in period t;

248 M. MEHRBOD ET AL.

QSt
lsp: quantity of product p shipped from collection center l to recycling center

s in period t;
QRt

rjp: quantity of product p shipped from recovery center r to distribution center
j in period t;

XJ t
j = 1 if a distribution center is opened at location j in period t, zero otherwise;

XLt
l = 1 if a collection center is opened at location l in period t, zero otherwise;

XRt
r = 1 if a recovery center is opened at location r in period t, zero otherwise;

XSt
s = 1 if a recycling center is opened at location s in period t, zero otherwise;

ZJ t
j\ZLt

l\ZRt
r: number of standardized expansions to distribution center j

\collection center l \recovery center r in period t;

The CLL problem can be formulated as follows:

Min Z1 = Opening cost + Expansion cost +
Transportation cost + Processing cost

=
∑

j
FJ1

j XJ1
j +

∑
t≥2

∑
j
FJ t

jXJ t
j

(
1−XJ t−1

j

)
+

∑
l
FL1

l XL1
l +

∑
t≥2

∑
l
FLt

lXLt
l

(
1−XLt−1

l

)
+

∑
r
FR1

rXR1
r +

∑
t≥2

∑
r
FRt

rXRt
r

(
1−XRt−1

r

)
+

∑
s
FS1

sXS1
s +

∑
t≥2

∑
s
FSt

sXSt
s

(
1−XSt−1

s

)
−

∑
h=j=l

FH1
hXJ1

hXL1
h

−
∑

t≥2

∑
h=j=l

FHt
hXJ t

hXLt
h

(
1−XJ t−1

h XLt−1
h

)
+

∑
t

∑
j
EJ t

jZJ t
j +

∑
t

∑
l
ELt

lZLt
l +

∑
t

∑
r
ERt

rZRt
r

+
∑

t

∑
p

∑
j

∑
i
TIijpQIt

ijp +
∑

t

∑
p

∑
k

∑
j
TJjkpQJ t

jkp

+
∑

t

∑
p

∑
l

∑
k
TKklpQKt

klp +
∑

t

∑
p

∑
r

∑
l
TLlrpQLt

lrp

+
∑

t

∑
p

∑
s

∑
l
TSlspQSt

lsp +
∑

t

∑
p

∑
j

∑
r
TRrjpQRt

rjp

+
∑

t

∑
p

∑
j

∑
i
PIipQIt

ijp +
∑

t

∑
p

∑
k

∑
j
PJjpQJ t

jkp

+
∑

t

∑
p

∑
r

∑
l
PLlpQltlrp +

∑
t

∑
p

∑
s

∑
l
PLlpQSt

lsp

+
∑

t

∑
p

∑
j

∑
r
PRrpQRt

rjp (2.1)

Min Z2 = Delivery time + Collection time

= CD
∑

t

∑
p

∑
k

∑
j∈Dt

(TDjkp − EDt
kp)QJ t

jkp

+ CC
∑

t

∑
p

∑
k

∑
l∈Ct

(TCklp − ECt
kp)QKt

klp (2.2)

A STRAIGHT PRIORITY-BASED GENETIC ALGORITHM 249

Subject to: ∑
j
QJ t

jkp ≥ DP t
kp ∀t, p, k (2.3)

∑
l
QKt

klp ≥ ARt
kpDP t

kp ∀t, p, k (2.4)
∑

i
QIt

ijp +
∑

r
QRt

rjp =
∑

k
QJ t

jkp ∀t, p, j (2.5)

(1−ASt
p)

∑
k
QKt

klp =
∑

r
QLt

lrp ∀t, p, l (2.6)

ASt
p

∑
k
QKt

klp =
∑

s
QSt

lsp ∀t, p, l (2.7)
∑

l
QLt

lrp =
∑

j
QRt

rjp ∀t, p, r (2.8)

∑
j
QIt

ijp ≤ CIip ∀t, p, i (2.9)

∑
p
ACp

(∑
i
QIt

ijp +
∑

r
QRt

rjp

)
≤ CJjXJ t

j +
t∑

θ=1

(GJjZJθ
j) ∀t, j (2.10)

∑
p
ACp

∑
k
QKt

klp ≤ CLlXLt
l +

t∑
θ=1

(GLlZLθ
l) ∀t, l (2.11)

∑
p
ACp

∑
l
QLt

lrp ≤ CRrXRt
r +

t∑
θ=1

GRrZRθ
r ∀t, r (2.12)

∑
p
ACp

∑
l
QSt

lsp ≤ CSsXSt
s ∀t, s (2.13)

