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GENERALIZATION OF THE TOTAL OUTER-CONNECTED DOMINATION
IN GRAPHS

Nader Jafari Rad1 and Lutz Volkmann2

Abstract. Let G = (V, E) be a graph without an isolated vertex. A set S ⊆ V is a total dominating
set if S is a dominating set, and the induced subgraph G[S] does not contain an isolated vertex. The
total domination number of G is the minimum cardinality of a total dominating set of G. A set D ⊆ V
is a total outer-connected dominating set if D is a total dominating set, and the induced subgraph
G[V −D] is connected. The total outer-connected domination number of G is the minimum cardinality
of a total outer-connected dominating set of G. In this paper we generalize the total outer-connected
domination number in graphs. Let k ≥ 1 be an integer. A set D ⊆ V is a total outer-k-connected
component dominating set if D is a total dominating and the induced subgraph G[V − D] has exactly
k connected component(s). The total outer-k-connected component domination number of G, denoted
by γk

tc(G), is the minimum cardinality of a total outer-k-connected component dominating set of G.
We obtain several general results and bounds for γk

tc(G), and we determine exact values of γk
tc(G) for

some special classes of graphs G.
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1. Introduction

For notation and terminology in general we follow [4]. Let G = (V, E) be a simple graph of order n = |V (G)| =
|V | and size e = |E(G)| = |E|. We denote the open neighborhood of a vertex v of G by NG(v) or just N(v), and
its closed neighborhood by NG[v] = N [v]. For a vertex set S ⊆ V , N(S) =

⋃
v∈S N(v) and N [S] = ∪v∈SN [v].

The degree deg(x) of a vertex x denotes the number of neighbors of x in G. The maximum degree and minimum
degree of G are denoted by Δ(G) and δ(G), respectively. The distance between two vertices of a graph is the
number of edges in a shortest path connecting them. The eccentricity of a vertex is the greatest distance between
it and any other vertex. The diameter of a graph G, denoted by diam(G), is the maximum eccentricity among
all vertices of G. A set of vertices S in G is a dominating set, if N [S] = V . The domination number of G,
denoted by γ(G), is the minimum cardinality of a dominating set of G. If S is a subset of V then we denote by
G[S] the subgraph of G induced by S. A dominating set S of G is a total dominating set if G[S] has no isolated
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vertex. The total domination number of G, denoted by γt(G), is the minimum cardinality of a total dominating
set of G.

Total outer-connected domination in graphs was introduced by Cyman in [1]. If G is without an isolated
vertex, then a set D ⊆ V is a total outer-connected dominating set (TOCDS) of G if D is a total dominating
set of G and the subgraph induced by V \D is connected. The minimum cardinality of a total outer-connected
dominating set in G is the total outer-connected domination number denoted γtc(G). A minimum TOCDS of a
graph G is called a γtc(G)-set. Cyman in [1], Hattingh and Joubert in [3] obtained a lower bound for the total
outer-connected domination number of a tree in terms of the order of the tree, and characterized trees achieving
equality. Cyman and Raczek in [2] characterized trees with equal total domination and total outer-connected
domination numbers. They also gave a lower bound for the total outer-connected domination number of a tree
in terms of the order and the number of leaves of the tree, and characterized extremal trees. Jiang and Kang
in [5] studied Nordhaus−Gaddum Typebounds for the total outer-connected domination number of a graph.

We generalize the total outer-connected domination number of a graph. Let G be a graph with no isolated
vertex. For an integer k ≥ 1, a subset S of the vertices of G is a total outer-k-connected component dominating
set, or just TOkCDS, if S is a total dominating set of G and G[V − S] has k connected components. The total
outer-k-connected component domination number of G, denoted by γk

tc(G), is the minimum cardinality of a
TOkCDS of G. In the case that there is no TOkCDS of G, we define γk

tc(G) = 0. We also refer a γk
tc(G)-set

in a graph G as a TOkCDS of cardinality γk
tc(G). Note that a TOCDS S is a TO1CDS if |S| < |V |, and

thus the concept of total outer-k-connected component domination is a generalization of the concept of total
outer-connected domination.

In Section 2, we present some general results and bounds for the total outer-k-connected component dom-
ination number of graphs. In Section 3, we determine exact values of the total outer-k-connected component
domination number for some special classes of graphs.

All graphs we consider in this paper are without isolated vertices and have at least three vertices. We recall
that a leaf in a graph is a vertex of degree one, and a support vertex is one that is adjacent to a leaf. A pendant
edge is an edge which at least one of its end-points is a leaf. We denote by L(G) and S(G) the set of all leaves
and all support vertices of G, respectively.

