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INVENTORY POLICY FOR DETERIORATING SEASONAL
PRODUCTS WITH PRICE AND RAMP-TYPE TIME
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Abstract. In this paper, we investigate the problem of simultane-
ously determining the order quantity and optimal prices for deteri-
orating products with price and ramp-type time dependent demand.
We assume that a retailer has the opportunity to adjust prices before
the end of the sales season to increase demand, decrease deterioration,
and improve revenues. A mathematical model is developed to jointly
optimize the order quantity, time interval for any two successive price
changes, and the corresponding prices. An algorithm is provided to find
the optimal solution to the proposed model. Finally, we use a numerical
example to verify the availability of this model.
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1. Introduction

It is observed that demand of many perishable seasonal products (fruits, e.g.,
mango, banana, vegetables, foodstuffs, etc.) over the entire sales season may vary
with time and prices. In the meantime, such type of seasonal products suffers
from depletion by direct spoilage. Thus deterioration of this kind of products is
also a realistic phenomenon. It is well known that the value of perishable seasonal
products decreases under deterioration during their normal storage period. As a
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result, firms face the problem of simultaneously deciding how much to order and
how to price the purchased perishable product as well as when to adjust the price
over the sales season in order to increase the demand and decrease the loss due to
deterioration.

Existing related inventory models concentrating on deteriorating seasonal prod-
ucts can be classified into three types of models according to their demand charac-
teristic: stock-dependent demand, time-dependent demand, and price-dependent
demand. Since we mainly focus on last two demand patterns, we refer the readers
to [21] for a review on inventory models with stock-dependent demand. In reality,
demand for a product may change with time. Many researchers have considered
the inventory model with time-dependent demand [2,3,7,9,10,12]. Among different
time-dependent demand models, we are typically interested in the ramp-type time-
dependent demand pattern in which demand increases up to a point of time then
it becomes steady. In [11], a ramp-type time dependent demand pattern is firstly
proposed by considering it as the combination of two different types of demand in
two successive time periods. An EOQ model with ramp-type demand, Weibull dis-
tribution deterioration, and partial backlogging is considered in [25]. A production
inventory model with a ramp-type demand pattern is developed in [16], where the
finite production rate depends on the demand. In [4], an inventory model for de-
teriorating items using a ramp-type time-dependent demand rate with three time
periods is developed. EOQ models for deteriorating items with time dependent
quadratic demand are investigated in [13, 18]. A production inventory model for
deteriorating item with ramp type demand allowing inflation and shortages under
fuzziness is developed in [17].

Since demand is usually price sensitive, many researchers have developed inven-
tory models for deteriorating items with price dependent demand. A deterministic
production lot size inventory model for the items with price dependent demand is
presented in [5]. A deterministic inventory model is addressed in [22], in which de-
mand is dependent on price, time, and inventory level. They also extend the model
to the case with a single price markdown. The newsvendor problem with multiple
discount prices is analyzed in [14], in which the discount prices are set at equal
intervals on a price domain. In [19], Shinn and Hwang investigate the problem of
determining the order quantity in which demand is a convex function of price and
the delay in payments is order-size dependent. In [20], Teng and Chang establish
an economic production quantity model for deteriorating items when the demand
is a function of price and on-display stock level. In [8], Guchhait et al develop
an inventory model of a deteriorating item with stock and selling price depen-
dent demand under two-level credit period. Recently, Some scholars perform the
studies on the inventory decision problems for deteriorating items with price- and
time-dependent demand. In [15], Maihami and Kamalabadi develop a joint pricing
and inventory control model for non-instantaneous deteriorating items with price-
and time-dependent demand, in which the demand is an increasing/decreasing ex-
ponential function of time and shortages are allowed. In [23], Wang and Huang
present a production-inventory problem for a seasonal deteriorating product with
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price- and ramp-type time-dependent demand, in which the selling season for the
deteriorating product is fixed. However, above mentioned papers consider the price
decision with the assumption that the price is unchanged once it is determined.
In [24], Wang et al. consider the pricing and lot-sizing decision in a supply chain
with price-sensitive demand. In [1], Banerjee and Sharma present a deterministic
inventory model for the product with a price and time dependent demand rate, in
which the pricing strategies are changed and pricing decision is determined under
the assumption that the times of changing price are pre-specified. In [26], You
relaxes this assumption and investigates the problem of jointly determining the
number of price settings and optimal prices for a perishable inventory system in
which demand is time and price dependent. However, in [26], the optimal pric-
ing strategy is obtained under the assumption that the time interval for any two
successive price changes is equal. Our paper assumes that the time interval for
any two successive price changes is variable and considers it as a decision variable.
Another difference between this paper and [26] in that the later paper assumes
the demand is a linear function of time whereas our paper assume as a non-linear
function of time.

