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DEREGULATED ELECTRICITY MARKETS
WITH THERMAL LOSSES AND PRODUCTION BOUNDS: MODELS

AND OPTIMALITY CONDITIONS ∗
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Abstract. A multi-leader-common-follower game formulation has been recently used by many au-
thors to model deregulated electricity markets. In our work, we first propose a model for the case of
electricity market with thermal losses on transmission and with production bounds, a situation for
which we emphasize several formulations based on different types of revenue functions of producers.
Focusing on a problem of one particular producer, we provide and justify an MPCC reformulation
of the producer’s problem. Applying the generalized differential calculus, the so-called M-stationarity
conditions are derived for the reformulated electricity market model. Finally, verification of suitable
constraint qualification that can be used to obtain first order necessary optimality conditions for the
respective MPCCs are discussed.
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1. Introduction

With the liberalization of the electricity markets in the previous decades, various models for this specific type
of market have been proposed. One of the first models is described in [18] and applied to the market of England
and Wales in [11]. Motivated by deregulated electricity markets, a new class of models constructed around
the concept of generalized Nash game have been introduced. Such models thus incorporate specific features
of electricity markets, such as transmission network and biding mechanism of each producer in the network,
and correspond to noncooperative games, in which each producer aims to maximize his benefit by means of
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announcing a bid on the energy production. The market is controlled by a central operator, frequently called
the Independent System Operator (ISO), who computes the best response to the producers’ bids in order to
minimize the global cost of energy, thus aiming at effective electricity production, while taking into account
technical parameters of the transmission grid and that the demand at each node of the transmission network
must be satisfied. This leads to the so-called multi-leader-common-follower game, cf. e.g. [19], in which each
producer is in the role of a leader and ISO is the single follower, common to all leaders.

There are several reasons to include production bounds in a model of electricity market. Consider, e.g.,
some special geographic configuration with extreme nodes of networks such as distant islands. In such a case,
either the high thermal loss due to transmission to such nodes and/or a relatively low production capacity at
these nodes can result to market equilibrium in which the production capacity is reached. Another situation, in
which the capacity of production at a given node is reached, arises on the so-called adjustment markets of some
countries where the total production capacity of every producer has to be offered to the ISO (see e.g. [24, 32]).

Our aim in this paper is to study variational equilibria of the electricity market model in which losses due to
transmission and bounds on production and transmission are present. Such variational equilibria correspond to
solutions of the so-called EPCCs (Equilibrium Problems with Complementarity Constraints), a coupled system
of MPCCs (Mathematical Programs with Complementarity Constraints). We refer to monographs [21, 27] and
([23], Chap. 5.2) for MPCCs and to [3, 28] for EPCCs. In particular, this paper complements and extends
results of [1] on electricity markets with transmission losses and results of [13] where M-stationarity conditions
(M-stands for Mordukhovich) for the electricity market model were derived.

The paper is organized as follows. The general formulation of problems of producers and ISO are introduced
in Section 2.1. In Section 2.2 we discuss an MPCC reformulation of producer’s problem and show that the corre-
sponding variational equilibrium, under weak assumptions, it is equivalent to the generalized Nash equilibrium
of the electricity market model. In Section 2.3, we discuss conditions ensuring the so-called single-valued case
and compare it with another one used in the literature. Finally, Section 3 is devoted to the first order neces-
sary optimality conditions for the reformulated electricity market model along with discussion on verification
of required qualification conditions.

Our notation is basically standard. B denotes the unit ball. We use R+ to denote nonnegative reals. For a
matrix A, Ai denotes the ith row of A. For an index set I ⊂ {1, . . . , s} and a vector d ∈ R

s, dI denotes a subvector
composed of the components di, i ∈ I and diag d denotes a diagonal s×s matrix with (diag d)ii = di, i = 1, . . . , s.
Analogously, for a matrix A with s rows, AI is the submatrix composed of the rows Ai, i ∈ I. For a set Ω, Ω
denotes its closure, and for a closed cone D with vertex at the origin, D◦ denotes its negative polar cone. By
x

Ω−→ x̄ we mean that x → x̄ with x ∈ Ω. TΩ(x) signifies the contingent (Bouligand−Severi, tangent) cone to Ω
at x.

For the readers’ convenience we now state the definitions of several basic notions from modern variational
analysis. For a closed set Ω and a point x̄ ∈ Ω, the Fréchet normal cone to Ω at x̄ is defined by

N̂Ω(x̄) :=

{
x∗ ∈ R

n

∣∣∣∣∣ limsup
x

Ω−→x̄

〈x∗, x − x̄〉
‖ x − x̄ ‖ ≤ 0

}
= (TΩ(x̄))◦ .

The limiting normal cone to Ω at x̄ is given by

NΩ(x̄) = Lim sup
x

Ω−→x̄

N̂Ω(x),

where the “Lim sup” stands for the Painlevé−Kuratowski upper (or outer) limit. This limit is defined for a
set-valued mapping M [Rn ⇒ R

m] at a point x̄ by

Lim sup
x→x̄

M(x) := {y ∈ R
m | ∃xk → x̄, ∃yk → y with yk ∈ M(xk)}.

For a convex set Ω, both normal cones NΩ and N̂Ω amount to the normal cone of convex analysis, for which
we use simply the notation NΩ.
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Given a set-valued mapping M [Rn ⇒ R
m] and a point (x̄, ȳ) from its graph

GphM := {(x, y) ∈ R
n × R

m|y ∈ M(x)},
the limiting (Mordukhovich) coderivative D∗M(x̄, ȳ)[Rm ⇒ R

n] of M at (x̄, ȳ) is defined by

D∗M(x̄, ȳ)(y∗) := {x∗ ∈ R
n|(x∗,−y∗) ∈ NGphM (x̄, ȳ)}.

In this paper, we also employ some notions of stability of multifunctions, namely the Aubin property and
calmness.

A set-valued mapping M [Rn ⇒ R
m] is said to have the Aubin (pseudo-Lipschitz, Lipschitz-like) property

around (x̄, ȳ) ∈ Gph M with modulus � ≥ 0 if there are neighborhoods U of x̄ and V of ȳ such that

M(x) ∩ V ⊂ M(u) + �||x − u||B
for all x, u ∈ U , where B is closed unit ball. The Mordukhovich criterion [22] provides a characterization of the
Aubin property through knowledge of the respective coderivative: a set-valued mapping M has Aubin property
around (x̄, ȳ) if and only if

D∗M(x̄, ȳ)(0) = {0}.
A set-valued mapping M [Rn ⇒ R

m] is said to be calm (pseudo upper Lipschitz) at (x̄, ȳ) ∈ Gph M with
modulus L ≥ 0 if there are neighborhoods U of x̄ and V of ȳ such that

M(x) ∩ V ⊂ M(x̄) + L‖x − x̄‖B for all x ∈ U .

Clearly, the Aubin property implies calmness, whereas the converse is not true. In the sequel, calmness will
be utilized as a suitable qualification condition in the used rules of generalized differential calculus, cf. [12, 17].

2. Towards an adapted model for electricity market with transmission

losses and production bounds

In this section we provide first a general formulation of the problem and introduce notation of the electricity
market model. Using the KKT reformulation of the ISO problem, we provide variational equilibrium reformu-
lation of the problem in Section 2.2 and discuss sufficient conditions for equivalence with the original electricity
market problem. We comment on several possible choices of producers’ revenue functions. In Section 2.3 we
comment on the so-called single-valued case which arises whenever the primal and dual solutions of the ISO
problem are unique.

2.1. General electricity market model and notation

In this work we assume that the electricity market is represented by a network where at each node i = 1, . . . , N,
there is exactly one producer and the local electricity energy demand Di is known. Therefore, we do not consider
consumers as acting agents in our model, i.e. the total amount of electricity demanded by consumers at each
node is supposed to match the local demand at that node. Thus, the general model from a class of multi-
leaders-common-follower games considered in this work takes into account only two types of players, producers
and ISO.