XJ t+1
j ≥ XJ t

j ∀t < |T | , j (2.14)

XLt+1
l ≥ XLt

l ∀t < |T | , l (2.15)

XRt+1
r ≥ XRt

r ∀t < |T | , r (2.16)

XSt+1
s ≥ XSt

s ∀t < |T | , s (2.17)

ZJ t
j ≤M ∗XJ t

j ∀t, j (2.18)

ZLt
l ≤M ∗XLt

l ∀t, l (2.19)

ZRt
r ≤M ∗XRt

r ∀t, r (2.20)

ZJ t
j ≤MJ t

j ∀t, j (2.21)

ZLt
l ≤MLt

l ∀t, l (2.22)

ZRt
r ≤MRt

r ∀t, r (2.23)

250 M. MEHRBOD ET AL.

XJ t
j , XLt

l , XRt
r, XSt

s ∈ {0, 1} ∀t, j, r, l, s (2.24)

QIt
ijp, QJ t

jkp, QKt
klp, QLt

lrp, QSt
lsp, QRt

rjp ≥ 0 ∀t, p, i, j, k, l, r, s (2.25)

ZJ t
j , ZLt

l , ZRt
r integer ∀t, j, l, r. (2.26)

Constraint (2.3) ensures that the demands of all customers are satisfied. Con-
straint (2.4) ensures that all of the returned products from all of the customers
are collected. Constraints (2.5)−(2.8) ensure the balance of quantity flow at the dis-
tribution, collection, recovery and recycling centers. Constraints (2.9)−(2.13) are
capacity constraints on facilities, including expansion size across the time period,
and also prohibit units of products, returned products, recoverable and recyclable
products from being transferred to facilities that have not yet been opened. Con-
straints (2.14)−(2.17) guarantee that the open facilities cannot be closed during the
following periods. Constraints (2.18)−(2.20) ensure that the expansion of a facility
is only possible if that facility has already been opened. Constraints (2.21)−(2.23)
impose a maximum number of standardized expansions for each type of facility
in each period of time. Finally, Constraints (2.24)−(2.26) enforce binarity, non-
negativity or integrality on the decision variables.

In the objective function, there are six nonlinear terms to be considered,
dealing with the fixed costs of opening distribution, collection, recovery, and
recycling centers and the fixed savings cost of a hybrid facility (two nonlin-
ear terms). Each of them involves the multiplication of two binary variables
(XJ t

j , XJ t−1
j), (XLt

l , XLt−1
l), (XRt

r, XRt−1
r), (XSt

s, XSt−1
s), and (XJ t

h, XLt
h)

respectively. Therefore, the above model is linearized by defining new variables
as follows:

First, using X ′J t
j = XJ t

j

(
1−XJ t−1

j

)
, the following constraints are added into

the model:
XJ t

j + XJ t−1
j + X ′J t

j ≤ 2 ∀t ≥ 2, j (2.27)

XJ t
j + XJ t−1

j −X ′J t
j ≥ 0 ∀t ≥ 2, j (2.28)

2XJ t
j −XJ t−1

j −X ′J t
j ≤ 1 ∀t ≥ 2, j (2.29)

−2XJ t
j + XJ t−1

j + X ′J t
j ≤ 1 ∀t ≥ 2, j. (2.30)

Constraint (2.27) ensures that, if XJ t
j = 1 and XJ t−1

j = 1, then X ′J t
j is zero;

constraint (2.28) ensures that, if XJ t
j = 0 and XJ t−1

j = 0, then X ′J t
j is zero;

constraint (2.29) guarantees that, if XJ t
j = 1 and XJ t−1

j = 0, then X ′J t
j is equal

to one, and constraint (2.30) ensures that, if XJ t
j = 0 and XJ t−1

j = 1, then X ′J t
j

is zero.
Second, using X ′Lt

l = XLt
l

(
1−XLt−1

l

)
, X ′Rt

r = XRt
r

(
1−XRt−1

r

)
, and

X ′St
s = XSt

s

(
1−XSt−1

s

)
, based on the same logic as was applied for the fixed

A STRAIGHT PRIORITY-BASED GENETIC ALGORITHM 251

cost of opening a distribution center, the following constraints are added to the
model:

XLt
l + XLt−1

l + X ′Lt
l ≤ 2 ∀t ≥ 2, l (2.31)

XLt
l + XLt−1

l −X ′Lt
l ≥ 0 ∀t ≥ 2, l (2.32)