With Kn we denote the complete graph on n vertices, with Pn the path on n vertices, with Cn the cycle of
length n, and with Wn the wheel with n + 1 vertices. A bipartite graph is a graph whose vertex set can be
partitioned into two sets of pair-wise non-adjacent vertices. We denote by Km,n the complete bipartite graph
which one partite set has cardinality m and the other partite set has cardinality n. The corona cor(G) of a
graph G is the graph obtained from G by adding a pendant edge to any vertex of G. By α(G) we denote the
independence number of a graph G.

2. General results and bounds

We begin with the following observation.

Observation 2.1. Let k ≥ 1 be an integer, and let G be a graph without isolated vertices. If 0 < γk
tc(G) < n,

then α(G) ≥ k, and δ(G) ≤ n − k.

Proof. Assume that 0 < γk
tc(G) < n for some integer k. Let S be a γk

tc(G)-set, and G1, G2, . . . , Gk be the
components of G[V − S]. Let xi be a vertex in V (Gi) for i = 1, 2, . . . , k. Then clearly {x1, x2, . . . , xk} is an
independent set, implying that α(G) ≥ k. To complete the proof, note that, since x1 is not adjacent to any xi,
i = 2, 3, . . . , k, then δ(G) ≤ deg(x1) ≤ (n − 1) − (k − 1) = n − k. �

Lemma 2.2. If γk
tc(G) = 0 for some integer k, then for every m > k, γm

tc (G) = 0.

Proof. Let γk
tc(G) = 0 for some integer k and m > k be an integer. Suppose to the contrary that γm

tc (G) �= 0.
Let S be a γm

tc (G)-set, and let G1, G2,. . . , and Gm be m connected components of G[V − S]. It is obvious that
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S1 = S ∪ V (Gk+1)∪ . . .∪ V (Gm) is a TOkCDS for G and G[V −S1] has k connected components. This implies
that γk

tc(G) > 0, a contradiction. �

Lemma 2.3. Let k be the maximum integer such that γk
tc(G) > 0. If S is a TOkCDS, then every connected

component of G[V − S] is a complete graph.

Proof. Let k be the maximum integer such that γk
tc(G) > 0, and let S be a TOkCDS. Suppose to the contrary

that there is a connected component G1 of G[V −S] such that G1 is not complete. Let x, y be two non-adjacent
vertices in G1. Then S ∪ (V (G1) − {x, y}) is a TO(k + 1)CDS for G, a contradiction. �

Lemma 2.4. If a graph G has a TOkCDS, then it has a TOtCDS for any integer t < k.

Proof. Let S be a TOkCDS for a graph G, where k > 1, and let G1, G2, . . . , Gk be the components of G[V −S].
Let t < k. Then S ∪ V (G1) ∪ V (G2) ∪ . . . ∪ V (Gk−t) is a TOtCDS for G. �

Lemma 2.5. Let G be a connected graph. If k is the maximum integer such that γk
tc(G) > 0, then diam(G) ≤

3k − 1.

Proof. If k is the maximum integer such that γk
tc(G) > 0, then γr

tc(G) = 0 for each r ≥ k + 1. Suppose to the
contrary that diam(G) ≥ 3k. Let x0x1x2 . . . xd be a diametrical path in G such that d = 3p + t with an integer
0 ≤ t ≤ 2, and let Li be the set of leaves of G adjacent to xi for 1 ≤ i ≤ d − 1. Let B be the subset of vertices
x3i such that |L3i| = 0 for i = 1, 2, . . . , p − 1, and define the set A by

A = {x0, x3, . . . , x3(p−1), xd}
p−1⋃
i=1

L3i \ B.

Then S = V \ A is a TO(p + 1)CDS for G. Since p + 1 ≥ k + 1, we obtain a contradiction to the hypothesis,
and the proof is complete. �

Theorem 2.6. Let G be a connected graph G of order n ≥ 3. Then γ2
tc(G) = 0 if and only if G ∈

