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ANALYSIS OF DISCRETE-TIME QUEUES WITH CORRELATED ARRIVALS,
NEGATIVE CUSTOMERS AND SERVER INTERRUPTION
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Abstract. This paper analysis a discrete time infinite capacity queueing system with correlated ar-
rival and negative customers served by two state Markovian server. Positive customers are generated
according to the first order Markovian arrival process with geometrically distributed lengths of On pe-
riods and Off periods. Further, the geometrically distributed arrival of negative customer removes the
positive customers is any, and has no effect when the system is empty. The server state is a two state
Markov chain which alternate between Good and Bad states with geometrically distributed service
times. Closed-form expressions for mean queue length, unfinished work and sojourn time distributions
are obtained. Numerical illustrations are also presented.
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1. Introduction

Discrete time queuing system is an efficient tool to model telecommunication systems, B-ISDN networks
based on ATM and mobile networks. These networks apply the slotted transportation of fixed size packets.
In recent years, great attention is paid in studying discrete time queueing systems with different variants. For
comprehensive studies on discrete time queues one may refer to Takagi [15], Bruneel and Kim [7], Hunter [11],
Woodward [17].

There are situations in which an arrival may harm the entire system and existing customers (like virus to
a computer server). In queueing terminology such customers are called as negative customers. Queues with
negative customers are also called as G-queues. Recent past years excellent study has been made with negative
customers. A study on G-queues was first introduced by Gelenbe [8]. Artalejo [1] and Gelenbe [9, 10] provided
excellent surveys on this topic. Although many continuous-time queueing models with negative arrivals have
been studied, their discrete-time counterparts received very little attention in the literature. The early work
about negative customers in discrete-time without retrials can be found in Atencia and Moreno [2–4]. They
have considered single server discrete-time queue, with negative arrivals and various killing disciplines caused
by the negative customers but not considering the arrival of On-Off sources.
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Figure 1. Bernoulli source arrival with two state Markovian service.

Viterbi [16] used the matrix-analytic technique to derive a closed-form expression for the mean queue length
with heterogeneous On-Off sources with each source generating a single cell per slot in the On state. A Markov-
modulated Poisson process (MMPP) has been used by Baiocchi et al. [5], to approximate the arrival process
to a MMPP/G/1/K queue. Wang and Zhang [12] discusses a discrete-time single-server retrial queue with
geometrical arrivals of both positive and negative customers in which the server is subject to breakdowns and
repairs. Using generating function approach, a discrete-time queuing system with binary On-Off Markov model
is analysed by Bruneel [6].

Wang et al. [13], discusses a discrete-time single-server On-Off source queueing system with negative cus-
tomer, without server interruption. Whereas Mehmet Ali et al. [14], discusses a discrete time queueing system
with server interruption for modelling wireless ATM multiplexer, without negative customers.

The proposed work is applicable to the Mobile banking system that consists of a base server and a number
of mobile users. Customers who request for transactions will be connected to a base server through mobile and
form a queue. We say a link to be in a Bad state when the transaction is very likely to fail due to errors and
in a Good state when transaction is likely to be successful. There are situation at which the negative customers
will affect the queue in different ways (individual removal, batch removal, disaster, triggered movement, survey
paper by Artelejo [1]). In the present paper, killing methodology considered is removal of customers at the
head (RCH killing methodology). Using Markovian processes approach, this paper investigates a discrete-time
infinite queueing system with single On-Off source, as well as geometrically distributed service times with two
states of a server, namely Good and Bad and negative customers.

The structure of the paper is organised as follows: Section 2 gives the description of the model. In Section 3,
Markov chain and generating function analysis is presented. In Section 4, steady state buffer content is developed.
Expressions for the modified service time, unfinished work, stationary sojourn time and special cases are derived
in Sections 5, 6, 7 and 8, respectively. Performance measures, numerical illustration and conclusion are presented
in Sections 9, 10 and 11 respectively.

2. Mathematical model

We consider a discrete time queues with correlated arrivals and negative customers. Positive customers are
generated with geometrically distributed lengths of On periods and Off periods and are served by two state
Markovian server which alternates between Good and Bad states (Fig. 1) with geometrically distributed service
times. We consider a late arrival system, in which the time axis is divided into fixed length intervals called slots
and are marked by 0, 1, . . . , m, . . . in order. It is always assumed that all the queueing activities such as arrivals,
removals and departures occur at the slot boundaries. Potential arrivals of positive as well as negative customers
are occur in (m−, m) in order and the potential departure of a positive customer occurs in (m, m+). Positive
customer arrive in a stochastic way and wait in infinite capacity waiting room (buffer) on first-in, first-out
(FIFO) basis and they are considered for service and leaves the system. Further, the geometrically distributed
arrival of negative customer removes the positive customers if any, and has no effect when the system is empty.
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2.1. The positive arrival processes