2XLt
l −XLt−1

l −X ′Lt
l ≤ 1 ∀t ≥ 2, l (2.33)

−2XLt
l + XLt−1

l + X ′Lt
l ≤ 1 ∀t ≥ 2, l (2.34)

XRt
r + XRt−1

r + X ′Rt
r ≤ 2 ∀t ≥ 2, r (2.35)

XRt
r + XRt−1

r −X ′Rt
r ≥ 0 ∀t ≥ 2, r (2.36)

2XRt
r −XRt−1

r −X ′Rt
r ≤ 1 ∀t ≥ 2, r (2.37)

−2XRt
r + XRt−1

r + X ′Rt
r ≤ 1 ∀t ≥ 2, r (2.38)

XSt
s + XSt−1

s + X ′St
s ≤ 2 ∀t ≥ 2, s (2.39)

XSt
s + XSt−1

s −X ′St
s ≥ 0 ∀t ≥ 2, s (2.40)

2XSt
s −XSt−1

s −X ′St
s ≤ 1 ∀t ≥ 2, s (2.41)

−2XSt
s + XSt−1

s + X ′St
s ≤ 1 ∀t ≥ 2, s. (2.42)

Finally, the nonlinear terms, for the fixed savings cost of a hybrid facility, are
linearized using the following two steps:

First, a new variable XHt
h=j=l = XJ t

jXLt
l is defined as follows:

XHt
h=j=l = 1: if a distribution center and a collection center are opened at

location h in period t, zero otherwise.
Substituting the new variable, the transformed term is:

∑
h=j=l

FH1
hXH1

h −
∑

t≥2

∑
h=j=l

FHt
hXHt

h

(
1−XHt−1

h

)
.

However, as the objective function minimizes cost, it has a tendency to set the
value of XHt

h to 1. We should, thus, set the value of XHt
h to zero when at least

one of XJ t
j and XLt

l is equal to zero. This restriction can be achieved by adding
the following constraints to the model.

2XHt
h=j=l ≤ XJ t

j + XLt
l ∀t, j, l. (2.43)

−XHt
h=j=l + XJ t

j + XLt
l ≤ 1 ∀t, j, l. (2.44)

252 M. MEHRBOD ET AL.

Second, using X ′Ht
h = XHt

h

(
1−XHt−1

h

)
, and the same logic as was applied

for the fixed costs of opening other centers, the following constraints are added to
the model:

XHt
h + XHt−1

h + X ′Ht
h ≤ 2 ∀t ≥ 2, h (2.45)

XHt
h + XHt−1

h −X ′Ht
h ≥ 0 ∀t ≥ 2, h (2.46)

2XHt
h −XHt−1

h −X ′Ht
h ≤ 1 ∀t ≥ 2, h (2.47)

−2XHt
h + XHt−1

h + X ′Ht
h ≤ 1 ∀t ≥ 2, h. (2.48)

3. Solution approach

In this paper, the proposed CLL network includes three problems – the capac-
itated facility location problem, the flow optimization problem, and the reverse
logistics problem. As proven by Krarup and Pruzan [9], the capacitated facility
location problem is an NP-complete problem; therefore, the extended problem is
an NP-hard problem. Solving this problem on a large scale with an exact algorithm
is computationally intractable. As one of the evolutionary algorithms, the GA is
a powerful and broadly applicable stochastic search and optimization technique
based on principles derived from natural evolution and genetics [6].

The workability of genetic algorithms is based on Darwinians theory of survival
of the fittest. Genetic algorithms may require the definition of chromosomes, genes,
sets of population, fitness functions, as well as mutation and selection mechanisms.
Genetic algorithms begin with a set of solutions represented by chromosomes,
called population. Solutions from one population are taken and used to form a
new population, which is motivated by the possibility that the new population
will be better than the old one. To achieve that, solutions are selected according
to their fitness to form new solutions, that is, from the offspring chromosomes.
The above process is repeated until some condition is satisfied.