In this paper, we analyze a dynamic inventory model for deteriorating seasonal
items with price and ramp-type time dependent demand. The demand pattern for
such type products implies that the demand rate of the items increases with time
up to certain time and then becomes steady when the price of the products remain
unchanged. We assume that a retailer has the opportunity to adjust prices before
the end of the sales season to improve revenue. The purpose of this paper aims to
maximize the profit over the sales season by simultaneously determining (1) the
optimal order quantity; (2) the time intervals for two successive price changes; and
(3) the corresponding prices.

2. Parameters and assumptions

Consider an inventory system where a firm purchases a perishable item at the
start of a sales season and sells it over the sales season. The following parameters
and assumptions are used in developing the model:

2.1. Parameters

Dt: Demand rate for the item at time t, Dt > 0.
h: Inventory holding cost per unit per unit of time.
d: Deterioration cost per unit.
L: Time horizon over the sales season.
θ: Constant deterioration rate for product 0 < θ < 1.
pi: ith price over the sales season.1 ≤ i ≤ n (decision variable)
Ti: Time interval for two successive price changes over the sales season, 1 ≤ i ≤

n (decision variable).
Li: Total time elapsed up to and including the time interval of adopting the ith

price Pi, Li =
∑i

k=1 Tk. Define L0 = 0.
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Ii(t): Inventory level at time [Li−1 + t] during the period of adopting ith price
pi(0 ≤ t ≤ Ti), Ii(t) ≥ 0.

Si: Sales amount from the start of the sales season up to the end of time interval
Ti.

Q: Initial order quantity at the start of the sales season (decision variable).

2.2. Assumptions

The demand rate for the item is assumed to be a function of time and price and
is of the form

Dt = D(t) − cpi (2.1)

where c is a known constant.
For perishable products, the demand rate usually increases with time up to

certain time and then becomes steady when the price of the products remain
unchanged. Therefore, we assume D(t) is a time dependent ramp-type function
defined as follows:

D(t) = Aeb(t−(t−μ)H(t,μ)), μ > 0 (2.2)

where A > 0 is the initial demand rate and b > 0 is the rate with which the demand
rate increases. H(t, μ) is the well-known Heaviside’s function [6, 16] defined as

H(t, μ) =

{
1 if t ≥ μ

0 if t < μ.
(2.3)

We assume the item deteriorates at a constant rate. The retailer adopts a dy-
namic pricing strategy during the sales season. Under this strategy, as time goes
on, the retailer changes price to increase product sale quantity. The time interval
for any two successive price changes is not necessarily equal. It is observed that
determining the time interval for any two successive price changes is equivalent to
determining when to change price. The purpose of this paper aims to maximize
the retailer’s profit over the finite time horizon L by simultaneously determin-
ing (1) the optimal order quantity Q, (2) the time intervals for two successive
price changes Ti, 1 ≤ i ≤ n, and (3) the corresponding prices pi, 1 ≤ n ≤ n.

3. Model formulation

Let Si represent the sales amount from the start of the sales season up to the
end of time interval Ti.Then, we have

Si =
i∑

m=1

∫ Tm

0

Dtdt = Si−1 +
∫ Ti

0

Dtdt. (3.1)
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Using ramp type function D(t) defined by equation (2.2), equation (3.1) can be
written as

Si = Si−1+
∫ Ti

0

(Aeb(Li−1+t−cpi)dt=Si−1+
AebLi−1(ebTi − 1)

b
−cpiTi, if 0≤ t≤μ

(3.2)

Si = Si−1+
∫ Ti

0

(Aeb(Li−1+μ−cpi)dt=Si−1+(Aeb(Li−1+μ)−cpi)Ti, if μ≤ t≤Ti

(3.3)

Let Ii(t) be the inventory level at time Li−1 + t during the period of adopting
the ith price pi(0 ≤ t ≤ Ti), i = 1, 2, 3, . . . , n, where Li−1 is the total time elapsed
up to and including the time interval of adopting the (i − 1)th price pi−1.The
differential equation governing the instantaneous states of Ii(t) is given by

dIi(t)
dt

+ θIi(t) = −DLi−1+t. (3.4)