Each producer (leader) i, i = 1, . . . , N, aiming at maximizing his or her profit, bids a cost function ϕi(qi)
to the ISO (a follower common to all leaders), where qi denotes the electricity energy production of producer i
(e.g. in GWhs). The market regulator, ISO, taking into account all bids of producers, aims at maximizing the
so-called social welfare, or alternatively, minimizing the social costs. In here, we consider minimization of the
total cost of production while taking into account the requirement that the local demand Di is satisfied at each
node. Later on, we will introduce additional constraints which take into account bounds on transmission and
production.
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Denoting by Ri and Ci, i = 1, . . . , N, the revenue function and the real cost function of producer i, respec-
tively, the multi-leaders-common-follower game can be formulated as the following general equilibrium problem
composed of N producer’s optimization problems denoted as Pi, i = 1, . . . , N, solved simultaneously

Pi maxϕi Ri(ϕi(qi), qi) − Ci(qi)

s.t.
{

q solves ISO(ϕ),
ϕi admissible bid function,

where the ISO problem is considered in the form

ISO(ϕ) minq

∑
i ϕi(qi)

s.t. demand Di is satisfied at each node i = 1, . . . , N.

In order to distinguish between the components associated with producer i and components linked to the other
producers, we employ the following notation for vector of electricity production q = (qi, q−i) and vector-valued
bid function ϕ = (ϕi, ϕ−i). Later on, we employ this notation also to bid coefficients etc.

In the following, we introduce additional elements of the market model. Throughout this paper, let

* N be the set of nodes (with N elements).
* L be the set of electricity lines (with M elements).
* e = ij be the line from node i to node j.
* t be the vector of energy flows where components te = tij , e ∈ L denote the energy flow along the line e = ij

with tij > 0 whenever the electricity energy flows in the direction from i to j, and tij < 0 if the energy flow
is in the opposite direction.

* Le ≥ 0 be the coefficient of a thermal loss on line e ∈ L. Following the classical technical specifications,
thermal loss on the line e is assumed to be a quadratic function of the energy flow along this line, i.e. Let

2
e.

* T e and T e be the lower and upper transmission bounds on the line e ∈ L, respectively (T e ≤ 0 and T e ≥ 0).
* Qi be the upper bounds on production at node i ∈ N .
* D = (D1, . . . , DN) be the vector of electricity energy demand.

For better representation of the oriented network, δie denotes the coefficient of the incidence matrix defined
as Δ := (δie)i∈N ,e∈L ∈ R

N×M , where

δie :=

⎧⎪⎨⎪⎩
1 if line e enters node i

−1 if line e leaves node i

0 otherwise.

Clearly the chosen orientation of the network does not correspond to physical constraints but simply allows to
consider signed flows.

All along the paper we assume that the network (N ,L) is connected in the following sense:

∀i, j ∈ N , if i 
= j , ∃(i0, . . . , ip) ∈ N p+1 such that i0 = i , ip = j
and ∀k ∈ {0, . . . , p − 1} , ikik+1 ∈ L or ik+1ik ∈ L.

(2.1)

For each line e = ij ∈ L and any flow te along this line, the cost Let
2
e of thermal losses is covered equally by

both producer i and producer j. This is summarized in the thermal loss mapping

L(t) =

(
1
2

∑
e∈L

|δ1e|Let
2
e, . . . ,

1
2

∑
e∈L

|δNe|Let
2
e

)
.

This choice of distribution of the thermal losses costs has also been used in, e.g., [8, 13].
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In the real markets, bid functions are composed of an increasing and non-continuous sum of box bids and
hourly orders. In here, we consider their quadratic approximations which have been suggested by several authors,
cf. e.g. [16]. The same holds true for the cost function. In particular, we will consider the (real) cost functions
Ci, i = 1, . . . , N, in the form Ci(qi) = Aiqi + Biq

2
i with Bi ≥ 0 and the bid functions ϕi, i = 1, . . . , N, given by

ϕi(qi) = aiqi + biq
2
i with bi ≥ 0.

Clearly, both the real cost function and bid function can be characterized just by their linear and quadratic
coefficients, respectively. Therefore, instead of assuming that producers are bidding a function, one can consider
bidding respective linear and quadratic coefficients. In the sequel, the bid functions ϕi, i = 1, . . . , N, are sub-
stituted by couples (ai, bi). The quantities Ai, Ai, Bi, Bi stand for the corresponding bounds on the respective
bid coefficients. In the sequel the notation A and B will be used to describe sets of admissible bid coefficients
A =

∏N
i=1[Ai, Ai] and B =

∏N
i=1[Bi, Bi].

Taking into account the notation introduced above, the producer i’s problem Pi can be restated as the
following optimization problem

Pi(a−i, b−i) max
ai,bi,q,t

Ri(a, b, q, t)-(Aiqi + Biq
2
i )

s.t.

⎧⎪⎨⎪⎩
Ai ≤ ai ≤ Ai,

Bi ≤ bi ≤ Bi,

(q, t) solves ISO(a, b),

(2.2)

where ISO(a, b) stands for the following ISO’s problem

ISO(a, b) min
q,t

∑
i∈N

(aiqi + biq
2
i )

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qi ≥ 0, ∀i ∈ N
qi ≤ Qi, ∀ i ∈ N

qi +
∑
e∈L

(
δiete − Le|δie|

2
t2e

)
≥ Di, ∀ i ∈ N

te ≥ T e, ∀ e ∈ L

te ≤ T e, ∀ e ∈ L

(2.3)

This leads us to the following definition of a solution to the electricity market model.

Definition 2.1. A generalized Nash equilibrium of the electricity market is a vector (a∗, b∗, q∗, t∗) ∈ A × B ×
R

N × R
L such that

(a∗
i , b

∗
i , q

∗, t∗) solves Pi(a∗
−i, b

∗
−i) ∀i = 1, . . . , N. (2.4)

We would like to point out that since the maximum in Pi(a−i, b−i) is considered with respect to (ai, bi) and
also (q, t), the present formulation of the producer’s problem is usually called the optimistic formulation of the
problem and its solutions are referred to as optimistic. Indeed if, for a given bid couple (a, b), there exist several
solutions (q, t) of ISO(a, b), considering the maximum of the objective (profit) function with respect to (q, t) is
a clearly “favorable” for producer i. However, using the terminology from [3], the electricity market model (2.4)
is referred to as multioptimistic. Problems of this type are frequently ill-posed, see [3] for details and [33] for
sufficient condition for well-posedness.

Let us end this subsection with the following technical lemma, precising that some natural bounds exists for
the network. The proof is left to the reader.

Lemma 2.2. Suppose that for all nodes i ∈ N , one has ai > 0 or bi > 0 and let (q, t) be the solution of
ISO(a, b). Then for all e ∈ L one has |te| ≤ 1

Le
provided Le > 0.
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Taking into account these natural bounds we assume, for the rest of the paper, that the lower and upper
transmission bounds satisfy

T e ≤ 1
Le

and T e ≥ −1
Le

· (2.5)

2.2. Variational equilibrium reformulation

Even if the revenue function Ri is not yet specified, in this subsection we shall concern an alternative
formulation of electricity market problem. We shall start with few remarks about the ISO problem (2.3). It
can be easily verified that whenever a + b > 0, problem (2.3) admits at least one solution. Moreover, invoking
([1], Lem. 3.1), whenever a + b > 0, for every i ∈ N , the demand satisfaction constraint

qi +
∑
e∈L

(
δiete − Le|δie|

2
t2e

)
≥ Di (2.6)

in the ISO problem (2.3) is active at any solution (q, t) of ISO(a, b).
The following KKT conditions will play a central role in the sequel.