3.1. Straight-based encoding scheme

Usually, different problems have different genetic representations. During the
last 20 years, various encoding methods have been developed to provide effec-
tive implementation of GAs. Tree-based representation is one way of representing
network problems. In 1991, Michalewicz et al. [13] used matrix-based representa-
tion for solving linear and nonlinear transportation/distribution problems. If we
consider |I| and |J | as the number of sources and depots, respectively, the dimen-
sion of the matrix will be |I| × |J |. Gen and Li [7] employed the Prüfer number
for encoding a spanning tree. This method belongs to vertex-based encoding and
needs |I| + |J | − 2 genes to represent a candidate solution for a transportation

A STRAIGHT PRIORITY-BASED GENETIC ALGORITHM 253

tree. In 2006, Gen et al. [5] developed a priority-based GA for a single-product
two-stage transportation problem that we call the initial priority-based GA or
IPGA. This method, which also belongs to vertex-based encoding, was applied
to a single-product, single-source, three-stage supply chain network [2], and to a
multi-product, three-stage supply chain network problem as a steady-state GA [1].
A gene in a chromosome is characterized by the position of the gene within the
structure of the chromosome and the value the gene takes. In the IPGA, the posi-
tion of a gene is used not only to represent a node (source/depot in a transportation
network) but also the product type, and the value is used to represent the priority
of the corresponding node for constructing a tree among all the candidate nodes.

When the IPGA is applied to a multi-product transportation problem in which
P is the set of products, a stage of chromosome is generated that consists of |P |
parts, and the length of each stage is |P |(|I| + |J |), but in the straight priority-
based GA (SPGA), the length of each stage is equal to |I| + |P ||J |. This means
that, in the IPGA and the SPGA, the maximum gene values of the chromosome
are |P |(|I| + |J |) and |I| + |P ||J |, respectively. In the SPGA, when the highest
priority in a stage belongs to a source, the minimum transportation cost should
be considered for all products in order to determine a depot. However, under the
IPGA, the highest priority determines not only a source but also the product type,
simultaneously. This means that, when the highest priority in a stage belongs to
a source, the IPGA considers minimum transportation cost in the case of the
determined product in order to determine the depot. In other words, the IPGA
decreases the number of choices required to find the minimum cost for all products
by predetermining a product.

Let T be the set of periods. To consider a multi-period method, |T | − 1 rows
should be added to the above chromosomes. Thus, in the IPGA and the SPGA,
solutions are encoded as |T | × |P |(|I|+ |J |) and |T |(|I|+ |P ||J |) matrices, respec-
tively. Figure 2 represents a comparison between these two chromosomes for two
sources, three depots, three products, and two periods.

According to the SPGA, our problem is presented as a |T | × (|I|+ |J |+ |K|+
2|L|+ |R|+ |P |(2|J |+ |K|+ |L|+ |R|+ |S|)) matrix. The chromosome consists of six
stages, in which each stage is related to one echelon of our problem (Fig. 3). In our
model, the sequence of stages in the decoding method is 2 → 3 → 4, 5 → 6 → 1.
The straight priority-based decoding method for the multi-period, multi-product
CLL problem is given below.

Input:

I\J\P\T : set of sources \depots \products \periods respectively
dt

jp: demand for product p from depot j in period t, ∀j ∈ J, p ∈ P, t ∈ T

st
i: capacity of source i in period t, ∀i ∈ I, t ∈ T

ct
ijp: unit transportation cost for taking product p from source i to depot j in

period t, ∀i ∈ I, j ∈ J, p ∈ P, t ∈ T

vt
r (|T | (|I|+ |P | |J |)): The chromosome that needs to be decoded ∀i ∈ I, j ∈

J, p ∈ P, t ∈ T, r ∈ |T | (|I|+ (|P | |J |))

254 M. MEHRBOD ET AL.

(a)

(b)

Figure 2. A comparison between the (a) initial and (b) straight chromosomes.

Figure 3. An illustration of our model.

ap: per unit storage space requirement for product p, ∀p ∈ P and
∑
p

ap

∑
j

dt
jp ≤∑

i

st
i, ∀t ∈ T

Local variable:

vt
i , v

t
jp: gene, ∀i ∈ I, j ∈ J, p ∈ P, t ∈ T

Output:

qt
ijp: quantity of product p shipped from source i to depot j in period t, ∀i ∈

I, j ∈ J, p ∈ P, t ∈ T

A STRAIGHT PRIORITY-BASED GENETIC ALGORITHM 255

Step 1. qt
ijp = 0, ∀i ∈ I, j ∈ J, p ∈ P, t ∈ T .

Step 2. L← arg max {vt
r, t ∈ T, r ∈ |T | (|I|+ (|P | |J |))}.

Step 3. If L belongs to the period t, then t∗ = t.
Step 4. If L ≤ |I| for period t∗, then i∗ = L,

p∗, j∗ = arg min
{
ct∗
i∗jp

∣∣vt∗
r
= 0, r > |I|},

else L > |I| for period t∗, then p∗ =
⌈

L−|I|
|J|

⌉
,

j∗ = L− |I| − ((p∗ − 1) |J |),
i∗ = arg min

{
ct∗
ij∗p∗

∣∣vt∗
r
= 0, r ≤ |I|}.