The arrival of positive customers is modelled as the first order Markovian arrival process (An, n � 0) with the
number of positive arrivals in the arbitrary slot to be a random variable which depends on the number of arrivals
during immediately preceding time slot. A discrete time, single On-Off source arrival process which alternate
between On and Off periods respectively is considered. That is exactly one positive customer is generated in
each time slot when the Markov chain is in state On and no positive customer is generated when the Markov
chain is in state Off. The two independent parameters α and β which denote the probabilities that the Markov
chain remains in states On and Off respectively. It is assumed that, the lengths of the On-Off periods are
geometrically distributed random variables with rate 1 − α and 1 − β respectively, when 0 < α <1, 0 <β<1.
Thus, the parameters of the positive arrival process are defined as

α = P (a positive arrival occurs during a slot/a positive arrival occurs during previous slot),
β = P (no positive arrival occurs during a slot/no positive arrival occurs during previous slot).

Thus, according to Hunter [11], the steady state probability of mean positive arrival during an arbitrary slot
is given byλ1 = 1−β

2−α−β , where 0 <λ1<1, which is the steady state condition of the time the chain spends in On
periods. Since the rate at which the positive customer enters into the slot in steady state and the total time
spends in On periods is considered, λ1 is also called the effective arrival rate.

2.2. The removal rule and arrival times of negative customers

Upon arrival the negative customer removes the positive customer under service and vanishes. But, if the
negative customer arrives during idle period (on empty system) it has no effect and lost. The inter-arrival times
of negative customers (Bn, n � 1) are independent and geometrically distributed random variables with the
distribution,

P (Bn = k) = θ̄k−1θ, k � 1, θ̄ = 1 − θ and E(Bn) = θ−1.

2.3. The service processes

We assume that the service is also modelled as two state Markov chain, which alternates between Good and
Bad states. In Bad state the service is likely to fail due to some errors and in Good state the server is ready to
serve. We assume that the during a slot, if the server is in Good state, the server is ready to serve the customers,
while in Bad state, server will not render serve even when there are customers in the queue. Server’s state is
then characterized by two independent parameters γ and σ, which is defined as

γ = P (server is in Good state during a slot/server is in Good state during the previous slot),
σ = P (server is in Bad state during a slot/server is in Bad state during the previous slot).

During Good state, exactly the service of one positive customer is completed per slot and in Bad state, service
of the positive customer will not be completed. Both the lengths of the Good and Bad states are geometrically
distributed random variables with rate 1 − γ and 1 − σ respectively. For avoiding trivial cases, we assume
0 <γ < 1, 0 <σ <1.

Similarly, the steady state probability μ1 of having a Good service during an arbitrary slot is given by
μ1 = 1−σ

2−γ−σ , where 0<μ1<1, which corresponds to the overall fraction of Good service.
Positive customers are served by a two state Markovian server on the FCFS basis. Service of the positive

customer takes place if the server is in Good state and therefore the service of a positive customer cannot
start before the beginning of the slot following its arrival slot. Service times (Sn, n � 1) are independent and
geometrically distributed random variable with parameter μ and is given by

P (Sn = k) = (1 − μ)k−1μ, k � 1, E(Sn) = μ−1 and S(z) =
μ z

1 − (1 − μ)z
,

where μ defines the probability that a positive customer concludes his service in a slot. The input such as On-Off
source, negative arrivals and Good and Bad state of service process are assumed to be mutually independent.
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Figure 2. State transition diagram.

State transition diagram of the Markov chain is given below where

V1 = (1 − α)(1 − σ)θ; V2 = (1 − β)(1 − γ)(1 − θ)(1 − μ);
V3 = [(1 − β) (1 − γ) (1 − θ)μ + (1 − β) (1 − γ) (1 − μ) θ]; V4 = (1 − α)(1 − σ)(1 − μ);
V5 = (1 − α) γ (1 − θ)(1 − μ); V6 = [(1 − β) γ (1 − θ)μ + (1 − β) γ (1 − μ) θ];

V7 = [β γ θ (1 − μ) + β γ μ (1 − θ)]; V8 = β γ (1 − θ)(1 − μ);
V9 = [(1 − α)(1 − γ)(1 − θ)μ + (1 − α)(1 − γ) θ]; V10 = α (1 − γ) (1 − θ) (1 − μ);

V11 = [(1 − α)(1 − γ) (1 − θ)μ + (1 − α)(1 − γ) θ (1 − μ)]; V12 = α (1 − σ) (1 − θ);
V13 = α (1 − σ) θ; V14 = [α (1 − γ) (1 − θ)μ + α (1 − γ) θ (1 − μ)];
V15 = β (1 − σ)(1 − θ); V16 = (1 − β) (1 − σ) θ;
V17 = (1 − α) (1 − γ) (1 − θ) (1 − μ).

3. Generating function analysis

We define the system by a vector process {(A(m+), S(m+), N(m+)), m = 0, 1, 2 . . . , } where:

A(m+) − number of positive customers arriving to the system during mth slot;
S(m+) − state of the server in the mth slot;
N(m+) − number of positive customers in the system at m+.

