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GENERALIZATION OF THE TOTAL OUTER-CONNECTED DOMINATION
IN GRAPHS

NADER JAFARI RAD' AND LUTZ VOLKMANN?

Abstract. Let G = (V, E) be a graph without an isolated vertex. A set S C V is a total dominating
set if S is a dominating set, and the induced subgraph G[S] does not contain an isolated vertex. The
total domination number of GG is the minimum cardinality of a total dominating set of G. A set D C V
is a total outer-connected dominating set if D is a total dominating set, and the induced subgraph
G|V — D] is connected. The total outer-connected domination number of G is the minimum cardinality
of a total outer-connected dominating set of GG. In this paper we generalize the total outer-connected
domination number in graphs. Let £ > 1 be an integer. A set D C V is a total outer-k-connected
component dominating set if D is a total dominating and the induced subgraph G[V — D] has exactly
k connected component(s). The total outer-k-connected component domination number of G, denoted
by vE.(G), is the minimum cardinality of a total outer-k-connected component dominating set of G.
We obtain several general results and bounds for v£ (G), and we determine exact values of y£.(G) for
some special classes of graphs G.
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1. INTRODUCTION

For notation and terminology in general we follow [4]. Let G = (V, E) be a simple graph of order n = |V(G)| =
|V| and size e = |E(G)| = |E|. We denote the open neighborhood of a vertex v of G by Ng(v) or just N(v), and
its closed neighborhood by Ng[v] = N|v]. For a vertex set S C V, N(S) = (J,cg N(v) and N[S] = UyesN|v].
The degree deg(z) of a vertex  denotes the number of neighbors of  in G. The mazimum degree and minimum
degree of G are denoted by A(G) and §(G), respectively. The distance between two vertices of a graph is the
number of edges in a shortest path connecting them. The eccentricity of a vertex is the greatest distance between
it and any other vertex. The diameter of a graph G, denoted by diam(G), is the maximum eccentricity among
all vertices of G. A set of vertices S in G is a dominating set, if N[S] = V. The domination number of G,
denoted by v(G), is the minimum cardinality of a dominating set of G. If S is a subset of V' then we denote by
G[S] the subgraph of G induced by S. A dominating set S of G is a total dominating set if G[S] has no isolated
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vertex. The total domination number of G, denoted by 7:(G), is the minimum cardinality of a total dominating
set of G.

Total outer-connected domination in graphs was introduced by Cyman in [1]. If G is without an isolated
vertex, then a set D C V is a total outer-connected dominating set (TOCDS) of G if D is a total dominating
set of G and the subgraph induced by V'\ D is connected. The minimum cardinality of a total outer-connected
dominating set in G is the total outer-connected domination number denoted ~:.(G). A minimum TOCDS of a
graph G is called a v;.(G)-set. Cyman in [1], Hattingh and Joubert in [3] obtained a lower bound for the total
outer-connected domination number of a tree in terms of the order of the tree, and characterized trees achieving
equality. Cyman and Raczek in [2] characterized trees with equal total domination and total outer-connected
domination numbers. They also gave a lower bound for the total outer-connected domination number of a tree
in terms of the order and the number of leaves of the tree, and characterized extremal trees. Jiang and Kang
in [5] studied Nordhaus—Gaddum Typebounds for the total outer-connected domination number of a graph.

We generalize the total outer-connected domination number of a graph. Let G be a graph with no isolated
vertex. For an integer k > 1, a subset S of the vertices of G is a total outer-k-connected component dominating
set, or just TOECDS, if S is a total dominating set of G and G[V — S| has k connected components. The total
outer-k-connected component domination number of G, denoted by £ (G), is the minimum cardinality of a
TOkCDS of G. In the case that there is no TOkCDS of G, we define 7£(G) = 0. We also refer a yf(G)-set
in a graph G as a TOkCDS of cardinality 7£.(G). Note that a TOCDS S is a TO1CDS if |S| < |V, and
thus the concept of total outer-k-connected component domination is a generalization of the concept of total
outer-connected domination.