Step 5. qt∗
i∗j∗p∗ = min

{
dt∗

j∗p∗ ,

⌊
st∗

j∗
ap∗

⌋}
.

Step 6. st∗
i∗ = st∗

i∗ − qt∗
i∗j∗p∗ . ap∗ and dt∗

j∗p∗ = dt∗
j∗p∗ − qt∗

i∗j∗p∗ .

Step 7. If st∗
i∗ = 0 , then vt∗

i∗ = 0,
If dt∗

j∗p∗ = 0 , then vt∗
j∗p∗ = 0.

Step 8. If vt
jp = 0 ∀j ∈ J, p ∈ P, t ∈ T , then calculate transportation cost for

the stage, else go to step 2.

Step 2 consists in looking for a node with the highest priority (L) in the current
chromosome. Step 3 specifies a period (t∗) based on the highest priority node (L).
Step 4 shows that if L belongs to the source segment, then L specifies a source (i∗)
and finally, a product (p∗) and depot (j∗) are identified based on the lowest cost
simultaneously. Otherwise, firstly, a product (p∗) and depot (j∗) are identified,
then a source (i∗) is selected based on the lowest cost. Step 5 assigns the available
amount of product p∗ that is shipped from source i∗ to depot j∗ in period t∗. Step
6 insures that the capacity of source i∗ and the demand of depot j∗ are updated. In
step 7, the first part enforces the capacity restriction at source i∗, and the second
part guarantees that the demand of depot j∗ is satisfied. Finally, step 8 insures
that the demands of all depots are satisfied.

As it is seen in Figure 4c, at the first step of decoding procedure, an arc between
Source 3 and Product 1 of Depot 1 is added to transportation tree since Product 1
of Depot 1 has highest priority in the chromosome and the lowest cost is between
Product 1 of Depot 1 and Source 3 (c311 = 1). After determining the amount of
shipment that is q311 = min{30, 150} = 30, capacity of source and demand of
depot are updated as s3 = 150 − 30 = 120, d11 = 30 − 30 = 0, respectively.
Since d11 = 0, the priority of Product 1 of Depot 1 is set to 0, and Product 2 of
Depot 1 with next highest priority is selected. After adding arc between Product
2 of Depot 1 and Source 3 (c312 = 2), the amount of shipment between them is
determined and their capacity and demand are updated as it is explained above,
and this process repeats until demands of all depots are met.

Now, we compare the IPGA and the SPGA for a common transportation tree of
a two-product three-source four-depot example, as shown in Figure 4 and Table 1,
where it can be seen that the SPGA produces a better final solution in all scenarios.

256 M. MEHRBOD ET AL.

Figure 4. A sample transportation tree for the (a and b) initial
and (c and d) straight GAs.

3.2. Selection

In multi-objective optimization, the computation of the fitness value of a chro-
mosome is a key issue. It often results from a combination of the n objective
function-values, each denoted zi hereafter, and if necessary after the normaliza-
tion of these values. One of the simplest methods to combine n objective functions
values into a scalar fitness value z was presented by Murata et al. [14]. It is achieved

A STRAIGHT PRIORITY-BASED GENETIC ALGORITHM 257

Figure 4. Continued.

using the following equations:

wi = ri/
∑n

i=1
ri i = 1, 2, . . . , n (3.1)

Z =
∑n

i=1
wizi. (3.2)

258 M. MEHRBOD ET AL.

Table 1. Total Transportation Cost.

Algorithm Scenario Total Transportation Cost

IPGA
a 740
b 950

SPGA
c 710
d 650

Where each ri is a non-negative number randomly chosen. We assign a random
real number ri to equations (3.1) to calculate the weights wi and then a fitness
value of each chromosome is calculated by equation (3.2). In equation (3.2), the
constant weights wi make the search direction in GAs constant as well. Therefore,
we use variable weights wi in the fitness procedure for various search directions.

The weighted sum zi in equation (3.2) is used for determining the selection
probability of each chromosome. In this paper, roulette wheel selection is used as
a selection mechanism. It is based on the selection or survival probability that is
determined for each chromosome, proportional to the fitness value. The selection
process is based on spinning the wheel a number of times, where the number of
spins is equal to the difference between the population size and the number of elite
solutions. In this method, with each spin, a single chromosome is selected for the
new population. The above procedure is iterated N (number of selection in each
generation) times in each generation for selecting N pairs of parents.