Also define,

Ym(i, j, k) = {A(m+) = i, S(m+) = j, N(m+) = k}, i = 0, 1 ; j = 0,1 ; k = 0, 1, 2 . . .

whose state space is given by S = {(i, j, k) : i = 0,1 ; j = 0,1 ; k = 0, 1, 2 . . .}.
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The following generating function is defined to solve the system

Qm
i,j(z) =

∞∑
k=0

P (A(m+) = i, S(m+) = j, N(m+) = k)zk with i = 0,1 ; j = 0,1 and if

j =
{

0, if the server is in Bad state
1, if the server is in Good state.

Also, the stationary distribution of the system is given by πi,j,k = lim
m→∞P (Ym(i, j, k)) with

Q0,0(z) = lim
m→∞Qm

0,0(z); Q1,0(z) = lim
m→∞Qm

1,0(z) for server’s Bad state and

Q0,1(z) = lim
m→∞Qm

0,1(z); Q1,1(z) = lim
m→∞Qm

1,1(z) for server’s Good state.
Sum of these four server’s state gives the stationary distribution of the queue length of the system. It is
assumed that the condition for the system to be stable when ρ<1 and is shown in Theorem 1. By definition
Ym(1, 0, 0) = 0 andYm(1, 1, 0) = 0, because it is impossible that the system is empty in the mth slot with
A(m+) = 1, which gives π1,0,0 = 0 and π1,1,0, = 0.

Kolmogorov equations of the stationary distribution of the system are given by

π0,0,0 = βσπ0,0,0 + βσθπ0,0,1 + [β(1 − γ)(1 − θ)μ + β(1 − γ)(1 − μ)θ]π0,1,1

+ [(1 − α)(1 − γ)(1 − θ)μ + (1 − α)(1 − γ)θ]π1,1,1 + (1 − α)σθπ1,0,1

+ β(1 − γ)(1 − μ)π0,1,0, (3.1)

π0,0,k = βσθπ0,0,k+1 + [β(1 − γ)(1 − θ)μ + β(1 − γ)(1 − μ)θ]π0,1,k+1 + β(1 − γ)(1 − μ)(1 − θ)π0,1,k

+ [(1 − α)(1 − γ)(1 − θ)μ + (1 − α)(1 − γ)(1 − μ)θ]π1,1,k+1 + (1 − α)σθπ1,0,k+1

+ βσ(1 − θ)π0,0,k + (1 − α) (1 − γ)(1 − θ)(1 − μ)π1,1,k + (1 − α)(1 − θ)σπ1,0,k, k � 1
(3.2)

π1,0,1 = ασθπ1,0,1 + (1 − β)σ(1 − θ)π0,0,0 + (1 − β)σθπ0,0,1 + (1 − β)(1 − γ)(1 − θ)(1 − μ)π0,1,0

+ [(1 − β)(1 − γ)(1 − θ)μ + (1 − β)(1 − γ)(1 − μ)θ]π0,1,1

+ [α(1 − γ)(1 − θ)μ + α(1 − γ)θ(1 − μ)]π1,1,1, (3.3)

π1,0,k = ασθπ1,0,k + ασ(1 − θ)π1,0,k−1 + (1 − β)σθπ0,0,k + (1 − β)(1 − γ)(1 − θ)(1 − μ)π0,1,k−1

+ (1 − β)σ(1 − θ)π0,0,k−1 + [(1 − β)(1 − γ)(1 − θ)μ + (1 − β)(1 − γ)(1 − μ)θ]π0,1,k

+ [α(1 − γ(1 − θ)μ + α(1 − γ)(1 − μ)θ]π1,1,k + α(1 − γ)(1 − θ)(1 − μ)π1,1,k−1

+ (1 − β)σ(1 − θ)π0,0,k−1, k � 2 (3.4)

π0,1,0 = βγ(1 − μ)π0,1,0 + β(1 − σ)π0,0,0 + (1 − α)(1 − σ)θπ1,0,1 + β(1 − σ)θπ0,0,1

+ [βγθ(1 − μ) + βγμ(1 − θ)]π0,1,1 + [(1 − α)γ(1 − θ)μ + (1 − α)γθ(1 − μ)]π1,1,1, (3.5)

π0,1,k = β(1 − σ)(1 − θ)π0,0,k + (1 − α)(1 − σ)(1 − θ)π1,0,k + (1 − α)(1 − σ)θπ1,0,k+1

+ βγ(1 − θ)(1 − μ)π0,1,k + [(1 − α)γ(1 − θ)μ + (1 − α)γ(1 − μ)θ]π1,1,k+1

+ (1 − α)γ(1 − θ)(1 − μ)π1,1,k + β(1 − σ)θπ0,0,k+1

+ [βγθ(1 − μ) + βγμ (1 − θ)]π0,1,k+1, k � 1 (3.6)