Using ramp type function D(t), equation (3.4) becomes respectively

dIi(t)
dt

+ θIi(t) = −Aeb(Li−1+t) + cpi, 0 ≤ t ≤ μ (3.5)

with the condition Ii(L) = Q − Si−1

dIi(t)
dt

+ θIi(t) = −Aeb(Li−1+μ) + cpi μi (3.6)

with the condition Ii(Li−1) = Q − Si−1.
Solutions to equations (3.5) and (3.6) are as follows:

Ii(t) =
AebLi−1−θt

b + θ
(1 − e(b+θ)t) +

c(1 − e−θt)pi

θ
+ (Q − Si−1)e−θt 0 ≤ t ≤ μ

(3.7)

Ii(t) =
−Aebμ + cpi

θ
+

e(Li−1−t)θ(Aebμ − cpi + Qθ − Si−1θ)
θ

μ ≤ t ≤ Ti. (3.8)

Our object is to determine the optimal order quantity, optimal time interval
for any two successive price changes and the optimal price to maximize the profit
over the sales season. Since the demand has two components in two successive
time periods, the relationship among demand transfer points and the time interval
for two successive price changes can be completely characterized by illustrating
following three cases:

Case 1: The time interval for two successive price changes starts and ends within
the time interval [0, μ], Ti < μ.

Case 2: The time interval for two successive price changes starts in the time
interval [0, μ] but ends in [μ, L].Ti is not necessarily greater than μ but
Ti < L.
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Case 3: The time interval for two successive price changes starts and ends within
the time interval [μ, L], Ti < L − μ.

We first derive profit functions for each of the cases, then combine those using
an algorithm to determine the optimal order quantity and optimal pricing strategy
for the season to maximize total profit.

3.1. Case 1

In this case, the time interval for two successive price changes starts and ends
within the time interval [0, μ]. Obviously, retailer’s sales revenue is defined as

Ri = pi

∫ Ti

0

Dtdt = pi

∫ Ti

0

(Aeb(Li−1+t) − cpi)dt

=
AebLi−1(ebTi − 1)pi

b
− cTip

2
i . (3.9)

Based on (3.7), retailer’s holding cost and deteriorating cost during the time
interval of adopting price pi can be expressed as, respectively

HCi = h

∫ Ti

0

Ii(t)dt =
hAebLi−1

b + θ

(
1 − e−θTi

θ
+

1 − ebTi

b

)

+
hc(Ti + e−θTi

θ − 1)pi

θ
− h(Q − Si−1)(e−θTi − 1)

θ
(3.10)

DCi = dθ

∫ Ti

0

Ii(t)dt =
dθAebLi−1

b + θ

(
1 − e−θTi

θ
+

1 − ebTi

b

)

+
dθc(Ti + e−θTi

θ − 1)pi

θ
− dθ(Q − Si−1)(e−θTi − 1)

θ
· (3.11)

Therefore, the unit time profit function during the time interval of adopting
price can be obtained as

Π(Ti, pi, Q) =
Ri − HCi − DCi

Ti

=
AebLi−1(ebTi−1)pi

bTi
−cp2

i −
(h + dθ)AebLi−1

(b+θ)Ti

(
1−e−θTi

θ
+

1−ebTi

b

)

− (h + dθ)c(Ti + e−θTi

θ − 1)pi

θTi
+

(h + dθ)(Q − Si−1)(e−θTi − 1)
θTi

·
(3.12)

The above function is a composite function of Q, Ti and pi. Here our object is
to find the values of Q, Ti and pi optimally to maximize the unit time profit. Our
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problem can be denoted as the following constrained problem (P1)

(P1) max Π(Ti, pi, Q) (3.13)

subject to pi <
Aeb(Li−1+Ti)

c
(3.14)

0 < Ti < μ (3.15)
Si < Q (3.16)

Ii(Li) > 0 (3.17)
Li ≤ L. (3.18)

3.2. Case 2

The maximum profit of the retailer is determined in this case if the time interval
for two successive price changes starts in the time interval [0, μ] but ends in the
time interval [μ, L]. In this case, retailer’s sales revenue is expressed as

Ri = pi

∫ Li

Li−1

Dtdt = pi

∫ μ

Li−1

(Aebt − cpi)dt + pi

∫ Li

μ

(Aebμ − cpi)dt

=
A(ebμ − ebLi−1)pi

b
− cTip

2
i . (3.19)

Based on (3.7) and (3.8), retailer’s holding cost and deteriorating cost can be
expressed as, respectively