In Section 2, we present some general results and bounds for the total outer-k-connected component dom-
ination number of graphs. In Section 3, we determine exact values of the total outer-k-connected component
domination number for some special classes of graphs.

All graphs we consider in this paper are without isolated vertices and have at least three vertices. We recall
that a leaf in a graph is a vertex of degree one, and a support vertex is one that is adjacent to a leaf. A pendant
edge is an edge which at least one of its end-points is a leaf. We denote by L(G) and S(G) the set of all leaves
and all support vertices of G, respectively.

With K,, we denote the complete graph on n vertices, with P, the path on n vertices, with C,, the cycle of
length n, and with W,, the wheel with n + 1 vertices. A bipartite graph is a graph whose vertex set can be
partitioned into two sets of pair-wise non-adjacent vertices. We denote by K, ,, the complete bipartite graph
which one partite set has cardinality m and the other partite set has cardinality n. The corona cor(G) of a
graph G is the graph obtained from G by adding a pendant edge to any vertex of G. By a(G) we denote the
independence number of a graph G.

2. GENERAL RESULTS AND BOUNDS

We begin with the following observation.

Observation 2.1. Let k > 1 be an integer, and let G be a graph without isolated vertices. If 0 < vE.(G) < n,
then a(G) > k, and 6(G) <n — k.

Proof. Assume that 0 < v£(G) < n for some integer k. Let S be a £ (G)-set, and G1,Ga,...,G) be the
components of G[V — S|. Let z; be a vertex in V(G;) for i = 1,2,...,k. Then clearly {x1,22,..., 25} is an
independent set, implying that «(G) > k. To complete the proof, note that, since x; is not adjacent to any x;,
1=2,3,...,k, then §(G) <deg(z1) < (n—1)—(k—1)=n—k. O

Lemma 2.2. If vF.(G) = 0 for some integer k, then for every m >k, y/*(G) = 0.

Proof. Let vF.(G) = 0 for some integer k and m > k be an integer. Suppose to the contrary that v/*(G) # 0.
Let S be a vj2(G)-set, and let G1, Ga,..., and G, be m connected components of G[V' — S]. It is obvious that
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S1 =SUV(Gr41)U...UV(G,,) is a TOKCDS for G and G[V — S1] has k connected components. This implies
that v£.(G) > 0, a contradiction. O

Lemma 2.3. Let k be the mazimum integer such that vE.(G) > 0. If S is a TOkCDS, then every connected
component of GV — S| is a complete graph.

Proof. Let k be the maximum integer such that vF,(G) > 0, and let S be a TOkCDS. Suppose to the contrary
that there is a connected component G; of G[V — 5] such that G; is not complete. Let x, y be two non-adjacent
vertices in G. Then S U (V(G1) — {z,y}) is a TO(k + 1)CDS for G, a contradiction. O

Lemma 2.4. If a graph G has a TOkCDS, then it has a TOtCDS for any integer t < k.

Proof. Let S be a TOkCDS for a graph G, where k > 1, and let G1,Ga, ..., G) be the components of G[V — S
Let t < k. Then SUV(G1)UV(G2)U...UV(Gi_y) is a TOtCDS for G. O

]-
Lemma 2.5. Let G be a connected graph. If k is the mazimum integer such that vE.(G) > 0, then diam(G) <
3k —1.

Proof. 1f k is the maximum integer such that v£.(G) > 0, then 47.(G) = 0 for each r > k + 1. Suppose to the
contrary that diam(G) > 3k. Let xgzq1x2 ... x4 be a diametrical path in G such that d = 3p + ¢ with an integer
0 <t <2, and let L; be the set of leaves of G adjacent to x; for 1 <i < d — 1. Let B be the subset of vertices
x3; such that |Ls;| =0 for i = 1,2,...,p — 1, and define the set A by

p—1
A= {xo,l';g, .. .,.’E3(p_1),1’d} U Lg,, \ B.
i=1

Then S =V \ Ais a TO(p+ 1)CDS for G. Since p+ 1 > k + 1, we obtain a contradiction to the hypothesis,
and the proof is complete. O

Theorem 2.6. Let G be a connected graph G of order n > 3. Then v2.(G) = 0 if and only if G €
{P37C47C’53Kn}'

Proof. First notice that v.(Kn) = (Ps) = 7(C1) = 2, 7(C5) = 3, and +f.(K,) = 7f(Ps) = 7/.(Ca) =
7E(Cs) = 0 for any k > 2. Let G be a graph of order at least three and 72.(G) = 0. Since G is connected,
we have v} (G) > 0. By Lemma 2.5, diam(G) < 2. If diam(G) = 1, then clearly G is a complete graph. Thus
assume that diam(G) = 2. Let z,y be two diametrical vertices with d(z,y) = diam(G) = 2.