π1,1,1 = (1 − β)(1 − σ)(1 − θ)π0,0,0 + (1 − β)(1 − σ)θπ0,0,1 + α(1 − σ)θπ1,0,1

+ (1 − β)γ(1 − μ)(1 − θ) π0,1,0 + [αγ(1 − θ)μ + αγθ(1 − μ)]π1,1,1

+ [ (1 − β)γ(1 − θ)μ + (1 − β)γθ(1 − μ)]π0,1,1, (3.7)

π1,1,k = (1 − β)(1 − σ)θπ0,0,k + α(1 − σ)(1 − θ)π1,0,k−1 + (1 − β)(1 − σ)(1 − θ)π0,0,k−1

+ [αγ(1 − θ)μ + αγθ(1 − μ)]π1,1,k + [(1 − β)γ(1 − θ)μ + (1 − β)γθ(1 − μ)]π0,1,k

+ (1 − β)γ(1 − μ)(1 − θ)π0,1,k−1 + αγ(1 − μ)(1 − θ)π1,1,k−1 + α(1 − σ)θπ1,0,k, k � 2. (3.8)
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4. Steady state buffer content

This section is devoted to find the stationary distribution of the steady state buffer contents Q(z) at the
boundary of an arbitrary slot and the expected number of customers in the system.

Theorem 4.1. In steady state, the stationary distribution of the buffer content at the boundary of an arbitrary
slot is given by Q(z) = T0,0(z)+T0,1(z)+T1,0(z)+T1,1(z)

T (z) , under condition ρ <1, where T0,0(z) + T0,1(z) + T1,0(z) +
T1,1(z) and T (z) are given Appendix I.

Proof. Multiplying equations (3.1)−(3.8) by zk and summing over k, these equations becomes

[z − βσ(θ + z(1 − θ)]Q0,0(z) = zβσθπ0,0,0 + zβ(1 − γ)(1 − μ)θπ0,1,0

+ β(1 − γ)h(z)Q0,1(z)
+ (1 − α)σ[θ + z(1 − θ)]Q1,0(z) + (1 − α)(1 − γ)h(z)Q1,1(z), (4.1)

[1 − ασ(θ + z(1 − θ))]Q1,0(z) = z(1 − β)σθπ0,0,0 + z(1 − β)(1 − γ)(1 − μ)θπ0,1,0

+ (1 − β)σ[θ + z(1 − θ)]Q0,0(z)
+ (1 − β)(1 − γ)h(z)Q0,1(z) + α(1 − γ)h(z)Q1,1(z), (4.2)

[z − βγ h(z)]Q0,1(z) = zβ(1 − σ)θπ0,0,0 + zβγ(1 − μ)θπ0,1,0

+ β(1 − σ)[θ + z(1 − θ)]Q0,0(z) + (1 − α)(1 − σ)[θ + z(1 − θ)]Q1,0(z)

+ (1 − α)γ h(z)Q1,1(z), (4.3)

[1 − αγ h(z)]Q1,1(z) = z(1 − β)(1 − σ)θπ0,0,0 + z(1 − β)γ(1 − μ)θπ0,1,0

+ (1 − β)(1 − σ)[θ + z(1 − θ)]Q0,0(z) + α(1 − σ)[θ + z(1 − θ)]Q1,0(z)
+ (1 − β)γ h(z)Q0,1(z), (4.4)

where h(z) = (1 − θ)μ + θ(1 − μ) + z(1 − θ)(1 − μ).
Equations (4.1)−(4.4) can be written as the following system of equations

[z − βσ(θ + z(1 − θ)]Q0,0(z) − (1 − α)σ[θ + z(1 − θ)]Q1,0(z) − β(1 − γ)h(z)Q0,1(z)
− (1 − α)(1 − γ)h(z)Q1,1(z) = zβσθπ0,0,0 + zβ(1 − γ)(1 − μ)θπ0,1,0, (4.5)

− (1 − β)σ[θ + z(1 − θ)]Q0,0(z) + [1 − ασ(θ + z(1 − θ))]Q1,0(z) − (1 − β)(1 − γ)h(z)Q0,1(z)

− α(1 − γ)h(z)Q1,1(z) = z(1 − β)σθπ0,0,0 + z(1 − β)(1 − γ)(1 − μ)θπ0,1,0, (4.6)

− β(1 − σ)[θ + z(1 − θ)]Q0,0(z) − (1 − α)(1 − σ)[θ + z(1 − θ)]Q1,0(z) + [z − βγ h(z)]Q0,1(z)
− (1 − α)γ h(z)Q1,1(z) = zβ(1 − σ)θπ0,0,0 + zβγ(1 − μ)θπ0,1,0, (4.7)