3.3. Elitism

Rudolph (1996) proved that GAs converge to the global optimal solution of
some functions in the presence of elitism [3]. A tentative set of Pareto optimal
solutions is preserved in the execution of our multi-objective GA. According to
the fitness values, a tentative set of Pareto optimal solutions (selected from among
the current population) is stored and carried over to the new population for elite
protection. The other members of the new population are selected from among the
individuals that are generated through crossover and mutation operations.

3.4. Crossover and mutation

In a crossover operation, two parents are picked from the last generation at ran-
dom and some proportions of parents are interchanged to reproduce two offspring
chromosomes. In this paper, a stage-based crossover operation is used. Under this
operation, each stage of the offspring chromosome is randomly selected with equal
probability from among the corresponding stages of parents. Each time a crossover
operation is employed, two offspring chromosomes are generated which means they
are complementary to each other.

Similar to crossover, mutation is done to prevent the premature convergence
and explores a new solution [3]. It is usually done by modifying the genes within
a chromosome. As in the case of crossover operations, stage-based mutation is

A STRAIGHT PRIORITY-BASED GENETIC ALGORITHM 259

used. In this operator, firstly, a decision about which segments and periods will be
mutated is given with probably of 0.5 (i.e. using a binary mask), and then selected
segments are mutated by swap operator. Swap operator selects two genes from the
corresponding segment and period and then it exchanges their places.

3.5. Termination

The number of times the whole process (iteration) needs to be repeated will
depend on the size of the problem. Therefore, the termination criterion is calculated
based on the size of the problem.

The overall procedure for solving the multi-period, multi-product CLL problem
is shown below.

Step 0: Initialization

• Generate an initial population (population size = 200).

Step 1: Evaluation

• Calculate the values of the objective functions for the generated chromosomes.
• Update the tentative set of Pareto optimal solutions.

Step 2: Selection

• Generate n non-negative random real numbers (n = 2).
• Calculate the weights wi using equations (3.1).
• Calculate the fitness value Z of each chromosome using equation (3.2).
• Calculate the selection probability based on the fitness values for each individ-

ual in the current population.
• Select a pair of parents from the current population using the roulette wheel

selection method.

Note: Repeat step 2 to select N pairs of parents (N = 50).
Step 3: Crossover

• Apply the crossover operation to the selected parents to generate two offspring
chromosomes.

Step 4: Mutation

• Apply the mutation operation to each chromosome generated by the crossover
operation.

Step 5: Elitism

• Randomly, remove M (M = 10) offspring chromosomes from the current pop-
ulation generated by the above operations.
• Randomly, add the same number of chromosomes (10 elite solutions) from the

tentative set of Pareto optimal solutions to the current population.

260 M. MEHRBOD ET AL.

Table 2. Test scenarios sizes.

Scenario No. No. No. No. No. No. No. No.

number products periods plants distribution retailers collection recovery recycling

centers centers centers centers

1st/2nd/ 2/2/ 2/2/ 2/2/ 2/3/ 3/8/ 2/3/ 2/2/ 2/2/

3rd/4th/5th/ 2/3/3/ 3/3/3/ 2/2/3/ 4/5/8/ 12/15/20/ 4/5/8/ 3/3/4/ 2/2/2/

6th/7th/ 4/3/ 3/3/ 3/5/ 12/15/ 35/50/ 12/15/ 5/4/ 3/2/

8th/9th/10th 5/4/4 2/3/2 5/5/7 12/10/20 55/65/80 12/10/20 3/4/5 2/3/3

Table 3. Values of parameters used in the test scenarios.

Parameter Value Parameter Value Parameter Value

DPt
kp U(80, 190) ACp U(0.8, 1) TIijp, TJjkp, TKklp U(4, 10)

ARt
kp U(0.6, 0.7) CIip U(500, 750) TLlrp, TSlsp, TRrjp U(4, 10)

ASt
p U(0.15, 0.20) CJj , CLl U(250, 350) TDjkp, TCklp U(5, 8)

FJt
j , FLt

l U(180 000, 260 000) CRr U(200, 350) EDt
kp, ECt

kp U(4, 6)

FRt
r U(300 000, 400 000) CSs U(80, 150) PRrp U(2, 4)

FSt
s U(150 000, 220 000) PIip U(3, 5) CD, CC 1

FHt
h U(60 000, 100 000) PJjp, PLlp U(1.5, 3) MJt

j , MLt
l , MRt

r U(1–5)

EJt
j , ELt

l U(20 000–50 000) ERt
r U(30 000–70 000) GJj , GLl, GRr U(50–100)

Dt {j |TDjkp ≥ EDkp } Ct {l |TCklp ≥ ECkp }

Step 6: Termination

• If the evolution loop repeats = 20+
⌊

(I+J+K+L+R+S)(P+T)
50

⌋
times, then stop

the run and move to the next step, else, return to Step 1.