KKT (a, b)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 = ai + 2biqi − μi + μ̄i − λi ∀i ∈ N ,
0 ≤ μi ⊥ qi ≥ 0 ∀i ∈ N ,
0 ≤ μ̄i ⊥ Q̄i − qi ≥ 0 ∀i ∈ N ,

0 ≤ λi ⊥ qi +
∑

e∈L
(
δiete − Le|δie|

2 t2e

)
− Di ≥ 0 ∀i ∈ N ,

0 = −βe + β̄e +
∑

i∈N λi(δie + |δie|Lete) ∀e ∈ L,
0 ≤ βe ⊥ (te − T e) ≥ 0 ∀e ∈ L,
0 ≤ β̄e ⊥ T e − te ≥ 0 ∀e ∈ L,

(2.7)

where μ, μ̄, λ, β and β̄ denote the Lagrange multipliers associated to the inequality constraints of ISO(a, b),
respectively.

Since for bi ≥ 0, i = 1, . . . , N the objective function of (2.3) is convex, the corresponding optimal solutions of
ISO(a, b) coincide with solutions of the KKT system associated to the ISO’s problem if classical qualification
conditions holds at this solution. It is important to notice that actually this equivalence of solution sets can
fail even for very simple electricity markets. Indeed, let us consider for example a two nodes market with only
one line connecting node 1 to node 2. Assume that Q̄1 = 1, Q̄2 = 6, D1 = D2 = 2, L12 = 1/2, T 12 = 2 and
T 12 = −2. The unique solution of the ISO problem is (q1, q2, t) = (1, 5, 2) but actually the associated KKT
system admits no solution, that is no Lagrange multipliers exists for this point. Clearly no Slater qualification
condition holds since, due to the structure of the network, the constraint set of the ISO problem has an empty
interior. The situation occuring in the above simple example can actually be encountered for networks in which
a part of the network is linked to the rest by a single line.

Now, substituting in problem Pi(a−i, b−i) the constraint “(q, t) solves ISO(a, b)” by “(q, t, ξ) solves
KKT (a, b)”, where ξ := (μ, μ̄, λ, β, β̄), we obtain the desired reformulation which belongs to a class of EPCCs.

Let us denote by H the twice continuously differentiable mapping specifying constraints of the ISO prob-
lem (2.3):

H(q, t) =

⎛⎜⎜⎜⎝
−q

q − Q̄
−q − Δt + L(t) + D

T − t
t − T

⎞⎟⎟⎟⎠ .

Then, by convexity, the KKT conditions (2.7) can be written down as the following generalized equation

0 ∈ F (a, b, q, t, ξ) + Q(q, t, ξ), (2.8)
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where

F (a, b, q, t, ξ) =

⎛⎜⎝a + 2(diag b)q + (∇qH(q, t))�ξ

(∇tH(q, t))�ξ

−H(q, t)

⎞⎟⎠ , Q(q, t, ξ) =

⎛⎜⎝ {0}N

{0}M

NR
s
+
(ξ)

⎞⎟⎠ ,

and s = 3N + 2M .
Therefore the MPCC(a−i, b−i) associated with Pi(a−i, b−i) can be written as

MPCCi(a−i, b−i) max
ai,bi,q,t,ξ

Ri(a, b, q, t) − Ci(qi)

subject to
{

0 ∈ F (a, b, q, t, ξ) + Q(q, t, ξ)
(ai, bi) ∈ Ai × Bi.

(2.9)

Definition 2.3. A variational equilibrium of the electricity market is a vector (a∗, b∗, q∗, t∗, ξ∗) ∈ A×B×R
N ×

R
L × R

s such that
(a∗

i , b
∗
i , q

∗, t∗, ξ∗) solves MPCCi(a∗
−i, b

∗
−i) ∀i = 1, . . . , N. (2.10)

Now, let us inspect the link between generalized Nash equilibrium and variational equilibrium of the electricity
market. It is the aim of the following theorem which invokes recent results [7]. Let us first denote by Λ the set
of Lagrange multipliers associated to the solutions of the KKT conditions (2.7)

Λ(a, b, q, t) = {ξ ∈ R
s : (q, t, ξ) solves KKT (a, b)}.

Theorem 2.4. Assume that the condition

there exists an element (q, t) ∈ R
N × R

L such that{
0 < qi < Q̄i and qi +

∑
e∈L

(
δiete − Le|δie|

2 t2e

)
> Di ∀i ∈ N ,

T e < te < T e ∀e ∈ L,

(2.11)

is satisfied for the data of the electricity market. Then the following hold:

(i) If (a∗, b∗, q∗, t∗) is a generalized Nash equilibrium of the electricity market then, for any ξ ∈ Λ(a∗, b∗, q∗, t∗),
(a∗, b∗, q∗, t∗, ξ) is a variational equilibrium of the electricity market.

(ii) Conversely, if (a∗, b∗, q∗, t∗, ξ∗) is a variational equilibrium of the electricity market, then (a∗, b∗, q∗, t∗) is
a generalized Nash equilibrium of the electricity market.

Proof. The statement is a direct consequence of ([7], Thm. 2.1) and ([7], Thm. 2.2), taking into account that
the Slater-type qualification condition (2.11) does not depend on (a, b) which follows from the fact that the
constraints of ISO(a, b) are only in terms of q and t. �

A direct way to guarantee that the qualification condition (2.11) holds is to find a solution (ε, q, t) of the
nonlinear system of equations

qi +
∑
e∈L

(
δiete − Le|δie|

2
t2e

)
= Di + ε ∀i ∈ N

such that ε > 0 and
0 ≤ qi ≤ Q̄i and T e ≤ te ≤ T e ∀i ∈ N , ∀e ∈ L.

We close this subsection with examples of revenue function Ri(a, b, q, t). Revenue is income that producer i
receives from selling the electricity energy produced. In perfect competition, it is the product of the unit price
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of electricity and the quantity of electricity energy produced, where the unit price of electricity energy at
node i is the marginal price, which is given by the Lagrange multiplier (shadow price) λi associated to demand
satisfaction constraint (2.6). However, there is a priori no reason for the Lagrange multiplier λi to be uniquely
determined for a given (q, t). Thus, we can define different variants of Ri thus providing different special cases
of the producer i problem Pi(a−i, b−i) and its corresponding reformulation MPCCi(a−i, b−i). In particular, one
can consider the following two cases:
The optimistic-pessimistic case defined by the revenue function Ri

Ri(a, b, q, t) = inf{λiqi : (μ, μ̄, λ, β, β̄) ∈ Λ(a, b, q, t)}. (2.12)

The optimistic-optimistic case defined by the revenue function Ri

Ri(a, b, q, t) = sup{λiqi : (μ, μ̄, λ, β, β̄) ∈ Λ(a, b, q, t)}. (2.13)

In the above denominations, the first “optimistic” term concerns the primal variables of the ISO while for the
second term (pessimistic or optimistic) it is the dual variable λi which is in scope.

Alternatively, one can also consider a selection of the set Λ(a, b, q, t) of Lagrange multipliers, see
Escobar−Jofre [9]. This approach is close to the one implemented in the Cosmos software used to determine
the clearing price in some European markets (EPEX, APX-ENDEX, Belpex), see [5].

Nevertheless, none of revenue functions Ri described above make sense at any (q, t) such that the set of
admissible Lagrange multipliers λi is unbounded. This unfavourable situation typically occurs whenever the
Mangasarian–Fromowitz constraint qualification is not satisfied for the constraints of ISO(a, b). Since the con-
straints of ISO(a, b) are described by convex differentiable functions, condition (2.11) implies that for any
feasible (a, b, q, t) the set Λ(a, b, q, t) of Lagrange multipliers is convex and compact (cf. e.g. [2, 14]). Addition-
ally, this set is nonempty if and only if (q, t) is a solution of ISO(a, b). Thus, both types of revenue function Ri

defined above are well defined on the constraint set of the producer i problem Pi(a−i, b−i).