− (1 − β)(1 − σ)[θ + z(1 − θ)]Q0,0(z) − α(1 − σ)[θ + z(1 − θ)]Q1,0(z) − (1 − β)γ h(z)Q0,1(z)
+ [1 − αγ h(z)]Q1,1(z) = z(1 − β)(1 − σ)θπ0,0,0 + z(1 − β)γ(1 − μ)θπ0,1,0. (4.8)
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Fromequations (4.5) to (4.8), set

a11 = z − βσ(θ + z(1 − θ)), a12 = −(1 − α)σ(θ + z(1 − θ)),

a13 = −β(1 − γ)h(z), a14 = −(1 − α)(1 − γ)h(z),

a21 = −(1 − β)σ(θ + z(1 − θ)), a22 = 1 − ασ(θ + z(1 − θ)),

a23 = −(1 − β)(1 − γ)h(z), a24 = −α(1 − γ)h(z),

a31 = −β(1 − σ)(θ + z(1 − θ)), a32 = −(1 − α)(1 − σ)(θ + z(1 − θ)),

a33 = z − βγ h(z), a34 = −(1 − α)γ h(z),

a41 = −(1 − β)(1 − σ)(θ + z(1 − θ)), a42 = −α(1 − σ)(θ + z(1 − θ)),

a43 = −(1 − β)γ h(z), a44 = 1 − αγ h(z).

Using these assumptions, equations (4.5) to (4.8) can be written as the matrix form AX = B, where

A =

⎡
⎢⎢⎢⎣

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

⎤
⎥⎥⎥⎦, X =

⎡
⎢⎢⎢⎣

Q0,0(z)

Q1,0(z)

Q0,1(z)

Q1,1(z)

⎤
⎥⎥⎥⎦ and

B =

⎡
⎢⎢⎢⎢⎣

zβσθπ0,0,0 + zβ(1 − γ)(1 − μ)θπ0,1,0

z(1 − β)σθπ0,0,0 + z(1 − β)(1 − γ)(1 − μ)θπ0,1,0

zβ(1 − σ)θπ0,0,0 + zβγ(1 − μ)θπ0,1,0

z(1 − β)(1 − σ)θπ0,0,0 + z(1 − β)γ(1 − μ)θπ0,1,0

⎤
⎥⎥⎥⎥⎦.

This system can be solved using Cramer’s rule. The unknowns Q0,0(z), Q1,0(z), Q0,1(z), Q1,1(z) gives the gen-
erating functions of server’s states, which are given by

Q0,0(z) =
T0,0(z)
T (z)

, Q1,0(z) =
T1,0(z)
T (z)

, Q0,1(z) =
T0,1(z)
T (z)

, Q1,1(z) =
T1,1(z)
T (z)

,

where

T0,0(z) =

∣∣∣∣∣∣∣∣∣∣

zβσθπ0,0,0 + zβ(1 − γ)(1 − μ)θπ0,1,0 a12 a13 a14

z(1 − β)σθπ0,0,0 + z(1 − β)(1 − γ)(1 − μ)θπ0,1,0 a22 a23 a24

zβ(1 − σ)θπ0,0,0 + zβγ(1 − μ)θπ0,1,0 a32 a33 a34

z(1 − β)(1 − σ)θπ0,0,0 + z(1 − β)γ(1 − μ)θπ0,1,0 a42 a43 a44

∣∣∣∣∣∣∣∣∣∣
, (4.9)

T1,0(z) =

∣∣∣∣∣∣∣∣∣∣

a11 zβσθπ0,0,0 + zβ(1 − γ)(1 − μ)θπ0,1,0 a13 a14

a21 z(1 − β)σθπ0,0,0 + z(1 − β)(1 − γ)(1 − μ)θπ0,1,0 a23 a24

a31 zβ(1 − σ)θπ0,0,0 + zβγ(1 − μ)θπ0,1,0 a33 a34

a41 z(1 − β)(1 − σ)θπ0,0,0 + z(1 − β)γ(1 − μ)θπ0,1,0 a43 a44

∣∣∣∣∣∣∣∣∣∣
, (4.10)
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T0,1(z) =

∣∣∣∣∣∣∣∣∣∣∣

a11 a12 zβσθπ0,0,0 + zβ(1 − γ)(1 − μ)θπ0,1,0 a14

a21 a22 z(1 − β)σθπ0,0,0 + z(1 − β)(1 − γ)(1 − μ)θπ0,1,0 a24

a31 a32 zβ(1 − σ)θπ0,0,0 + zβγ(1 − μ)θπ0,1,0 a34

a41 a42 z(1 − β)(1 − σ)θπ0,0,0 + z(1 − β)γ(1 − μ)θπ0,1,0 a44

∣∣∣∣∣∣∣∣∣∣∣
, (4.11)

T1,1(z) =

∣∣∣∣∣∣∣∣∣∣∣

a11 a12 a13 zβσθπ0,0,0 + zβ(1 − γ)(1 − μ)θπ0,1,0

a21 a22 a23 z(1 − β)σθπ0,0,0 + z(1 − β)(1 − γ)(1 − μ)θπ0,1,0

a31 a32 a33 zβ(1 − σ)θπ0,0,0 + zβγ(1 − μ)θπ0,1,0

a41 a42 a43 z(1 − β)(1 − σ)θπ0,0,0 + z(1 − β)γ(1 − μ)θπ0,1,0

∣∣∣∣∣∣∣∣∣∣∣
, (4.12)

T (z) = |A| . (4.13)

Then the stationary distribution of the steady state buffer contents at the boundary of an arbitrary slot is
given by:

Q(z) = Q0,0(z) + Q0,1(z) + Q1,0(z) + Q1,1(z),

Q(z) =
T0,0(z) + T0,1(z) + T1,0(z) + T1,1(z)

T (z)
· (4.14)

By substituting equations (4.9)–(4.13) in (4.14), we get the stationary distribution of the steady state buffer
content at the boundary of an arbitrary slot. Using the stability condition lim

z→1
Q(z) = 1 in equation (4.14), we

get
T0,0(1) + T0,1(1) + T1,0(1) + T1,1(1) = T (1).