HCi = h

∫ Ti

0

Ii(t)dt = h

∫ μ

0

Ii(t)dt + h

∫ Ti

μ

Ii(t)dt

=
hAebLi−1(b(1 − e−θμ) + θ(1 − ebμ))

bθ(b + θ)
+

hcpi(μθ + e−θμ − 1)
θ2

+ h(Q − Si−1)
1 − e−θμ

θ
+

h

θ2
(Aeb(Li−1+μ) − cpi)

× (eθ(Li−1−μ) − eθ(Li−1−Ti) + θ(μ − Ti))

+
h

θ2
(eθ(Li−1−Ti) − eθ(Li−1−μ)(Q − Si−1)) (3.20)

DCi = dθ

∫ Ti

0

Ii(t)dt = dθ

∫ μ

0

Ii(t)dt + dθ

∫ Ti

μ

Ii(t)dt

=
dAebLi−1(b(1 − eθμ) + θ(1 − ebμ))

b(b + θ)
+

dcpi(μθ + e−θμ − 1)
θ

+ d(Q − Si−1)(1 − e−θμ) +
d

θ
(Aeb(Li−1+μ) − cpi)

× (eθ(Li−1−μ) − eθ(Li−1−Ti) + θ(μ − Ti))

+
d

θ
(eθ(Li−1−Ti) − eθ(Li−1−μ)(Q − Si−1)). (3.21)
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Thus, retailer’s unit time profit function during the time interval of adopting
price pi can be obtained as

Π(Ti, pi, Q) =
A(ebμ − ebLi−1)pi

bTi
− cp2

i

− (h+dθ)AebLi−1(b(1−eθμ)+θ(1−ebμ))
bθ(b+θ)Ti

− (h+dθ)cpi(μθ+e−θμ−1)
θ2Ti

− (h + dθ)(Q − Si−1)
1 − e−θμ

θTi

− (h+dθ)(Aeb(Li−1+μ)−cpi)(eθ(Li−1−μ)−eθ(Li−1−Ti)+θ(μ−Ti))
θ2Ti

− (h + dθ)
eθ(Li−1−Ti) − eθ(Li−1−μ)(Q − Si−1)

θ2Ti
· (3.22)

Similar to Case 1, our problem can be denoted as the following constrained
problem (P2):

(P2) maxΠ(Ti, pi, Q) (3.23)

subject to pi <
Aebμ

c
(3.24)

Si < Q (3.25)
Ii(Li) > 0 (3.26)

Li ≤ L (3.27)
Ti > 0. (3.28)

3.3. Case 3

In this case, the time interval of price change starts and ends within the time
interval [μ, L]. Retailer’s sales revenue is expressed as

Ri = pi

∫ Ti

0

Dtdt = pi

∫ Ti

0

(Aebμ − cpi)dt = AebμTipi − cTip
2
i . (3.29)

Based on (3.8), the retailer’s holding cost and deteriorating cost can be obtained
as, respectively

HCi = h

∫ Ti

0

Ii(t)dt =
−h(Aeb(Li−1+μ) − cpi)(e(Li−1−Ti)θ − eLi−1θ + Tiθ)

θ2

+
h(eLi−1θ − e(Li−1−Ti)θ)(Q − Si−1)

θ
(3.30)

DCi = dθ

∫ Ti

0

Ii(t)dt =
−d(Aeb(Li−1+μ) − cpi)(e(Li−1−Ti)θ − eLi−1θ + Tiθ)

θ

+ d(eLi−1θ − e(Li−1−Ti)θ)(Q − Si−1). (3.31)
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Thus, retailer’s unit time profit function during the time interval of adopting
price can be obtained as

Π(Ti, pi, Q) = Aebμpi−cp2
i −

(h+dθ)(Aeb(Li−1+μ)−cpi)(e(Li−1−Ti)θ−eLi−1θ+Tiθ)
θ2Ti

+
(h + dθ)(e(Li−1θ − e(Li−1−Ti)θ))(Q − Si−1)

θTi
· (3.32)

Similar to Case 1, our problem can be denoted as the following constrained
problem (P3):

(P3) max Π(Ti, pi, Q) (3.33)

subject to pi <
Aebμ

c
(3.34)

Si < Q (3.35)
Ii(Li) > 0 (3.36)

Ti > 0 (3.37)
Li ≤ L. (3.38)

4. An algorithm for model solution

In this section, we develop an algorithm to determine the retailer’s maximum
profit, optimal order quantity and optimal pricing strategy over the sales season.
Since the demand pattern is partitioned two time periods over the entire sales
season, the three cases mentioned above may arise in different combinations. To
deal with different demand patterns in different successive time periods, we use
the following algorithm to determine the maximum retailer’s total profit, optimal
pricing strategy for the entire sales season and the initial order quantity at the
start of the sales season.