2.3. Single-valued case

Assume that data of the considered network are such that condition (2.11) is satisfied. The single valued case
corresponds to the situation when for every (a, b) ∈ A×B problem ISO(a, b) admits unique primal and dual so-
lutions. In such case the solution of the generalized equation (2.8) shall be denoted by (q(a, b), t(a, b), ξ(a, b)) and
the revenue function of producer i by Ri(a, b) := Ri(a, b, q(a, b), t(a, b)). Sufficient conditions for the uniqueness
of the couple (q, t) of production and flow as well as associated Lagrange multipliers are stated in Propositions 2.5
and 2.6 below.

Proposition 2.5. Assume that for all producers i ∈ N , one has ai 
= 0 or bi 
= 0, and, for all lines e ∈ L,
Le > 0. Then ISO(a, b) admits a unique solution (q∗, t∗).

Proof. Let (qI , tI) and (qII , tII) be two solutions of the ISO’s problem such that tI 
= tII , and let λ ∈ (0, 1). By
convexity of K and the objective function of the ISO’s problem, (qλ, tλ) := (λqI + (1 − λ)qII , λtI + (1 − λ)tII)
is also a solution of the ISO’s problem.

Since tI 
= tII there exists e ∈ L such that tIe 
= tII
e . Let i ∈ N be such that δie 
= 0. Therefore, the convexity

of the functions ϕf [x −→ |δif |Lfx2] for all f ∈ L and the strict convexity of the function x → |δie|Lex
2 imply

qλ
i −

∑
f∈L

(
δif tλf +

Lf |δif |
2

(tλf )2
)

> Di,

which contradicts ([1], Lem. 3.2). Thus we have tI = tII and, again by Lemma ([1], Lem. 3.2), for any i ∈ N ,
qI
i = qII

i = Di −
∑

e∈L
(
δiet

λ
e − Le|δie|

2 (tλe )2
)
. �
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Proposition 2.6. Let (a, b) ∈ A × B be such that for all producers i ∈ N , one has ai 
= 0 or bi 
= 0 and there
exists a unique (q∗, t∗) solving ISO(a, b). Further, suppose that for all e ∈ L, T e < t∗e < T e and that there exists
a node i0 ∈ N satisfying q∗i0 ∈ (0, Qi0). Then for each i ∈ N there exist unique Lagrange multipliers λ∗

i , μ∗
i , μ̄∗

i

and for each e ∈ L there exist unique Lagrange multipliers β∗
e and β̄∗

e .

Proof. Let μ, β, β̄ and λ be the vectors of Lagrange multipliers associated with the solution (q∗, t∗) of ISO(a, b).
Clearly, from system (2.7), the Lagrange multiplier λi0 is uniquely given by λ∗

i0 = ai0 + 2bi0q
∗
i0 .

Let e ∈ L. Since T e < t∗e < T e, one has∑
i∈N

λi(δie − |δieLe|t∗e) = 0. (2.14)

Consider two nodes i and j such that δie = −1 and δje = 1, i.e. e = ij. For all k ∈ N \ {i, j}, we have δke = 0,
then the formula (2.14) gives the following relations:

λi = λj
1 − Let

∗
e

1 + Let∗e
and λj = λi

1 + Let
∗
e

1 − Let∗e
·

Observe that in both equations above the fractions are well defined due to the general assumption (2.5) and
the hypothesis of the proposition, indeed − 1

Le
≤ T e < t∗e < T e ≤ 1

Le
, therefore −1 < Let

∗
e < 1.

Thus, the value of λj is uniquely determined by the value of λi and vice versa. In general way if e = ij or
e = ji, then the two above equalities can be resumed into the following equality:

λj = λi
1 + δjeLet

∗
e

1 + δieLet∗e
· (2.15)

Now, take any i ∈ N \ {i0}. Due to the fact that the graph (N ,L) is connected, by (2.1) there exist nodes
i1, . . . , ip ∈ N such that ip := i and for all k ∈ {0, . . . , p− 1}, ikik+1 ∈ L or ik+1ik ∈ L. Since λi0 is unique, λi1

is unique because it is uniquely determined by λi0 . By recursion, λi := λip is unique. Thus, for each i ∈ N , λi

is unique.
It remains to observe, that for each i ∈ N one of the Lagrange multipliers μi and μ̄i is always vanishing and

the other is uniquely determined by the KKT system (2.7). Also, for each e ∈ L either βe or β̄e vanishes and
the other nonvanishing multiplier is also determined uniquely by the KKT system (2.7). This concludes the
proof. �

Remark 2.7. In Proposition 2.6, one can observe that at the unique solution (q∗, t∗) of ISO(a, b), the optimal
marginal prices are given by λi0 = ai0 + 2bi0q

∗
i0

and

∀i ∈ N , λi = λi0h
i0
i (t∗).

The vector hi0(t∗) is defined by hi0
i0

(t∗) = 1 and:

∀i ∈ N \ i0, hi0
i (t∗) =

pi∏
k=1

1 + δikek
Lek

t∗ek

1 + δik−1ek
Lek

t∗ek

with {i0, . . . , ipi} ⊂ N which satisfies ipi = i and for all k ∈ {1, . . . , pi}, ik−1ik ∈ L or ikik−1 ∈ L, ek = ik−1ik if
ik−1ik ∈ L, ek = ikik−1 otherwise. This expression of hi0

i (t∗) results by recursion from the equality (2.15) and
does not depend on the choice of the path between i0 and i, because otherwise we obtain a contradiction with
the uniqueness of the marginal price at each node and the positiveness of λi0 .

In the single-valued case, there is no reason to distinguish between optimistic and pessimistic formulations
of the problem. Nevertheless, two possible choices of revenue function Ri(a, b) can still be discussed.
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(a) Whenever for any (a, b) ∈ A × B there is no i such that at solution ISO(a, b) one has qi(a, b) = 0 or
qi(a, b) = Qi or Qi = +∞, the Lagrange multiplier λi is simply the derivative of the bid function of player i
at qi(a, b), i.e. λi(a, b) = ai + 2biqi(a, b). This well known fact can be easily seen from the first equation of
the KKT system (2.7). Thus, the revenue function is given by

R̃i(a, b) = (ai + 2biqi(a, b))qi(a, b)

and each producer i aims at solving

max
ai,bi

(ai + 2biqi(a, b))qi(a, b) − (Aiqi(a, b) + Biqi(a, b)2)

s.t.
{

Ai ≤ ai ≤ Āi

Bi ≤ bi ≤ B̄i.

We shall denote the associated Nash equilibrium problem as (NEP1).

(b) In any other case the revenue function Ri is defined as

Ri(a, b) := λi(a, b)qi(a, b)

and the producer i solves
max
ai,bi

λi(a, b)qi(a, b) − (Aiqi(a, b) + Biqi(a, b)2)

s.t.
{

Ai ≤ ai ≤ Āi

Bi ≤ bi ≤ B̄i

We denote the associated Nash equilibrium problem as (NEP2).

From the above discussion it follows that even in the single-valued case, considering production bounds in
electricity market model one needs to define the revenue function with caution. We would like to point out that
some authors (see e.g. [13]) use the derivative of the bid function as the unit price of electricity energy even
in the case where the production bounds are considered in the model. Nevertheless, in [13] the main result is
derived under the assumption that no (lower and upper) production bound is reached.

Observe that in this special single-valued case, electricity market model turns out to belong to a class of
classical Nash Equilibrium problems. This interesting fact has been exploited in [1] to provide explicit formulae
of the solution vectors q and t.

Clearly, if for all i ∈ N and for all (a, b) ∈ A × B the upper bound of production is not reached, then both
problems (NEP1) and (NEP2) admit the same solution. By means of a simple academic example of electricity
market we show that a solution of the market model with production bounds (NEP2) need not be a solution
of the model without production bounds (NEP1).