{P3, C4, C5, Kn}.
Proof. First notice that γ1

tc(Kn) = γ1
tc(P3) = γ1

tc(C4) = 2, γ1
tc(C5) = 3, and γk

tc(Kn) = γk
tc(P3) = γk

tc(C4) =
γk

tc(C5) = 0 for any k ≥ 2. Let G be a graph of order at least three and γ2
tc(G) = 0. Since G is connected,

we have γ1
tc(G) > 0. By Lemma 2.5, diam(G) ≤ 2. If diam(G) = 1, then clearly G is a complete graph. Thus

assume that diam(G) = 2. Let x, y be two diametrical vertices with d(x, y) = diam(G) = 2.
Assume first that deg(x) ≥ 3. We show that G[N(x)] is complete. Assume that there are two non-adjacent

vertices a, b in N(x). Since V − {a, b} is not a TO2CDS for G, we obtain that there is a vertex z such that
N(z) ⊆ {a, b}. If z �= y, then V − {y, z} is a TO2CDS for G, a contradiction. So z = y. Let c ∈ N(x) − {a, b}.
Then V − {y, c} is a TOkCDS for some k ≥ 2, and by Lemma 2.4, G has a TO2CDS, a contradiction. We
deduce that G[N(x)] is complete. Now N(x) is a TO2CDS for G, a contradiction. Thus deg(x) ≤ 2. We also
have deg(y) ≤ 2. First assume that deg(x) = 1. Let w ∈ N(x). If deg(w) ≥ 3, then V − {x, y} is a TO2CDS
for G, a contradiction. Thus deg(w) = 2, and so G = P3. Assume thus that deg(x) = 2 and deg(y) = 2.
Let N(x) = {a, w}, where w ∈ N(y). If a ∈ N(w), then V − {x, y} is a TO2CDS for G, a contradiction. So
a �∈ N(w). If there is a vertex z ∈ N(a) − {x, y} such that z �∈ N(y), then V − {y, z} is a TO2CDS for G,
a contradiction. Thus each vertex of N(a) − {x, y} is adjacent to y. Similarly, each vertex of N(w) − {x, y}
is adjacent to y. If |N(a) − {x, y}| ≥ 2 or |N(w) − {x, y}| ≥ 2, then V − {x, z} is a TO2CDS for G, where
z ∈ N(a)−{x, y} or z ∈ N(w)−{x, y}, a contradiction. Thus |N(a)−{x, y}| ≤ 1 and |N(w)−{x, y}| ≤ 1. Let
N(a)−{x, y} = {z}. If a ∈ N(y), then V −{x, z} is a TO2CDS for G, a contradiction. So assume that a �∈ N(y).
If w ∈ N(z), then V − {x, y} is a TO2CDS for G, a contradiction. Thus assume now that w �∈ N(z). Then
G = C5 or N(w) − {x, y} = {z1} with z1 �= z. However, then V − {x, y} is a TO2CDS for G, a contradiction.
Since diam(G) = 2 we deduce that a ∈ N(y). If N(w) − {x, y} = {z}, then we observe that then V − {x, z} is
a TO2CDS for G, a contradiction. Thus |N(w) − {x, y}| = 0. Hence G = C4. �
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In the following we obtain the total outer-k-connected component domination number of a disconnected
graph G in terms of the total outer-k-connected component domination numbers of its components. For this
purpose we define γ0

tc(G) = |V |.
Theorem 2.7. Let G be a disconnected graph with m connected components G1, G2, . . . , Gm, and let k ≥ m.
Then

γk
tc(G) = min∑

li=k

m∑
i=1

γli
tc(Gi)

where li ∈ {0, 1, 2, . . . , k}.
Proof. Let G be a disconnected graph with m connected components G1, G2, . . . , Gm, and let k ≥ m. Let Sli

i

be a γli
tc(Gi)-set for i = 1, 2, . . . , m if Gi has a TOliCDS, where 0 ≤ li ≤ k−m+1 and

∑m
i=1 li = k. It is obvious

that
⋃m

i=1 Sli
i is a TOkCDS for G. This implies that

γk
tc(G) ≤ min∑

li=k

m∑
i=1

γli
tc(Gi).

On the other hand let S be a TOkCDS for G. Let Si = S ∩ V (Gi) for i = 1, 2, . . . , m. If li is the number of
components of Gi − Si, then Si is a TOliCDS for Gi. This completes the proof. �

We next obtain lower bounds for the total outer-k-connected component domination number of a graph G.

Theorem 2.8. Let G be a graph of order n and size e, and let k ≥ 2. If γk
tc(G) > 0, then

γk
tc(G) ≥ 2e − (n − k + 1)(n − k)

2(k − 1)
·

Proof. Let S be a γk
tc(G)-set of cardinality s. If G1, G2, . . . , Gk are the components of G[V − S] such that

|V (Gi)| = ni for i = 1, 2, .., k, then

e ≤
k∑

i=1

ni(ni − 1)
2

+
s(s − 1)

2
+

k∑
i=1

sni.