Algorithm
Step 1: Let Li = 0, Si = 0, n = 0, and determine the initial value of Q (i.e. Q0).
Step 2: Solve problem (P1), Li = Li + Ti, Si + Si +

∫ Ti

0
Dtdt, n = n + 1.

Step 3: If μ < Li < L, then Li = Li − Ti, Si = Si −
∫ Ti

0
Dtdt, n = n − 1 go to

Step 5.
Step 4: If Li = L, perform Procedure 1.
Step 5: Solve problem (P2).
Step 6: Li = Li+Ti, Si = Si+

∫ Ti

0 Dtdt, n = n+1, if Li = L, perform Procedure 1.
Step 7: Solve problem (P3) and go to Step 6.

Procedure 1
If Si �= Q0,let Q0 = Si, Li = 0, Si = 0, n = 0. Perform Steps 2–7.
If Si = Q0,then optimal order quantity Q∗ = Q0,optimal pricing interval

T ∗
i = Ti, optimal price p∗i = pi, calculate profit Π(T ∗

i , p∗i , Q
∗) and total profit

ΠT (T ∗
i , p∗i , Q

∗) =
∑

i Ti × Π(T ∗
i , p∗i , Q

∗), i = 1, 2, 3, . . . Stop.
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In order to perform above Algorithm, we firstly have to determine the initial
value of Q (i.e. Q0). We can consider initial Q0 as the optimal order quantity Q∗

S

obtained from the following model (P4) with static pricing strategy.

(P4) max Π(p, Q) =
p

L

(∫ μ

0

Dtdt +
∫ L

μ

Dtdt

)

− (h+dθ)
L

(∫ μ

0

(
Ae−θt

b+θ
(1−e(b+θ)t)+

c(1−e−θt)p
θ

+Qe−θt

))
dt

+
(h + dθ)

L

∫ L

μ

(
1
θ
(Aebμ − cp)(e−θt − 1) + Qe−θt

)
dt (4.1)

p > 0 (4.2)

Q > 0. (4.3)

5. Numerical example

To illustrate the practicality of the proposed model we take the parameter values
as h = 0.60, θ = 0.02, A = 50, b = 0.02, d = 5, μ = 1.0, c = 1. The entire season
lengths are assumed as 21 and 15, respectively.

By solving model (P4), we can obtain the optimal price p∗S and order quantity
Q∗

S with static pricing strategy (shown in Tab. 1).

Table 1. Optimal price and order quantity with static pricing strategy.

L pS QS ΠT = Π(p,Q) × L
20 28.185 455.989 9399.199
15 27.643 350.003 7168.979

Let the initial Q0 = Q∗
S,by applying the above mentioned algorithm, the results

can be obtained as in Tables 2 and 3.
We see from Table 2 that the final optimal value of n is 3, and corresponding

values of Q is 508.943, T1 = 1.102, T2 = 16.054, T3 = 2.844, p1 = 25.078, p2 =
25.658, p3 = 25.017. The corresponding maximum total profit is 9994.250. In
addition, n = 3 implies that prices are set three times at time periods 0.0, 1.102–
17.156, respectively. The optimal prices 25.078, 25.658, 25.017 are set during time
intervals [0,1.102], [1.102, 17.156], [17.15620.000], respectively.

Similarly, we can observe from Table 3 that the final optimal value of n is 3,
and corresponding values of Q is 381.856, T1 = 0.908, T2 = 12.454, T3 = 1.638,
p1 = 25.078, p2 = 25.594, p3 = 25.222 The corresponding maximum profit is
7986.257. In addition, n = 3 implies that prices are set three times at time periods
0.0, 0.90813.362, respectively. The optimal prices 25.078, 25.594, 25.222 are set
during time intervals [0,0.908], [0.908, 13.362], [13.362,15.000], respectively.
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Table 2. Optimal order quantity, time interval for any two suc-
cessive price changes, corresponding prices and profit (L = 20).