Example 2.8. Consider a network composed of only two nodes (and thus of two producers) connected by a
single line, i.e. N = {1, 2} and L = {12}. Suppose the demands and capacity constraints are D1 = 5, D2 = 1.9,
Q1 = 565/98 and Q2 = 10, respectively, whereas the thermal loss coefficient of line {12} is L = 0.2. Further
suppose that there are no transmission bounds on flow along the line, i.e. T 12 = +∞ and T 12 = −∞.

For the sake of computational simplicity, we consider the following bidding process: the producers will bid
only the linear costs, hence b1 = b2 = 0 and A = [1, 3]× [2, 4]. We assume that the true costs of production are
also linear, with A1 = 1, A2 = 2 and B1 = B2 = 0.

First, observe that for all (a1, a2) ∈ A, q2(a1, a2) < Q2. Indeed, one has t12(a1, a2) ≥ −1/L = −5, cf.
Lemma 2.2, and thus q2(a1, a2) = D2 − t12(a1, a2) + (L/2)t212(a1, a2) ≤ 9.4 < Q̄2. According to Proposition 2.6,
this observation ensures uniqueness of both Lagrange multipliers λ1 and λ2 for all (a1, a2) ∈ A. We denote
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Figure 1. The network with data.

these multipliers by λ1(a1, a2) and λ2(a1, a2), respectively. Moreover, since the production bound Q2 is never
reached, we have λ2(a1, a2) = a2. Using the KKT conditions (2.7), this implies

t12(a1, a2) =
a2 − λ1(a1, a2)

L(a2 + λ1(a1, a2))
· (2.16)

Thanks to this equality, we can compute q1(a1, a2) and q2(a1, a2) and show that the bid couple (a∗
1, a

∗
2) = (2, 4)

is not a solution of (NEP1) while it is a solution of (NEP2) (see Appendix for details).

3. First order analysis of equilibrium of the electricity market

In this section, using previous results concerning properties of problem ISO(a, b) and its solutions, we will
derive the first order necessary optimality conditions for the variational equilibrium problem (2.10). Similarly
to [13], we restrict our analysis to the so-called M-stationarity conditions, where M- stands for Mordukhovich.
Our goal is to provide explicit necessary optimality conditions formulated in the problem data, similar to
([13], conditions (6.2)−(6.13)) derived for a special case of the problem, however, in our case for a general
problem including losses due to transmission and bounds on production and flow. Further, we discuss several
possibilities how to ensure the required calmness qualification condition. We will illustrate the application of
derived M-stationarity conditions on an academic example with two settlements, i.e. example of an network of
two nodes connected via single transmission line.

3.1. Explicit M-stationarity condition

Recall the reformulation of the KKT conditions (2.7) of problem ISO(a, b) in the form of a generalized
equation (2.8) and reformulation of Pi(a−i, b−i) to MPCC(a−i, b−i) (2.9). The generalized equation (2.8) is
sometimes called enhanced generalized equation, enhanced by the KKT multipliers. Note that as opposed to [13],
we are forced to work with the enhanced generalized equations, due to the fact that the producer’s objectives
depend on ISO’s KKT multipliers λ.

Setting x := (a, b) and z := (q, t, ξ), we can reformulate the optimistic-optimistic optimization problem
of producer i (2.9) with revenue given by (2.12) into the following parameterized MPCC where the bidding
coefficients of other producers play the role of parameters.

minimize
xi,z

fi(xi, x−i, z)

subject to
0 ∈ F (xi, x−i, z) + Q(z)

xi ∈ Ai × Bi,

(3.1)

where the producer i’s objective fi(x, z) = −λiqi + Aiqi + Biq
2
i .
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According to definition 2.3, (x∗, z∗) solves the variational equilibrium of the electricity market whenever
(x∗

i , z) solves (3.1) for every i = 1, . . . , N .
For the reader’s convenience we state a modification of the M-stationarity conditions by Outrata [26] for

variational equilibria of electricity market model with the producer i’s problem given by (3.1). These conditions
are based on M-stationarity conditions for solutions to MPECs by Ye and Ye [34] and Outrata [25].

Proposition 3.1 ([26], Thm. 3.1). Let for every i = 1, . . . , N , fi and F be continuously differentiable, Ai ×Bi

be nonempty and closed and for a fixed x̄−i let (x∗
i , z

∗) be a local solution of an MPEC (3.1). Further assume
that for all i = 1, . . . , N , the multifunctions

Ψi(p) := {(xi, z)|p ∈ F (xi, x
∗
−i, z) + Q(z)}

are calm at (0, x∗
i , z

∗). Then for all i = 1, . . . , N , there exists vectors vi such that

0 ∈ ∇xif(x∗
i , x

∗
−i, z

∗) + (∇xiF (x∗
i , x

∗
−i, z

∗))�vi + NAi×Bi(x
∗
i )

0 ∈ ∇zf(x∗
i , x

∗
−i, z

∗) + (∇zF (x∗
i , x

∗
−i, z

∗))�vi + D∗Q(z∗,−F (x∗
i , x

∗
−i, z

∗))(vi).
(3.2)

Recall that D∗Q refers to the coderivative of a multivalued mapping Q.
In the following theorem we provide the explicit version of the M-stationarity conditions for variational

equilibria of the electricity market (2.10).

Theorem 3.2. Let for every i = 1, . . . , N , (a∗
i , b

∗
i , q

∗, t∗, μ∗, μ̄∗, λ∗, β∗, β̄∗) be the solution to the problem
MPCC(a−i, b−i) for a fixed vector (a∗

−i, b
∗
−i) and suppose that the multifunction

Ψi(p) := {(ai, bi, q, t, ξ)|p ∈ F (ai, a
∗
−i, bi, b

∗
−i, q, t, ξ) + Q(q, t, ξ)}

is calm at (0, a∗
i , b

∗
i , q

∗, t∗, ξ∗). Then for all i = 1, . . . , N , there exist vectors vi
q ∈ R

N , vi
t ∈ R

M , vi
μ ∈ R

N , vi
μ̄ ∈

R
N , vi

λ ∈ R
N , vi

β ∈ R
M , and vi

β̄
∈ R

M such that the following conditions are satisfied

0 ∈ (vi
q)i + NAi(a

∗
i ) (3.3)

0 ∈ 2q∗i (vi
q)i + NBi(b

∗
i ) (3.4)

0 = (−λ∗
i + Ai + 2Biq

∗
i )ei + 2(diag (b∗i , b̄−i))vi

q + vi
μ − vi

μ̄ + vi
λ (3.5)

0 = diag

{
L1

N∑
i=1

λ∗
i |δi1|, . . . , LM

N∑
i=1

λ∗
i |δiM |

}
vi

t (3.6)

+ (Δ −∇tL(t∗))�vi
λ + vi

β − vi
β̄ (3.7)

0 ∈ −vi
q + D∗N

R
N
+

(μ∗,−q∗)(vi
μ) (3.8)

0 ∈ vi
q + D∗N

R
N
+

(μ̄∗, q∗ − Q̄)(vi
μ̄) (3.9)

0 ∈ −q∗i ei − vi
q + (∇tL(t∗) − Δ)vi

t + D∗N
R

N
+

(λ̄∗,−q∗ − Δt∗ + L(t∗) + D)(vi
λ) (3.10)

0 ∈ −vi
t + D∗N

R
M
+

(β∗, T − t∗)(vi
β) (3.11)

0 ∈ vi
t + D∗N

R
M
+

(β̄∗, t∗ − T )(vi
β̄). (3.12)
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Proof. Taking into account the formulas for the Jacobian of F , coderivative of Q, normal cone to Ai ×Bi, and
gradient of fi

∇fi(a, b, q, t, μ, μ̄, λ, β, β̄) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0

(−λi + Ai + 2Biqi)ei

0
0
0

(−qi)ei

0
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

the statement follows directly from Proposition 3.1. �

Points (a∗, b∗, q∗, t∗, μ∗, μ̄∗, λ∗, β∗, β̄∗), such that for all i = 1, . . . , N, the conditions (3.3)−(3.12) are satisfied,
are called M(ordukhovich)-stationary.