The right hand side of this inequality becomes maximum when n1 = n2 = . . . = nk−1 = 1 and nk = n−s−(k−1).
Therefore we obtain

e ≤ (n − s − k + 1)(n − s − k)
2

+
s(s − 1)

2
+ s(n − s)

=
(n − k + 1)(n − k)

2
+ s(k − 1),

and this leads to the desired bound immediately. �

Let k, p, s be integers such that p ≥ 1 and k, s ≥ 2. Now let the graph H consist of the disjoint union of Ks,
Kp and k − 1 isolated vertices v1, v2, . . . , vk−1 such that all vertices of Ks are adjacent to all vertices of Kp and
v1, v2, . . . , vk−1 are adjacent to all vertices of Ks. Then it is straighforward to verify that

γk
st(H) = s =

2e(H) − (n(H) − k + 1)(n(H) − k)
2(k − 1)

·

This family of examples show that the bound of Theorem 2.8 is sharp. Since α(H) = k, we see that the bound
α(G) ≥ k in Observation 2.1 is sharp too.
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Theorem 2.9. For a graph G of order n, size e and γk
tc(G) > 0,

γk
tc(G) ≥

⌈
4n − 2k − 2e

3

⌉
·

Proof. Let S be a γk
tc(G)-set of cardinality s, and G1, G2, . . . , Gk be the connected components of G[V − S].

Suppose that |V (Gi)| = ni for 1 ≤ i ≤ k. Since S is a dominating set of G, any vertex in Gi has at least
one neighbor in S for 1 ≤ i ≤ k. On the other hand Gi is connected and so has at least ni − 1 edges for
i = 1, 2, . . . , k. Also G[S] has no isolated vertex. Thus, we obtain

e ≥
∑

(ni − 1) +
∑

ni +
s

2
·

Since
∑

ni = n − s we have e ≥ 2n − 3s
2 − k. This implies that s ≥ 4n−2k−2e

3 , and the proof is complete. �

An immediate consequence of Theorem 2.9 with k = 1 is the following corollary for trees which is a main
result of [1].

Corollary 2.10 [1]. For a tree T of order n, γtc(T ) ≥ 2n
3 .

It is obvious that γk
tc(G) ≤ n−k. To characterize graphs achieving equality for the upper bound of the above

inequality, we need to introduce a family of graphs. For k > 1, let Gk be the class of all graphs G such that
G ∈ Gk if and only if V = A∪B such that |A| = n− k, G[A] has no isolated vertex, G[B] = Kk, and no subset
S ⊆ A ∪ B with |S| < n − k is a total outer-k-connected component dominating set for G. The following is a
characterization for graphs G with γk

tc(G) = n − k. The proof is straightforward and is omitted.

Theorem 2.11. For a connected graph G of order n, γk
tc(G) = n − k if and only if G ∈ Gk.

3. Exact values

In this section we determine the total outer-k-connected component domination number for some special
classes of graphs.

Proposition 3.1. For n ≥ 3, γk
tc(Kn) =

{
2 if k = 1
0 if k ≥ 2.

Proof. Let n ≥ 3. If S is a TOkCDS in Kn, then k = 1, since Kn[V − S] contains exactly one connected
component. Thus γk

tc(Kn) = 0 if k ≥ 2. Now it is obvious that γ1
tc(Kn) = γt(Kn) = 2. �

Proposition 3.2. For 2 ≤ m ≤ n, γk
tc(Km,n) =

⎧⎨
⎩

0 if n < k
2 if k = 1

m + n − k if n ≥ k, k ≥ 2.

Proof. Let X = {x1, x2, . . . , xm} and Y = {y1, y2, . . . , yn} be the two partite sets of Km,n. Assume that
γk

tc(Km,n) > 0. So k ≤ n. If k = 1, then γ1
tc(Km,n) = γt(Km,n) = 2. So we assume that k ≥ 2. Let S be

a γk
tc(Km,n)-set. Since Km,n[X ∪ Y − S] is disconnected, it follows that either X ⊆ S or Y ⊆ S. Therefore

Km,n[X ∪ Y − S] consists of isolated vertices. As Km,n[X ∪ Y − S] has exactly k connected components, we
deduce that |S| ≥ m + n − k. On the other hand X ∪ {y1, y2, . . . , yn−k} is a TOkCDS for Km,n of cardinality
m + n − k. This completes the proof. �

For n ≥ 3, we have the following.