Step 7: User selection

• The multi-objective GA provides the decision makers with the final set of
Pareto optimal solutions.

4. Computational experiments

To compare the performance of the SPGA and the IPGA, the lower bound of
the objective function in the CLL network is obtained using linear relaxation. Both
GAs are coded in Java 1.6. CPLEX 12.2 optimization software is used to calculate
the lower bound. They are tested on ten test scenarios of different sizes, as shown
in Table 2. Other parameters are randomly generated using a uniform distribution,
as specified in Table 3. Five instances are generated randomly for each size of test
scenario. All the tests are carried out on a PC with 2.3 GHz CPU times and 1 GB
of RAM.

Table 4 and Figure 5 show that the CPU times for the IPGA and the SPGA
carried out for this paper are fairly consistent for a given problem size, and increase
reasonably with increasing problem size. On the other hand, the CPU times using

A STRAIGHT PRIORITY-BASED GENETIC ALGORITHM 261

Table 4. CPU time(s) for test results.

Scenario
IPGA

Lower bound
SPGA

Min Average Max Min Average Max

1st 22 22 22 18 20 20 20

2nd 47 47 47 51 45 46 47

3rd 114 116 117 814 112 116 120

4th 242 244 246 1931 239 254 275

5th 456 462 467 3417 522 551 582

6th 1420 1438 1461 10 215 1659 1710 1779

7th 1522 1585 1612 12 122 1756 1880 1920

8th 2088 2121 2177 17 801 2380 2502 2598

9th 2478 2510 2621 19 420 2881 2996 3102

10th 2841 2980 3038 22480 3408 3590 3760

Figure 5. A comparison between the lower bound, the IPGA
and the SPGA based on average CPU times.

CPLEX for the lower bounds deteriorate substantially as the problem size becomes
large. For small-scale problems, the SPGA needs less CPU time than the IPGA.
As the number of facilities increases, the growth in the CPU time for the IPGA is
less than for the SPGA.

The gap between the average final solutions obtained by the two GAs and the
lower bounds for each scenario are illustrated in Table 4 and Figure 6. It can be
seen that, for the small-scale problems, the average gap between the SPGA and

262 M. MEHRBOD ET AL.

Table 5. Final solutions for test results.

Scenario
IPGA

Lower bound
SPGA

Min Average Max Min Average Max

1st 8283 8378 8519 7637 7598 7659 7703

2nd 17 546 17 792 18 483 17 405 17 337 17 713 18 182

3rd 42 438 43 476 44 223 39 921 39 739 40 541 41 535

4th 70 564 73 167 76 171 68 552 68 744 70 866 72 878

5th 118 930 121 138 125 102 101 283 103 020 105 187 107 802

6th 271 508 277 726 289 481 239 319 243 989 250 946 255 305

7th 275 992 289 311 303 801 246 880 259 398 264 440 269 981

8th 466 512 475 360 490 221 408 602 425 482 436 591 451 008

9th 551 720 575 800 588 345 481 466 510 121 526 906 548 328

10th 803 114 845 410 879 890 711 500 745 720 783 260 800 651

Figure 6. A comparison between the percentage gap of the IPGA
and the SPGA to the lower bound based on the average final
solutions.

the lower bound is less than 4%. For the other problems, the average gap ranges
from 4% to 11%. However, the average final solution gap between the IPGA and
the lower bound varies from 2% to 20% for all problems.

Comparing these two GAs with regard to the average final solutions, clearly,
the SPGA outperforms the IPGA in all scenarios. Since the lower bound of the ob-
jective function is obtained by linear relaxation, there exists an inherent difference
between the optimal solution and the lower bound. Therefore, the gap between

A STRAIGHT PRIORITY-BASED GENETIC ALGORITHM 263

the final solution and the lower bound is acceptable, which demonstrates the good
quality of the final solution obtained by the SPGA.

5. Conclusions

This paper has proposed a deterministic mathematical model for a multi-period
multi-product closed-loop logistics (CLL) problem. The problem is a strategic
problem as it deals with facility location-allocation issues. We consider the issue of
balancing cost against delivery/collection times by considering a multi-objective
model. Moreover, the model supports facility expansion for each facility except for
the plants and recycling centers and also considers cost savings associated with
hybrid centers.