In the statement of the above theorem, for simplicity of notation, we use coderivatives D∗NRN and D∗NRM ,
which, in fact, can be easily calculated. In particular, for any (x, y) ∈ Gph NR

n
+

and y∗ ∈ R
n let us introduce

the following three index sets

I1 := {i ∈ {1, . . . , n}|xi > 0, yi ≤ 0} ∪ {i ∈ {1, . . . , n}|xi ≥ 0, yi = 0, y∗
i > 0}

I2 := {i ∈ {1, . . . , n}|xi = 0, yi = 0, y∗
i < 0}

I3 := {i ∈ {1, . . . , n}|xi = 0, yi < 0, y∗
i = 0} ∪ {i ∈ {1, . . . , n}|xi = 0, yi = 0, y∗

i = 0}.
Note that for (x, y) ∈ Gph NRn

+
these three index sets form a complete disjunct decomposition of {1, . . . , n}.

Then

D∗NR
n
+
(x, y)(y∗) =

⎧⎪⎪⎨⎪⎪⎩
∅ if ∃i : yiy

∗
i 
= 0⎧⎨⎩x∗ ∈ R

n

∣∣∣∣∣∣
x∗

i = 0 for i ∈ I1

x∗
i ≤ 0 for i ∈ I2

x∗
i ∈ R for i ∈ I3

⎫⎬⎭ else

3.2. Verification of the calmness qualification condition

In order to be able to rely on necessary optimality conditions (3.3)−(3.12), a principle question concerns the
constraint qualifications in the form of calmness conditions on multifunctions Ψi.

Since the graph of Q is a finite union of polyhedra, in case of linear single-valued mapping F it suffices to
invoke a classical result of Robinson [29]. Then, indeed, graph of every multifunction Ψi is also a finite union
of polyhedra. This implies calmness of Ψi at every point of its graph and thus also at (0, x∗

i , z
∗). However,

mapping F is not linear due to bilinear terms biqi and quadratic L(t). Under assumption of partial bidding (in
particular the so-called bid-a-only scenario), cf. e.g. [16], when b is not considered as the decision variable but
rather as parameter known to every producer and ISO, and in the loss-free case (Le = 0 for every e ∈ L), F
becomes linear and calmness of multifunctions Ψi follow. Another case for which calmness of Ψi can be obtained
is when the bids ai and bi are positive for all producers and the thermal losses are equal to zero. Indeed, in ([13],
Prop. 5.2) calmness of Φi has been proved without a direct use neither of Aubin property nor of Robinson’s
Theorem. Nevertheless, taking into account that bidding in both a and b and positive loss coefficients Le played
important role in our analysis of structural properties of solutions to problem ISO(a, b), both of these cases are
restrictive.

We thus provide alternative ways of verifying calmness by checking the stronger Aubin property of Ψi. One
possibility to check Aubin property of mappings Ψi follows from ([25], Prop. 3.2).

Suppose that for (a∗, b∗, q∗, t∗, ξ∗), I ⊂ {1, . . . , s} be the index set of active components of H . Then calmness
of mapping Ψi at (0, a∗

i , b
∗
i , q

∗, t∗, ξ∗) is equivalent to calmness of

Ψ̃i(p) := {(ai, bi, q, t, ξ)|p ∈ F̃ (ai, a
∗
−i, bi, b

∗
−i, q, t, ξ) + Q̃(q, t, ξ)}
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at (0, a∗
i , b

∗
i , q

∗, t∗, ξ∗), where

F̃ (a, b, q, t, ξ) =

⎛⎝a + 2(diag b)q + (∇qHI(q, t))�ξI

(∇tHI(q, t))�ξI

−HI(q, t)

⎞⎠, Q̃(q, t, ξ) =

⎛⎝ {0}N

{0}M

N
R

|I|
+

(ξI)

⎞⎠ .

Recall that the problem ISO(a, b) with fixed parameters (a∗, b∗) satisfies the strong second-order sufficient
conditions (SSOSC) at one of its solutions (q∗, t∗) if〈

d,∇2
(q,t)L(q∗, t∗, ξ∗)d

〉
> 0 ∀d 
= 0 : ξ∗i ∇Hi(q∗, t∗)d = 0 i ∈ I

holds for all ξ∗ such that ∇(q,t)L(q∗, t∗, ξ∗) = 0, where

L(q, t, ξ) =
n∑

i=1

(a∗
i qi + b∗i q

2
i ) + (HI(q, t))�ξI

is the Lagrangian associated with problem ISO(a∗, b∗).
The sufficient criteria for the Aubin property of mappings Ψ̃i, i = 1, . . . , N, is given in the following result.

Proposition 3.3. For every i = 1, . . . , N , let (a∗
i , b

∗
i , q

∗, t∗, ξ∗) be the solution to the problem of
MPCC(a−i, b−i) for a fixed vector (a∗

−i, b
∗
−i). Assume that ∇HI(q∗, t∗) be surjective and that the problem

ISO(a, b) with fixed parameters (a∗, b∗) satisfies SSOSC at (q∗, t∗, ξ∗). Then the multifunctions Ψ̃i have the
Aubin property.

Proof. Under assumptions on surjectivity of ∇HI(q∗, t∗) and SSOSC of the ISO problem ([30], Thm. 4.1) implies
that the generalized equation

0 ∈ F̃ (a, b, q, t, ξ) + Q̃(q, t, ξ)

is strongly regular at (a∗, b∗, q∗, t∗, ξ∗). This means that for every i = 1, . . . , N , the generalized equations

0 ∈ F̃ (ai, a
∗
−i, bi, b

∗
−i, q, t, ξ) + Q̃(q, t, ξ)

are strongly regular at (a∗
i , b

∗
i , q

∗, t∗, ξ∗).
Then, by ([25], Prop. 3.2), the mappings

(u1, u2, u3, u4) → {(ai, bi, q, t, ξ)|u4 ∈ F̃ (ai, a
∗
−i, bi, b

∗
−i, q, t, ξ) + Q̃(u1 + q, u2 + t, u3 + ξ)}

have the Aubin property around (0, a∗
i , b

∗
i , q

∗, t∗, ξ∗). Setting u1 = 0, u2 = 0, u3 = 0, it follows that the restricted
mappings

(0, 0, 0, u4) → {(ai, bi, q, t, ξ)|u4 ∈ F̃ (ai, a
∗
−i, bi, b

∗
−i, q, t, ξ) + Q̃(q, t, ξ)},

which are in fact mappings Ψ̃i have the Aubin property around (0, a∗
i , b

∗
i , q

∗, t∗, ξ∗). �

Alternatively, instead of relying on the surjectivity of ∇HI(q∗, t∗) and SSOSC of the problem ISO(a, b),
one can check the Aubin property of mappings Ψi via Mordukhovich criterion. The constraint qualification
ensuring calmness of the multifunction Ψi is then replaced by a generalized Mangasarian–Fromowitz constraint
qualification condition (GMFCQ), cf. [25]: for wi ∈ R

N+M+s we have

0 ∈(∇xiF (xi, x̄−i, z))�wi + NAi×Bi(xi)

0 ∈(∇zF (xi, x̄−i, z))�wi + D∗Q(z,−F (xi, x̄−i, z))(wi)

}
⇒ wi = 0.