238 N. JAFARI RAD AND L. VOLKMANN

Theorem 3.3. γk
tc(Pn) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 if n < 3k − 2
2k − 2 if 3k − 2 ≤ n ≤ 4k − 4

2k − 1 if n = 4k − 3
2k if 4k − 2 ≤ n ≤ 4k − 1

2k + 1 if n = 4k
2k + 2 if n = 4k + 1
n − 2k if n ≥ 4k + 2.

Proof. Let V (Pn) = {v1, v2, . . . , vn}, where vi is adjacent to vi+1 for i = 1, 2, . . . , n−1. Assume that γk
tc(Pn) > 0.

Let S be a γk
tc(Pn)-set, and let G1, G2, . . . , Gk be the connected components of G − S. Then G[S] has at least

k − 1 components. Since any component of G[S] has at least two vertices, we obtain n ≥ k + 2(k − 1) = 3k − 2.
We deduce, in particular, that γk

tc(Pn) = 0 if n < 3k − 2.
Assume that n ≥ 4k + 2. Any component of G[V −S] has at most two vertices, so |V −S| ≤ 2k. This implies

that |S| ≥ n − 2k. On the other hand {v4i+1, v4i+2 : 0 ≤ i ≤ k − 1} ∪ {vj : j ≥ 4k + 1} is a TO(n − 2k)CDS for
Pn, and thus γk

tc(Pn) = n − 2k.
Next we assume that 3k − 2 ≤ n ≤ 4k − 4. It is obvious that G[S] has at least k − 1 components, and each

component of G[S] has at least two vertices. Thus |S| ≥ 2(k−1) = 2k−2. Let D = {v3i+2, v3i+3 : 0 ≤ i ≤ k−2}.
Then D is a TOkCDS for P3k−2 of cardinality 2k− 2. If t = n− 3k + 2, then we subdivide the edges v3i+3v3i+4

for i = 1, 2, . . . , t to obtain a path Pn from P3k−2. Then D is still a TOkCDS for Pn. Thus γk
tc(Pn) ≤ 2k − 2

and the result follows.
Assume next that n = 4k − 3. Suppose that |S| ≤ 2k − 2. For S to dominate maximum number of vertices,

without loss of generality, we may assume that each component of G[S] is K2, and each component of G[S]
dominates two vertices of G[V − S]. Then |N [S]| ≤ 2(2k−2

2 ) + |S| < n, a contradiction. Thus |S| ≥ 2k − 1.
On the other hand {v4i+2, v4i+3 : 0 ≤ i ≤ k − 2} ∪ {vn−1} is a TOkCDS for Pn of cardinality 2k − 1. Thus
γk

tc(P4k−3) = 2k − 1.
Next assume that 4k − 2 ≤ n ≤ 4k − 1. Suppose that |S| ≤ 2k − 1. If each component of G[S] is a K2,

then |S| ≤ 2k − 2 and S dominates at most 4 |S|
2 ≤ 4k − 4 < n vertices of Pn, a contradiction. Thus G[S] has

a component with more than two vertices. For S to dominate maximum number of vertices, without loss of
generality, we may assume that a component of G[S] is P3, and the other components are K2. Furthermore,
the P3 component of G[S] dominates at most five vertices of G, while any K2-component of G[S] dominates at
most four vertices of G. We deduce that |N [S]| ≤ 5 + 4(2k−1−3

2 ) < n, a contradiction. Thus |S| ≥ 2k. On the
other hand {v4i+2, v4i+3 : 0 ≤ i ≤ k−2}∪{vn, vn−1} is a TOkCDS for Pn of cardinality 2k. Thus γk

tc(Pn) = 2k.
The proof for n ∈ {4k, 4k + 1} is similar. �

The following theorem can be proved in a similar manner as in the proof of Theorem 3.3, and so we omit the
proof.

Theorem 3.4. γk
tc(Cn) =

⎧⎨
⎩

0 if n < 3k
2k if 3k ≤ n ≤ 4k

n − 2k if n ≥ 4k + 1.

For a wheel and an integer k > 1 the center of the wheel is in any TOkCDS. So the following is easily verified.

Theorem 3.5. Let k ≥ 2 be a positive integer, and let Wn be a wheel with n ≥ 3. Then

γk
tc(Wn) =

{
0 if n < 2k

k + 1 if n ≥ 2k.

We close with the following problems.

Problem 1. Find sharp upper and lower bounds for the total outer-k-connected component domination number
of a graph.
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Problem 2. Determine the complexity issue of the total outer-k-connected component domination number.

Problem 3. Determine the total outer-k-connected component domination number in grid graphs.
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