We have proposed the straight priority-based genetic algorithm (SPGA) to solve
the model. The effectiveness of the SPGA has been investigated in detail by a
comparison of its results against those obtained using the initial priority-based
genetic algorithm (IPGA) and linear relaxation. The numerical results show that
the SPGA outperformed the IPGA in our tests, at least in terms of the final
solutions. Also, the comparison between the SPGA and the lower bound shows that
the quality of solutions obtained by the SPGA for CLL problems is reasonable.

In our model, we have assumed parameters such as demand and capacity to be
unchanged; future research may be required to include uncertainty in these param-
eters. When a single-objective solution method is applied to a multi-objective op-
timization problem, multiple objective functions should be combined into a scalar
fitness function as we do in our solution method. Hence, identifying a solution
method that will find all possible trade-offs among multiple objective functions
(which are usually conflicting) could also be an interesting research direction.

References

[1] F. Altiparmak, M. Gen, L. Lin and I. Karaoglan, A steady-state genetic algorithm for multi-
product supply chain network design. Comput. Ind. Engrg. 56 (2009) 521–537.

[2] F. Altiparmak, M. Gen, L. Lin and T. Paksoy, A genetic algorithm approach for multi-
objective optimization of supply chain networks. Comput. Ind. Engrg. 51 (2006) 196–215.

[3] K. Deb et al. Multi-objective optimization using evolutionary algorithms, Vol. 2012. John
Wiley & Sons Chichester (2001).

[4] M. El.-Sayed, N. Afia and A. El.-Kharbotly, A stochastic model for forward–reverse logistics
network design under risk. Comput. Ind. Engrg. 58 (2010) 423–431.

[5] M. Gen, F. Altiparmak and L. Lin, A genetic algorithm for two-stage transportation problem
using priority-based encoding. Or Spectrum 28 (2006) 337–354.

[6] M. Gen and R. Cheng, Genetic algorithms and engineering optimization, Vol. 7. John Wiley
& Sons (2000).

[7] M. Gen and Y. Li, Spanning tree-based genetic algorithm for the bicriteria fixed charge
transportation problem, in Evolutionary Computation, 1999. CEC 99. Proceedings of the
1999 Congress on, Vol. 3. IEEE (1999).

[8] V. Jayaraman, V.D.R. Guide Jr and R. Srivastava, A closed-loop logistics model for reman-
ufacturing. J. Oper. Res. Soc. (1999) 497–508.

[9] Jakob Krarup and Peter Mark Pruzan. The simple plant location problem: survey and
synthesis. Eur. J. Oper. Res. 12 (1983) 36–81.

264 M. MEHRBOD ET AL.

[10] D.-Horng Lee, W. Bian and M. Dong, Multiobjective model and solution method for in-
tegrated forward and reverse logistics network design for third-party logistics providers.
Transp. Res. Record: Journal of the Transportation Research Board 2032 (2007) 43–52.

[11] O. Listeş, A generic stochastic model for supply-and-return network design. Comput. Oper.
Res. 34 (2007) 417–442.

[12] A. Maŕın and B. Pelegŕın, The return plant location problem: Modelling and resolution.

Eur. J. Oper. Res. 104 (1998) 375–392.
[13] Z. Michalewicz, G.A. Vignaux and M. Hobbs, A nonstandard genetic algorithm for the

nonlinear transportation problem. ORSA J. Comput. 3 (1991) 307–316.
[14] Tadahiko Murata, Hisao Ishibuchi and Hideo Tanaka. Multi-objective genetic algorithm and

its applications to flowshop scheduling. Comput. Ind. Engrg. 30 (1996) 957–968.
[15] M. Saman Pishvaee, R. Zanjirani Farahani and W. Dullaert, A memetic algorithm for bi-

objective integrated forward/reverse logistics network design. Comput. Oper. Res. 37 (2010)
1100–1112.

[16] M. Saman Pishvaee, M. Rabbani and S. Ali Torabi, A robust optimization approach to
closed-loop supply chain network design under uncertainty. Appl. Math. Modell. 35 (2011)
637–649.

[17] M.S. Pishvaee and S.A. Torabi, A possibilistic programming approach for closed-loop supply
chain network design under uncertainty. Fuzzy Sets Syst. 161 (2010) 2668–2683.

	Introduction
	Research problem
	Problem definition
	Model formulation

	Solution approach
	Straight-based encoding scheme
	Selection
	Elitism
	Crossover and mutation
	Termination

	Computational experiments
	Conclusions
	References