The GMFCQ ensures the Aubin property of multifunction Ψi around (0, x∗
i , z

∗) which, in turn, implies its
calmness at that point.
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In the following, we derive the GMFCQ in the data of the electricity market model. We thus have to derive
the Jacobian of F and coderivative of Q.

It is not difficult to see that

∇F (a, b, q, t, ξ) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

I 2(diag q) 2(diag b) 0 −I I −I 0 0
0 0 0 C 0 0 (∇tL(t) − Δ)� −I I
0 0 I 0 0 0 0 0 0
0 0 −I 0 0 0 0 0 0
0 0 I Δ −∇tL(t) 0 0 0 0 0
0 0 0 I 0 0 0 0 0
0 0 0 −I 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎠
where columns represent partial gradients of F with respect to a, b, q, t, μ, μ̄, λ, β and β̄, respectively, and C =(
diag

{
L1

∑N
i=1 λi|δi1|, . . . , LM

∑N
i=1 λi|δiM |

})
.

Taking wi = (wi
q, w

i
t, w

i
μ, wi

μ̄, wi
λ, wi

β , wi
β̄
) and invoking ([31], Prop. 6.41) together with the definition of a

coderivative,
D∗Q((q, t, μ, μ̄, λ, β, β̄), − F (a, b, q, t, μ, μ̄, λ, β, β̄))(vi

q , v
i
t, v

i
μ, vi

μ̄, vi
λ, vi

β , vi
β̄)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

{0}N

{0}M

D∗NR
N
+

(μ,−q)(vi
μ)

D∗N
R

N
+

(μ̄, q − Q̄)(vi
μ̄)

D∗N
R

N
+

(λ̄,−q − Δt + L(t) + D)(vi
λ)

D∗NR
M
+

(β, T − t)(vi
β)

D∗NR
M
+

(β̄, t − T )(vi
β̄
)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

NAi×Bi(ai, bi) = NAi(ai) × NBi(bi).

Now, using simple linear algebra, we obtain the following explicit version of GMFCQ ensuring Aubin property
of Ψi around (0, x∗

i , z
∗): For wi

q ∈ R
N , wi

t ∈ R
M , wi

μ ∈ R
N , wi

μ̄ ∈ R
N , wi

λ ∈ R
N , wi

β ∈ R
M and wi

β̄
∈ R

M , the
conditions

0 ∈ (wi
q)i + NAi(a

∗
i ) (3.13)

0 ∈ 2q∗i (wi
q)i + NBi(b

∗
i ) (3.14)

0 = 2(diag (b∗i , b
∗
−i))w

i
q + wi

μ − wi
μ̄ + wi

λ (3.15)

0 = diag

{
L1

N∑
i=1

λ∗
i |δi1|, . . . , LM

N∑
i=1

λ∗
i |δiM |

}
wi

t + (Δ −∇tL(t∗))�wi
λ + wi

β − wi
β̄ (3.16)

0 ∈ −wi
q + D∗NR

N
+

(μ∗,−q∗)(wi
μ) (3.17)

0 ∈ wi
q + D∗N

R
N
+

(μ̄∗, q∗ − Q̄)(wi
μ̄) (3.18)

0 ∈ −wi
q + (∇tL(t∗) − Δ)wi

t + D∗N
R

N
+

(λ̄∗,−q∗ − Δt∗ + L(t∗) + D)(wi
λ) (3.19)

0 ∈ −wi
t + D∗N

R
M
+

(β∗, T − t∗)(wi
β) (3.20)

0 ∈ wi
t + D∗NR

M
+

(β̄∗, t∗ − T )(wi
β̄) (3.21)

imply wi
q = 0, wi

t = 0, wi
μ = 0, wi

μ̄ = 0, wi
λ = 0, wi

β = 0 and wi
β̄

= 0.
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3.3. Application to a simple electricity market

We conclude this section on first order necessary optimality conditions for variational equilibria of the elec-
tricity market with the following illustrative academic example.

Example 3.4. Consider a network of two nodes 1 and 2 connected by a single transmission line e, thus N = 2
and M = 1. Suppose that Q̄1 = 5, Q̄2 = 1, D1 = 2, D2 = 1.9, T e = −2, T e = 2 and Le = 0.2 and set
A1 = A2 = B1 = 1, B2 = 5 and Ai = Bi = 1, Ai = Bi = 2, i = 1, 2.

Clearly, in order to satisfy the demand in both nodes, there needs to be a transmission directed from node 1
to node 2. Taking into account the parameters of both producers, clearly, both of them will be producing in
their respectful optimal solutions. It is thus not difficult to see that the variational equilibria of this electricity
market model are points (a∗, b∗, q∗, t∗, μ∗, μ̄∗, λ∗, β∗, β̄∗) = (2, a∗

2, 2, b∗2, 3.1, 1, 1, 0, 0, 0, 15.6, 14.4, 21.6, 0, 0), for
a∗
2 ∈ [1, 2] and b∗2 ∈ [1, 2]. The non-uniqueness of solutions for producer 2 is due to the fact that producer 2 is

forced to produce on maximum capacity, and due to transmission from node 1, the price at node 2 depends on
price at node 1, i.e. the solution of the problem ISO(a, b) thus depends just on bid of producer 1.

Let us choose, say, a∗
2 = 2, b∗2 = 2. In the following, we shall verify the calmness constraint qualification and

conditions (3.3)−(3.12) at point (2, 2, 2, 2, 3.1, 1, 1, 0, 0, 0, 15.6, 14.4, 21.6, 0, 0).
First, notice that the restrictions on values of coderivatives are common for both producers and remain the

same in both GMFCQ conditions and necessary optimality conditions. Denote for i = 1, 2(
wi

1

wi
2

)
∈ D∗NR

2
+
(μ∗,−q∗)(vi

μ)(
wi

3

wi
4

)
∈ D∗NR

2
+
(μ̄∗, q∗ − Q̄)(vi

μ̄)(
wi

5

wi
6

)
∈ D∗NR

2
+
(λ̄∗,−q∗ − Δt∗ + L(t∗) + D)(vi

λ)

wi
7 ∈ D∗NR+(β∗, T − t∗)(vi

β)

wi
8 ∈ D∗NR+(β̄∗, t∗ − T )(vi

β̄).

We can see that I1 = {4, 5, 6}, I2 = ∅ and I3 = {1, 2, 3, 7, 8}, thus (v1
μ)1 = (v1

μ)2 = (v1
μ̄)1 = v1

β = v1
β̄

= 0,
w1

4 = w1
5 = w1

6 = 0 and remaining variables are arbitrary reals.
To verify the GMFCQ for i = 1, conditions (3.13)−(3.21) can be reduced to

0 ≥ (w1
q)1, (3.22)

0 ≥ 6.2(w1
q)1, (3.23)

0 = 4(w1
q)1 + (w1

λ)1, (3.24)

0 = 4(w1
q)2 − (wμ̄)2 + (w1

λ)2, (3.25)

0 = 7.2w1
t − 1.2(w1

λ)1 + 0.8(w1
λ)2, (3.26)

0 = −(w1
q)1 + w1

1 , (3.27)

0 = −(w1
q)2 + w1

2 , (3.28)

0 = (w1
q)1 + w1

3 , (3.29)

0 = (w1
q)2, (3.30)

0 = −(w1
q)1 + 1.2w1

t , (3.31)

0 = −(w1
q)2 − 0.8w1

t , (3.32)

0 = −w1
t + w1

7 , (3.33)
0 = w1

t + w1
8 . (3.34)
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Starting with equation (3.30), it follows from (3.24−3.26), (3.31) and (3.32) that all variables vanish. Thus
GMFCQ is satisfied which implies calmness of Ψi at the required point. Analogously for i = 2.

