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DUAL PARAMETERIZATION AND PARAMETERIZED APPROXIMABILITY
OF SUBSET GRAPH PROBLEMS

Édouard Bonnet1 and Vangelis Th. Paschos2

Abstract. We discuss approximability in FPT-time for the class of subset optimization graph problems
where a feasible solution S is a subset of the vertex set of the input graph. This class encompasses many
well-known problems, such as min dominating set, min vertex cover, max independent set, min feedback
vertex set. We study approximability of such problems with respect to the dual parameter n−k where n
is size of the vertex set and k the standard parameter. We show that under such parameterization,
many of these problems, while W[·]-hard, admit parameterized approximation schemata.
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1. Preliminaries

We say that a minimization (resp., maximization) problem Π, together with a parameter k, is parameterized
r-approximable, if there exists an FPT-time algorithm which computes a solution of size at most (resp., at
least) rk whenever the input instance has a solution of size at most (resp., at least) k, otherwise, it outputs an
arbitrary solution. This line of research was initiated by three independent works [8,10,13]. For a very interesting
overview of older results, see [18].

Here, we handle approximability and inapproximability in FPT-time of a broad class of NPO graph problems
(see [2] for a formal definition of an NPO problem) that we call subset problems. They can be defined as follows
(for a larger definition of subset problems that goes beyond graphs, one can be referred to [21]).

Definition 1.1. Consider an NPO graph problem Π defined on a graph G = (V, E). Then Π is a subset
problem, if any feasible solution S for G is a subset of V and if the objective value of S is equal to |S|.
Let us note that the notion of a subset problem can be extended to also capture problems that are not defined by
means of graphs. For optimum satisfiability, considering that a feasible solution is a subset of satisfied clauses,
maximum or minimum satisfiability can be considered as subset problems. For problems defined on set systems,
such as min set cover or max set packing, we can consider that the “reference” set of data is the family S of
subsets of the ground set U (also called universe), and feasible solutions are subfamilies of S.
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The class of subset graph problems includes some of the most popular combinatorial problems such as min
dominating set, min vertex cover, max independent set, min independent dominating set, min feedback vertex
set, several fixed cardinality problems (as, for example, max and min k-vertex cover), etc.

The goal of the paper is to handle dual parameterization (defined just below) and parameterized approxima-
tion of subset problems. For simplicity, we restrict ourselves in graph problems but our results also apply for
satisfiability or set system problems (following the assumptions sketched just above).

Subset graph problems can be optimally solved in time O∗(2n) (where n is the order of the input graph)
by exhausting all the vertex subsets and outputting an optimum feasible subset. Notation O∗(·) suppresses
polynomial factors in the size of the input, that is, for any constant c, ncf(n) is in O∗(f(n)).

Given an instance G of a subset problem Π, denoting by n the order of G and by k the standard parameter
of Π (i.e., the cardinality of its optimal solution), we call dual parameter for Π the parameter n−k. Accordingly,
we call dual parametrization of Π, denoted by D-Π, the subset problem that has the same constraints than Π
and standard parameter (cardinality of optimal solution) kD = n − k. For example, if Π stands for min vertex
cover, D-min vertex cover is max independent set.

Besides the fact that dual parameterization is interesting per se, for numerous problems has also a natural
interpretation, it is even a structural parameter of the instance. For instance:

• for max independent set, the dual parameter n−α(G), where α(G) denotes the stability number of G, is the
size of a minimum vertex cover.

• for min set cover, the dual parameter represents the number of unused sets;
• for min feedback vertex set, the dual parameter is the size of a maximum induced forest;
• for min vertex coloring in a graph of order n, the dual parameter n− χ is the number of unused colors, i.e.,

the number of available colors not used by the coloring.

Parameterization by the dual parameter has been studied for many classical (and not only subset) problems
(see, for example, [7, 12]) and for a lot of them it has been proved that although hard with respect to the
standard parameter, they become easy when parameterized by the dual parameter. The most known such
problem is the famous max independent set problem when parameterized by the size of a minimum vertex cover
(this is a folklore result). This is also the case of min vertex coloring problem (which is not a subset problem)
which, although not in XP (unless P �= NP) when parameterized by the chromatic number χ, is in FPT when
parameterized by n − χ [9, 12].