Iteration time i Ti Li pi(Ti) Si Π(Ti, pi)

1 1 0.871 0.871 25.078 25.425 330.377

Q0 = 455.989 2 14.736 15.607 25.630 396.155 507.121

3 4.393 20.000 24.758 511.483 649.061

2 1 1.124 1.124 25.078 25.425 291.917

Q0 = 511.483 2 16.106 17.230 25.659 436.859 489.550

3 2.847 20.000 25.016 508.940 625.402

3 1 0.963 0.963 25.078 25.425 293.750

Q0 = 508.837 2 16.190 17.153 25.658 434.947 490.344

3 2.847 20.000 25.016 508.940 625.402

4 1 0.896 0.896 25.078 25.425 293.679

Q0 = 508.940 2 16.260 17.156 25.657 435.023 490.351

3 2.844 20.000 25.017 508.947 625.360

5 1 1.054 1.054 25.078 25.426 293.674

Q0 = 508.947 2 16.102 17.156 25.658 435.027 490.349

3 2.844 20.000 25.017 508.942 625.355

6 1 0.897 0.897 25.078 25.426 293.678

Q0 = 508.942 2 16.259 17.156 25.658 435.023 490.351

3 2.844 20.000 25.017 508.943 625.358

7 1 1.102 1.102 25.078 25.425 293.678

Q0 = 508.943 2 16.054 17.156 25.658 435.024 490.350

3 2.844 20.000 25.017 508.943 625.357

Table 3. Optimal order quantity, time interval for any two suc-
cessive price changes, corresponding prices and profit (L = 15).

Iteration time i Ti Li pi(Ti) Si Π(Ti, pi)

1 1 1.013 1.013 25.078 25.426 403.830

Q0 = 350.003 2 11.355 12.368 25.581 314.503 541.200

3 2.632 15.000 25.052 382.829 649.595

2 1 0.895 0.895 25.078 25.425 381.080

Q0 = 382.829 2 12.497 13.392 25.595 346.368 530.569

3 1.608 15.000 25.227 381.831 635.537

3 1 0.887 0.887 25.078 25.425 381.772

Q0 = 381.831 2 12.474 13.361 25.594 339.589 530.891

3 1.639 15.000 25.221 381.857 635.970

4 1 1.112 1.112 25.078 25.426 381.754

Q0 = 381.857 2 12.250 13.362 25.594 339.609 530.883

3 1.638 15.000 25.221 381.856 635.958

5 1 0.908 0.908 25.078 25.426 381.754

Q0 = 381.856 2 12.454 13.362 25.594 339.609 530.883

3 1.638 15.000 25.222 381.856 635.959
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We can see from Tables 2 and 3 that the price should be set low initially,
raised slightly and then decreased again in the three successive intervals. Similarly,
time interval for any two successive price changes and the sales revenue during
these time intervals also follow a similar change pattern. This implies that, for
deteriorating seasonal products with price and ramp-type time dependent demand,
at the beginning of sale season, the demand is usually relatively low, in order
to increase demand and sale revenue, the sale price should be kept low. As the
time goes up, the demand increases accordingly, the sale price can be increased
gradually. However, at the end of sale season, the demand will decrease, in order
to decrease the loss due to deterioration and stimulate the demand, the sale price
should be decreased.

We also obtain that the optimal profits over the entire season length L = 20
and L = 15 with static pricing strategy (n = 1) are 9399.199 and 7168.979,
respectively. Comparing this value with that of the dynamic pricing strategy, we
find that the dynamic pricing strategy outperforms the static pricing strategy.
This implies that, under dynamic pricing strategy, product inventory and demand
change as time goes on, retailer’s price adjustment can influence the demand and
decrease the loss due to deterioration.

6. Conclusions

This paper deals with a dynamic inventory problem for the deteriorating sea-
sonal products with price and ramp-type time dependent demand. The contribu-
tion of this paper can be summarized as follows: firstly, this paper relaxes the
assumption in [26] that the time interval for any two successive price changes is
equal, and considers the time interval for any two successive price changes as a
decision variable. Secondly, this paper is an extension of previous paper, where
the inventory model for the deteriorating seasonal products with ramp-type time
dependent demand has been discussed. Whereas both price and ramp-type time
dependent demand is considered in this paper. It is shown that the inventory model
with dynamic price proposed in this paper outperforms the inventory model with
static price.

The proposed model in this paper can be extended in several ways. For example,
we might extend the proposed demand function to the three time periods classified
time dependent ramp-type function. We could also consider the deteriorate rate
for the season products as a time varying function. The demand could also be
generalized as a function of the price, time, stock level, advertising and product
quality. Furthermore, we could perform some analysis to investigate if there is
some condition on the parameters for joint optimization. Dynamic programming
would possibly be used to handle such a problem.
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