The necessary optimality conditions (3.3)−(3.12) for producer 1 reduce to

0 ≥ (v1
q )1,

0 ≥ 6.2(v1
q)1,

0 = −7.2 + 4(v1
q)1 + (v1

λ)1,

0 = 4(v1
q )2 − (vμ̄)2 + (v1

λ)2,

0 = 7.2v1
t − 1.2(v1

λ)1 + 0.8(v1
λ)2,

0 = −(v1
q )1 + w1

1 ,

0 = −(v1
q )2 + w1

2 ,

0 = (v1
q )1 + w1

3 ,

0 = (v1
q )2,

0 = −3.1 − (v1
q)1 + 1.2v1

t ,

0 = −(v1
q )2 − 0.8v1

t ,

0 = −v1
t + w1

7 ,

0 = v1
t + w1

8 .

It can be easily checked that this system of equalities and inequalities is satisfied for (v1
q , v1

t , v1
μ, v1

μ̄, v1
λ, v1

β , v1
β̄
) =

(−3.1, 0, 0, 0, 0, 0, 29.4, 19.6, 29.4, 0, 0). Analogously, the necessary optimality conditions (3.3)−(3.12) for pro-
ducer 2 are satisfied for (v2

q , v2
t , v2

μ, v2
μ̄, v2

λ, v2
β , v2

β̄
) = (−1.5, 0,−1.25, 0, 0, 0,−12.85, 6,−2.25, 0, 0). �

Note that the derived necessary optimality conditions can be applied for general variational equilibrium of
the electricity market. However, similarly to [13], one can introduce restrictions to a certain classes of solutions,
e.g. to a class of solutions specified by Proposition 2.6, for which one could simplify the conditions (3.3)−(3.12)
accordingly.

Appendix

In this section we will provide detail calculations concerning Example 2.8 of electricity market in Section 2.3.
We show that the vector of bids (2, 4) is a solution of (NEP2) but it is not a solution of (NEP1). Recall that

we assume uniqueness of the primal and dual solution of the problem ISO(a, b). Thus we can work with the
implicit reformulation of electricity market model.

Statement 1: point (a∗
1, a

∗
2) = (2, 4) is not a solution of (NEP1).

By Lemma 2.1, one has q1(a1, a2) = D1 + t12(a1, a2) + L
2 t12(a1, a2)2. Invoking formula (2.16), it follows that

q1(a1, a2) = D1 +
3a2

2 − λ1(a1, a2)2 − 2λ1(a1, a2)a2

2L(a2 + λ1(a1, a2))2
· (A.1)

If follows that q1(3, 4) = Q1. Assume for contradiction that q1(3, 4) < Q1. This implies λ1(3, 4) = 3 and thus
from (A.1) we obtain

q1(3, 4) =
565
98

= Q1,

which concludes the contradiction.
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Since Q1 is the upper bound of production for producer 1 and the function q1(·, 4) is non-increasing, one
has q1(a1, 4) = Q1, for all a1 ∈ A1. Consequently, (2, 4) is not a solution of (NEP1), since R1(a1, a2) =
(a1 − A1)q1(a1, a2) and therefore R1(2, 4) < R1(3, 4).

Statement 2: point (a∗
1, a

∗
2) = (2, 4) is a solution of (NEP2).

In order to prove that (2, 4) is a solution of (NEP2) we need to show that 2 ∈ argmaxA1 R̃1(·, 4) and that
4 ∈ arg maxA2 R̃2(2, ·).

First, let us show that the profit function R̃1(·, 4) of producer 1 is constant over A1. As proved before, the
function q1(·, 4) is clearly constant over A1. This immediately implies that the functions q2(·, 4) and t12(·, 4) are
also constant over A1. Thus, the KKT (2.7) conditions give

λ1(a1, 4) =
1 − Lt12(a1, 4)
1 + Lt12(a1, 4)

λ2(a1, 4), ∀a1 ∈ [1, 3).

Now, since the function t12(·, 4) is constant and λ2(a1, 4) = 4 for all a1 ∈ A1, we deduce that λ1(·, 4) is constant
over A1 and thus the profit function R̃1(·, 4) := (λ1(·, 4)−A1)q1(·, 4) is also constant. The bid coefficient a∗

1 = 2
is therefore a trivial solution of producer 1’s problem maxA1 R̃1(·, 4).

Now, let us show that 4 ∈ argmaxA2 R̃2(2, ·). Whenever q2(2, ·) is constant over A2 then, since λ2(2, a2) = a2

for all a2 ∈ A2, we immediately deduce that the function R̃2(2, ·) is an increasing linear function and the
conclusion follows. Assume now that the function q2(2, ·) is not constant over A2. We will show that also in this
case the function R̃2(2, ·) is increasing over A2. The function q2(2, ·) is continuous and non-increasing on A2,
cf. ([8], Lem. 1) and ([1], Prop. 3), respectively. Thus there is ā2 ∈ [2, 4] such that for all a2 ∈ [2, ā2), one has
q2(2, a2) > q2(2, 4), while for all a2 ∈ [ā2, 4], q2(2, a2) = q2(2, 4).

Let us show that for all a2 ∈ [2, ā2), we have q1(2, a2) < Q̄1. This inequality follows immediately for q1(2, a2) <
D1 since D1 < Q1. Assuming that q1(2, a2) > D1, one has t12(2, a2) > 0 because node 1 produces more the
demand D1 at node 1. Lemma 2.1 applied at node 2 along with the fact that the function g : t → −t + (L/2)t2

is decreasing and bijective between [0, 1/L] and [−1/(2L), 0] implies that t12(2, a2) = g(q2(2, a2) − D2) <
g(q2(2, 4) − D2) = t12(2, 4). Now, from Lemma 2.1 at node 1 and node 2 we obtain

q1(2, a2) = Lt12(2, a2)2 + D1 + D2 − q2(2, a2)
< Lt12(2, 4)2 + D1 + D2 − q2(2, 4)
= q1(2, 4) = Q1

and thus λ1(2, a2) = 2.
Invoking formula (2.16) together with the nodal energy balance equation, we have

q2(2, a2) =
12 − 4a2 − a2

2

2L(2 + a2)2
+ 1.9, ∀a2 ∈ [2, ā2)

and therefore, for any a2 ∈ [2, ā2), one has

∂2R̃2(2, a2) =
1176− 3a3

2 − 18a2
2 + 236a2

5(a2 + 2)3
·

Now, we have
L(ā2 + 2)t12(2, ā2) = ā2 − 2. (A.2)

Indeed, according to Lemma 2.2, for any a2 ∈ A2, t12(2, a2) ∈ [−5, 5] and t12(2, a2) is solution of the equation
q2(2, a2) = D2 − t12(2, a2)+0.1t12(2, a2)2. But on [−5, 5], the map t �→ −t+0.1t2 is continuously invertible and
thus the continuity of q2(2, a2) also implies the continuity of t12(2, a2). Now the announced equality is a direct
consequence of (2.16).
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On the other hand, q1(2, 4) = Q1 and therefore 0.1t12(2, 4)2 + t12(2, 4) + 5 = Q1 yields t12(2, 4) = 7/5. Since
q2(2, ·) is constant over [ā2, 4], it is the case also for q1(2, ·) and t12(2, ·) and thus t12(2, ā2) = 7/5. Equality (A.2)
immediately gives ā2 = 8/3 and thus for all a2 ∈ [2, ā2),

∂2R̃2(2, a2) ≥ 1176 − 3ā3
2 − 18ā2

2 + 236ā2

5(ā2 + 2)3
> 0,

i.e. the function R̃2(2, ·) is increasing over [2, ā2). It is increasing also over [ā2, 4] since R̃2(2, a2) = (a2 −
A2)q2(2, ā2) for any a2 ∈ [ā2, 4]. Finally, by continuity of q2(2, ·), 4 ∈ arg maxA2 R̃i(2, ·). This proves that
(a∗

1, a
∗
2) = (2, 4) is a solution of the equilibrium problem with production bounds (NEP2).
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