Assume first that deg(x) > 3. We show that G[N(x)] is complete. Assume that there are two non-adjacent
vertices a,b in N(x). Since V' — {a,b} is not a TO2CDS for G, we obtain that there is a vertex z such that
N(z) C{a,b}. If z #y, then V —{y, 2} is a TO2CDS for G, a contradiction. So z = y. Let ¢ € N(z) — {a, b}.
Then V — {y,c} is a TOkCDS for some k > 2, and by Lemma 2.4, G has a TO2CDS, a contradiction. We
deduce that G[N(x)] is complete. Now N(z) is a TO2CDS for G, a contradiction. Thus deg(z) < 2. We also
have deg(y) < 2. First assume that deg(z) = 1. Let w € N(z). If deg(w) > 3, then V' — {z,y} is a TO2CDS
for G, a contradiction. Thus deg(w) = 2, and so G = P5. Assume thus that deg(xz) = 2 and deg(y) = 2.
Let N(z) = {a,w}, where w € N(y). If a € N(w), then V — {x,y} is a TO2CDS for G, a contradiction. So
a ¢ N(w). If there is a vertex z € N(a) — {z,y} such that z ¢ N(y), then V — {y, z} is a TO2CDS for G,
a contradiction. Thus each vertex of N(a) — {z,y} is adjacent to y. Similarly, each vertex of N(w) — {z,y}
is adjacent to y. If [N(a) — {z,y}| > 2 or |[N(w) — {z,y}| > 2, then V — {x,z} is a TO2CDS for G, where
z € N(a) —{z,y} or z € N(w) — {x,y}, a contradiction. Thus |N(a) — {z,y}| <1 and |N(w) — {z,y}| < 1. Let
N(a)—{z,y} ={z}.Ifa € N(y), then V—{x, z} is a TO2CDS for G, a contradiction. So assume that a & N (y).
If w € N(z), then V — {z,y} is a TO2CDS for G, a contradiction. Thus assume now that w ¢ N(z). Then
G = C5 or N(w) — {z,y} = {z1} with z; # z. However, then V — {z,y} is a TO2CDS for G, a contradiction.
Since diam(G) = 2 we deduce that a € N(y). If N(w) — {z,y} = {z}, then we observe that then V — {z, z} is
a TO2CDS for G, a contradiction. Thus |N(w) — {z,y}| = 0. Hence G = Cj. O
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In the following we obtain the total outer-k-connected component domination number of a disconnected
graph G in terms of the total outer-k-connected component domination numbers of its components. For this
purpose we define 2.(G) = |V|.

Theorem 2.7. Let G be a disconnected graph with m connected components G1,Ga,...,Gp,, and let k > m.
Then .
1(G) = Join, > ii(Gi)
=1

where I; € {0,1,2,...,k}.

Proof. Let G be a disconnected graph with m connected components G1,Gs, ..., Gy, and let k > m. Let Szl
be a ’yié(Gi)-set fori=1,2,...,mif G; has a TOl,CDS, where 0 < l; < k—m+1and Y .-, l; = k. It is obvious
that [J", S’ is a TOkCDS for G. This implies that

YE(G) < min " 4k(Gy).
2 b=k
On the other hand let S be a TOkCDS for G. Let S; = SNV(G;) for i = 1,2,...,m. If [; is the number of
components of GG; — S;, then S; is a TOl;CDS for G;. This completes the proof. O
We next obtain lower bounds for the total outer-k-connected component domination number of a graph G.