Simplifying this equation we get,

π0,0,0 + π0,1,0 = 1 − 1 − β

(2 − α − β)(1 − (1 − μ)(1 − θ)(1 − σ))
= 1 − ρ.

where ρ < 1 is to be the stability condition of the considered queueing system, which is given in Section 5.

Remark 4.2. Using the normalisation condition lim
z→1

Q(z) = 1 and the roots of ∇(z) = 0, one can find the
unknowns π0,0,0 and π0,1,0. Since the system contains too many parameters the expressions for the unknown
probabilities π0,0,0 and π0,1,0 are not given explicitly, but the values are tabulated in Section 9 using MATLAB
with the specific values for α, β, γ, σ, θ, μ.

5. Modified service time

The actual service time that a positive customer receives before departing the system either by service
completion or by a negative arrival can be defined as modified service time S*. Its probability mass function is
given by

P (S∗ = k) = P (Sn = k)(1 − θ)k(1 − σ)k + P (S � k)θ(1 − θ)k−1(1 − σ)k.
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The probability generating function of the modified service time S∗(z) is derived as

S∗(z) =
∞∑

k=1

P (S∗ = k)zk =
[1 − (1 − μ)(1 − θ)(1 − σ)]z
1 − (1 − μ)(1 − θ)(1 − σ)z

·

That is the modified service time has geometric distribution with parameter τ = [1 − (1 − μ)(1 − θ)(1 − σ)],
which means that the positive customer will leave the system with probability τ (effective service rate) and stay
in the system with probability 1 − τ in each slot.

The average occupancy of the server is defined as the traffic intensity (ρ) of the system and is obtained as

ρ =
λ1

τ
=

1 − β

(2 − α − β)(1 − (1 − μ)(1 − θ)(1 − σ))
· (5.1)

6. Unfinished work

The remaining number of slots needed to serve all positive customers present in the system is known as the
unfinished work (W ) of the queueing system in steady state. According to Wang et al. [13], the unfinished
work W is given by W = (C − 1)S + R where C is the stationary queue length including the customer being
served if any, S is the service time of an arbitrary positive customer and R is the remainder service time of the
positive customer which is being served in server. The probability generating function of W is obtained using
the memory less property of geometrically distributed service time and is given by:

W (z) =
Q0,0(z, S∗(z)) + Q0,1(z, S∗(z)) + Q1,0(z, S∗(z)) + Q1,1(z, S∗(z))

S∗(z)
· (6.1)

7. Stationary sojourn time distribution

The sojourn time of an arbitrary positive customer is defined as the total number of slots between the
boundary of the arrival slot of a tagged positive customer and the departure instant of this positive customer. In
the case of MMBP/G/1 queueing system without negative customers, the probability generating function (PGF)
of the stationary sojourn time distribution of the positive customers D(z) is known as (see Zhou and Wang [18]),

D(z) = lim
n→∞

∞∑
j=1

P (Wn = 1 , An = 1)
P (An = 1)

zj,

where Wn is the unfinished work in the nth slot. In steady state, lim
n→∞ Wn = CS +R and lim

n→∞ P (An = 1) = λ1.

Using this, PGF of the stationary sojourn time distribution of the positive and negative customers, when the
server alternate between Good and Bad state is given by

D(z) =
Q1,0(z, S∗(z)) + Q1,1(z, S∗(z))

λ1
=

1
λ1

T1,0(z, S∗(z)) + T1,1(z, S∗(z))
T (z, S∗(z))

· (7.1)

8. Special cases

1. When σ = 0, the server is always in Good state. Then, the model becomes a discrete-time single-server
infinite-capacity queueing system with correlated arrivals, geometrically distributed service times and nega-
tive customers. Substituting σ = 0 in equation (5.1) it reduces to

ρ =
1 − β

(2 − α − β)(1 − (1 − μ)(1 − θ))
· (8.1)

Equation (8.1) coincides with equation of Wang et al. [13].
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Table 1. Mean queue length and mean packet delay.