Theorem 2.8. Let G be a graph of order n and size e, and let k > 2. If v£.(G) > 0, then

2e—(n—k+1)(n—k)
2(k—1)

o(G) >

Proof. Let S be a yF.(G)-set of cardinality s. If G1,Ga, ..., Gy are the components of G[V — S| such that
[V(G;)| =n; fori=1,2,.., k, then

k k
ni(n; —1)  s(s—1)
e< Z B + 2 + Z SN
i=1 =1
The right hand side of this inequality becomes maximum when ny =ng = ... =ng_1 = land n, = n—s—(k—1).

Therefore we obtain

(n—s—k+1)(n—s—k) s(s—1)

e < 5 T s(n—s)
—k+1)(n—k
_=kA D=k g,
2
and this leads to the desired bound immediately. O
Let k, p, s be integers such that p > 1 and k,s > 2. Now let the graph H consist of the disjoint union of Kj,
K, and k — 1 isolated vertices vy, va,...,v5—1 such that all vertices of K are adjacent to all vertices of K, and
v1,V9,...,0k_1 are adjacent to all vertices of K. Then it is straighforward to verify that
X 2¢(H)— (n(H) —k+1)(n(H) - k
() — s — 26U = (o(H) — k4 () k)

20k — 1)

This family of examples show that the bound of Theorem 2.8 is sharp. Since a(H) = k, we see that the bound
a(G) > k in Observation 2.1 is sharp too.
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Theorem 2.9. For a graph G of order n, size e and v£.(G) > 0,

3

4n — 2k — 2e
iz |22

Proof. Let S be a 4. (G)-set of cardinality s, and G1,Ga,...,G be the connected components of G[V — S].
Suppose that |V(G;)| = n; for 1 < i < k. Since S is a dominating set of G, any vertex in G; has at least
one neighbor in S for 1 < 4 < k. On the other hand G; is connected and so has at least n; — 1 edges for
1=1,2,..., k. Also G[S] has no isolated vertex. Thus, we obtain

€= -1+ Y mits

Since Y n; =n — s we have e > 2n — 3'2—5 — k. This implies that s > 4”723&, and the proof is complete. O

An immediate consequence of Theorem 2.9 with k = 1 is the following corollary for trees which is a main
result of [1].

Corollary 2.10 [1]. For a tree T of order n, vic(T) > 2.

It is obvious that vF.(G) < n — k. To characterize graphs achieving equality for the upper bound of the above
inequality, we need to introduce a family of graphs. For k > 1, let G be the class of all graphs G such that
G € Gy if and only if V = AU B such that |A| = n — k, G[A] has no isolated vertex, G[B] = K}, and no subset
S C AU B with |S| < n — k is a total outer-k-connected component dominating set for G. The following is a
characterization for graphs G with v~.(G) = n — k. The proof is straightforward and is omitted.

Theorem 2.11. For a connected graph G of order n, v£.(G) =n — k if and only if G € G.

3. EXACT VALUES

In this section we determine the total outer-k-connected component domination number for some special
classes of graphs.

2 ifk=1

Proposition 3.1. Forn >3, vF.(K,) = {0 ik > 2

Proof. Let n > 3. If S is a TOkCDS in K,, then k = 1, since K, [V — S] contains exactly one connected

component. Thus 7F (K,,) = 0 if k£ > 2. Now it is obvious that .. (K,) = 7 (K,) = 2. O
0 ifn<k
Proposition 3.2. For2 <m <n, v£.(K,..) = 2 ifk=1

m+n—*k ifn>kk>2

Proof. Let X = {x1,22,...,2m} and Y = {y1,92,...,yn} be the two partite sets of K, ,. Assume that
VE(Kmn) > 0.S0 k < n. If k=1, then v.(Kinn) = %(Kmn) = 2. So we assume that k > 2. Let S be
a Y& (K n)-set. Since Ky, »[X UY — S] is disconnected, it follows that either X C S or Y C S. Therefore
K n[X UY — S| consists of isolated vertices. As K, ,[X UY — S] has exactly k connected components, we
deduce that |S| > m +n — k. On the other hand X U {y1,y2,...,Yn—x} is a TOLCDS for K,,, of cardinality
m + n — k. This completes the proof. O

For n > 3, we have the following.
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0 ifn<3k—2
2k —2 if3k—2<n<4k—4
2k —1 ifn=4k—3
Theorem 3.3. 7f.(P,) = 2k ifdk—2<n<4k-—1
2k +1 ifn =4k
2k+2 ifn=4k+1
n—2k ifn>4k+ 2.