μ π0,0,0 π0,1,0 Mean queue lengh Mean packet delay

0.1 0.0262 0.0316 28.1457 50.1813
0.2 0.0554 0.0674 12.6088 21.0517
0.3 0.0883 0.1084 7.4339 11.7396
0.4 0.1256 0.1558 4.8413 7.3095
0.5 0.1686 0.2114 3.2861 4.8046
0.6 0.2186 0.2777 2.2461 3.2347
0.7 0.2778 0.3585 1.5006 2.1852
0.8 0.3495 0.4596 0.9385 1.4500
0.9 0.4390 0.5910 0.4975 0.9164

Also, when the server is always in Good state, that is when σ = 0, we get Q1,0(z) + Q1,1(z) =
Q1(z) and Q0,0(z) + Q0,1(z) = Q0(z). Now equation (6.1) reduces to

W (z) =
Q1(z, S∗(z)) + Q0(z, S∗(z))

S∗(z)
, (8.2)

which coincides with the PGF of the unfinished work of Wang et al. [13].
Similarly, when σ = 0 equation (7.1) reduces to

D(z) =
Q1(z, S∗(z))

λ1
=

1
λ1

S∗(z)(1 − β)(S∗(z) − h(S∗(z)))π0,0,0

S∗(z) − h(S∗(z))(β + β̄S∗(z)) − (1 − α − β)h2(S∗(z))
· (8.3)

which coincides with the equation of Wang et al. [13].
2. When there is no negative arrival, that is if θ = 0, and the server is in always Good state. Then the

model becomes a discrete time queueing model with first order Markovian arrival process and geometrically
distributed service times. Substituting θ = 0 and σ = 0 in equation (5.1), we get

ρ =
1 − β

(2 − α − β)μ
· (8.4)

Equation (8.4) is consistent with corresponding traffic intensity of Zhou and Wang [18].

9. Performance measures

1. Server’s idle period = π0,0,0 + π0,1,0.
2. Mean Queue length:

Expected number of customers in the system is obtained by E(Q) = Q′ (1).
3. Average Packet delay:

The average packet delay of a positive customer can be obtained using sojourn time distribution, given by
E(D) = lim

z→1

d(D(z))
dz .

10. Numerical illustration

The impact on the main parameters of the performance measures are presented with numerical examples.
Using MATLAB, the values of the unknown constants π0,0,0, π0,1,0 are obtained. Using equation (4.14), the

mean queue length and mean packet delay for different values of μ are obtained for the parameters α = 0.4, β =
0.3, γ = 0.5, σ = 0.4, θ = 0.2 and are tabulated in Table 1.
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Table 2. Mean queue length vs. α, β.

�����β
α

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 10.5081 11.8524 13.3567 15.0584 17.0067 19.2415 21.8515 24.9159 28.5793
0.2 9.1337 10.4756 11.9887 13.7205 15.7076 18.0195 20.7523 24.0095 27.9725
0.3 7.5934 8.9179 10.4286 12.1727 14.1959 16.5796 19.4381 22.9066 27.2182
0.4 5.8459 7.1411 8.6319 10.3710 12.4148 14.8581 17.8389 21.5355 26.2551
0.5 3.8517 5.0943 6.5416 8.2485 10.2854 12.7634 15.8507 19.7848 24.9824
0.6 1.5577 2.7148 4.0795 5.7093 7.6941 10.1637 13.3120 17.4714 23.2224
0.7 0 0 1.1343 2.6222 4.4726 6.8369 9.9576 14.2722 20.6289
0.8 0 0 0 0 0.3591 2.4410 5.3187 9.5581 16.4264
0.9 0 0 0 0 0 0 0 1.9190 8.4474
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Figure 3. Mean Queue length
versus theta.
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Figure 4. Mean packet delay
versus theta.

From Table 1, one can assume that, when the service rate increases, mean queue length and mean packet
delay decrease.

Table 2 gives the effect of β on the mean queue length for different values of α. The remaining parameters
chosen here is γ = 0.5, σ = 0.4, θ = 0.1, μ = 0.4.

From Table 2 we can say that increase of On source will increase the mean queue length and increase of Off
source will decrease the mean queue length. Figures 3 and 4 gives the impact the negative arrival θ with mean
queue length and mean packet delay for different values of effective arrival rate λ1.

The relationship between the mean queue length (mean packet delay) and the effective service rate τ for
different values of the effective arrival rate λ1 are illustrated in Figures 5 and 6.

Figures 7 and 8 give the impact of effective arrival rate λ1 and β on mean queue length and mean packet
delay.
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Figure 5. Mean queue length
versus effective service rate.
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Figure 7. Mean queue length versus effective arrival rate and β.

Figures 9 and 10 give the relationship between the mean queue length(mean packet delay) and effective arrival
rate for different values of effective service rate.

One can observe that, from all the figures, the mean queue length and mean packet delay are increasing with
the increasing values of effective arrival rate λ1.
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Figure 8. Mean packet delay versus effective arrival rate and β.
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Figure 9. Mean queue length
versus effective arrival rate.
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Figure 10. Mean packet delay
versus effective arrival rate.

11. Conclusion

In this paper, a discrete time infinite queueing system with On-Off source, as well as geometrically distributed
service times with two states of a server namely Good and Bad and negative customers are analysed using
Markovian processes approach. Closed-form expressions for stationary distribution of the steady state buffer
contents at the boundary of an arbitrary slot, unfinished work and stationary sojourn time distribution are
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obtained. Thereafter the measures of interest are also evaluated with numerical illustration. Future work can
be carried out with this model for multi-servers with ‘m’ homogeneous On-Off sources.

Appendix I

Applying Cramer’s rule and simplifying we get:

T0,0(z) + T0,1(z) + T1,0(z) + T1,1(z) = s1 × [1 + α2 + β2 − 2α − 2β + 2αβ]

×
{

[θ + z(1 − θ)] h2(z)
(
γ − γ2 − σγ

)
+ [θ + z(1 − θ)]2 h(z)

(−1 + γ − σ2 − σγ + 2σ
)}

+ s2 × [1 + α2 + β2 − 2α − 2β + 2αβ]

×
{

[θ + z(1 − θ)] h2(z)
(−1 + σ + 2γ − γ2 − σγ

)
+ [θ + z(1 − θ)]2 h(z)

(
σ − σ2 − σγ

)}
+ s3 × [θ + z(1 − θ)] h(z)

×
{(

β − β2 − αβ
)
(1 − σ − γ) − (

1 − 2α − β + α2 + αβ
)
(z − σz) − 2σ γ z(1 − α − β)

+ γ2z
(
2 − 3α − 2β + α2 + αβ

) }
+ s4 × [θ + z(1 − θ)] h(z)

× { (
α − α2 − αβ

)
(z − σz − γz) − (

1 − α − 2β + β2 + αβ
)

+ σ
(
2 − 2α − 3β + β2 + αβ

)}
+ (s4 + z × s3)

×
{

z − γ2h2(z) (1 − α − β) − [θ + z(1 − θ)]2 σ2 (1 − α − β) − [θ + z(1 − θ)] (αz + β)σ
}

− (s1 + z × s2) × γ β × h2(z) (α z + β) − s2× (β + z(1 − β)) × (α z + β)

+ (1 − α − β)
{
[θ + z(1 − θ)]2 σ (β + z(1 − β)) × s1 + h2(z) γ

}

+ {s1 × [θ + z(1 − θ)] + s2 × h(z)} × [
(β + z − βz) × β +

(
z + az2 − az

)× (1 − β)
]
, (A.1)

where
s1 = (zσθπ0,0,0 + z(1 − γ)(1 − μ)θπ0,1,0) , s2 = (z(1 − σ)θπ0,0,0 + zγ(1 − μ)θπ0,1,0) ,

s3 = (z(1 − β)θπ0,0,0 + z(1 − β)(1 − μ)θπ0,1,0) , s4 = (zβθπ0,0,0 + zβ(1 − μ)θπ0,1,0) .

T (z) = |A| =
(

[z − βσ[θ + z(1 − θ)]] [z − βγ h(z)]

× {
[1 − ασ[θ + z(1 − θ)]] [1 − αγ h(z)] − α2(1 − α)(1 − γ)h(z)[θ + z(1 − θ)]

} )

− (1 − α)(1 − β)γ2h2(z) [z − βσ[θ + z(1 − θ)]] [1 − ασ[θ + z(1 − θ)]]
− (1 − α)(1 − β)(1 − σ)(1 − γ)h(z)[θ + z(1 − θ)] [z − βσ[θ + z(1 − θ)]] [1 − αγ h(z)]
− α(1 − α)(1 − σ)γ h(z)[θ + z(1 − θ)] [z − βσ[θ + z(1 − θ)]] {1 + (1 − β)(1 − γ)h(z)}
− (1 − α)(1 − β)σ2[θ + z(1 − θ)]2 [z − βγ h(z)] [1 − αγ h(z)]
+ (1 − α)2(1 − β)2σ2γ2[θ + z(1 − θ)]2h2(z)
− 2(1 − α)(1 − β)σ(1 − σ)(1 − γ)h(z)[θ + z(1 − θ)]2 {β + γ(1 − α − β)h(z)}
+ 2(1 − α)(1 − β)(1 − σ)γ(1 − γ)h2(z)[θ + z(1 − θ)] {1 − 2ασ[θ + z(1 − θ)]}
− α(1 − α)(1 − β)σ(1 − σ)(1 − γ)h(z)[θ + z(1 − θ)]2 [z − βγ h(z)]
+ β2(1 − σ)(1 − γ)h(z)[θ + z(1 − θ)] [1 − αγ h(z)] [1 − ασ[θ + z(1 − θ)]]

+ α2β2(1 − σ)2(1 − γ)2h2(z)[θ + z(1 − θ)]
− (1 − α)(1 − β)(1 − σ)2(1 − γ)h(z)[θ + z(1 − θ)]2 {1 − α − β + αβ(1 − γ)h(z)}
+ 2α(1 − α)(1 − σ)(1 − γ)h(z)[θ + z(1 − θ)] [z − βγ h(z)] .
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