Proof. Let V(P,) = {v1,va,...,v,}, where v; is adjacent to v;41 for i = 1,2,...,n—1. Assume that 'yfc(Pn) > 0.
Let S be a v£.(P,)-set, and let G1,Ga, ..., Gy be the connected components of G — S. Then G[S] has at least
k — 1 components. Since any component of G[S] has at least two vertices, we obtain n > k+ 2(k — 1) = 3k — 2.
We deduce, in particular, that £ (P,) = 0 if n < 3k — 2.

Assume that n > 4k + 2. Any component of G[V — S] has at most two vertices, so |V — S| < 2k. This implies
that |S| > n — 2k. On the other hand {v4i41,v4i42:0<i <k —1}U{v; : j >4k + 1} is a TO(n — 2k)CDS for
Py, and thus v£.(P,) = n — 2k.

Next we assume that 3k — 2 < n < 4k — 4. It is obvious that G[S] has at least k — 1 components, and each
component of G[S] has at least two vertices. Thus |S| > 2(k—1) = 2k—2. Let D = {v3;42,v3i43 : 0 < i < k—2}.
Then D is a TOkCDS for Psj_o of cardinality 2k — 2. If t = n — 3k + 2, then we subdivide the edges vs;13v3;+4
for i = 1,2,...,t to obtain a path P, from Ps;_o. Then D is still a TOkCDS for P,. Thus 7£.(P,) < 2k — 2
and the result follows.

Assume next that n = 4k — 3. Suppose that |S| < 2k — 2. For S to dominate maximum number of vertices,
without loss of generality, we may assume that each component of G[S] is K», and each component of G[S]
dominates two vertices of G[V — S]. Then [N[S]| < 2(252) + [S| < n, a contradiction. Thus [S| > 2k — 1.
On the other hand {v4;12,v4i43 : 0 < i < k — 2} U {v,_1} is a TOKCDS for P, of cardinality 2k — 1. Thus
Vo(Pak—3) = 2k — 1.

Next assume that 4k — 2 < n < 4k — 1. Suppose that |S| < 2k — 1. If each component of G[S] is a K,
then [S| < 2k — 2 and S dominates at most 4'%| < 4k — 4 < n vertices of P,, a contradiction. Thus G[S] has
a component with more than two vertices. For S to dominate maximum number of vertices, without loss of
generality, we may assume that a component of G[S] is Ps, and the other components are K. Furthermore,
the P; component of G[S] dominates at most five vertices of G, while any Ks-component of G[S] dominates at
most four vertices of G. We deduce that [N[S]| < 5 + 4(251=3) < n, a contradiction. Thus |S| > 2k. On the
other hand {vy;12,v4i43 : 0 <i < k—2}U{v,,v,_1}is a TOkCDS for P, of cardinality 2k. Thus yf.(P,) = 2k.

The proof for n € {4k, 4k + 1} is similar. O

The following theorem can be proved in a similar manner as in the proof of Theorem 3.3, and so we omit the
proof.

0 ifn <3k
Theorem 3.4. 7£(C,,) = 2k if 3k <n <4k
n—2k ifn>4k+ 1.
For a wheel and an integer k£ > 1 the center of the wheel is in any TOkCDS. So the following is easily verified.
Theorem 3.5. Let k > 2 be a positive integer, and let W,, be a wheel with n > 3. Then

e f 0 if n<2k
%c<W")—{k+1 if n > 2k.

We close with the following problems.

Problem 1. Find sharp upper and lower bounds for the total outer-k-connected component domination number
of a graph.
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Problem 2. Determine the complexity issue of the total outer-k-connected component domination number.

Problem 3. Determine the total outer-k-connected component domination number in grid graphs.
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