In Section 2, we show that for another subset graph-problem, the min independent dominating set, its dual
parameterization is also in FPT. On the contrary, min set cover parameterized by n − k (where n = |S|) is
W[1]-hard.

2. Some complexity results for subset problems

As it is done in [6], we first observe that the min independent dominating set problem, while being known to
be W[2]-hard for the standard parameter, is FPT with respect to the dual parameter.

Proposition 2.1. min independent dominating set parameterized by n − k is FPT.

Proof. For min independent dominating set, n − k is the size of a maximum minimal vertex cover which is
at least equal to a minimum vertex cover which is bigger than the treewidth of the input graph [5]. The fact
that min independent dominating set parameterized by treewidth is in FPT [1], implies that min independent
dominating set parameterized by n − k is FPT. �

Proposition 2.2. min set cover is W[1]-hard when parameterized by n − k and W[2]-complete when
parameterized by k.
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Proof. On the one hand, min set cover is W[2]-complete when parameterized by the standard parameter [12]. On
the other hand, when parameterized by the dual parameter, min set cover is W[1]-hard as being a generalization
of max independent set. Indeed, min vertex cover can be seen as a restriction of min set cover, where elements
are edges, and there is one set per vertex of the graph, which contains all the edges incident to this vertex.
Besides, the complement of a vertex cover is an independent set. Therefore, this restricted version of set cover
is equivalent to finding an independent set of size n− k parameterized by n− k (one may rename n− k by k′),
which is known to be W[1]-hard. �

Similar negative results hold also for dual parameterizations of several well-known subset graph problems. For
instance:

• the dual parameterization of min vertex cover is the size of a maximum independent set and min vertex
cover parameterized by α(G) is W[1]-complete [6];

• min feedback vertex set is W[1]-complete when parameterized by the dual parameter [9, 14, 17] (the dual
parameterization of min feedback vertex set is called max vertex induced forest).

3. Using polynomial approximation to design FPT approximation schemata

for W[·]-hard subset problems

For a subset problem Π, D-Π will denote in the sequel the dual parameterization of Π. In the following theorem,
we give a sufficient condition under which, given a subset problem Π, problem D-Π admits an approximation
schema running in FPT-time with respect to the standard parameter of Π. Informally, the approximation ratio
is computed with the dual parameter but the FPT running time is function of the standard parameter.

Theorem 3.1. Consider a subset problem Π with standard parameter k and set kD = n − k, where n is the
size of an input of Π. Then:

1. if Π is a minimization problem and is approximable in polynomial time within ratio at most (log n)g(k), for
some function g, problem D-Π parameterized by k admits a parameterized approximation schema;

2. if Π is a maximization problem, problem D-Π parameterized by k admits a parameterized approximation
schema.

Proof. In order to prove item 1, consider a problem Π satisfying the conditions of the item, its dual version D-Π,
a ρ-approximation algorithm A for Π and denote by k′ the cardinality of the solution returned by A. The
complement of this solution is a solution of size k′

D = n − k′ for D-Π, while the size of the optimum is
kD = n− k. Thus, the approximation ratio guaranteed for D-Π is (recall that D-Π is a maximization problem):

k′
D

kD
=

n − k′

n − k
� n − ρk

n − k
· (3.1)

Fix some constant ε > 0. Then, in order that the last fraction in (3.1) is greater than 1 − ε, it must hold that:

n �
(

ρ − 1 + ε

ε

)
k. (3.2)

If n does not satisfy (3.2), then the simple O∗(nk)-time algorithm that builds all the subsets of size up to
k and chooses the one which constitutes the best solution, runs in FPT time as long as ρ � logg(k) n. In-
deed, in this case, n � ((ρ−1+ε)/ε)k � (((log n)g(k)−1+ε)/ε)k. Thus, the O∗(nk) trivial algorithm for Π is also
O∗((k/ε)k(log n)kg(k)) which is FPT. Indeed, for any function h, O((log n)h(k))) is O(F (k)p(n)), for some func-
tion F and polynomial p [19].
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Proof of item 2 is similar. Now, D-Π is a minimization problem. With the same notation as in the proof of
item 1, we distinguish the following two cases:

1. n � ((1+ε)k−k′)/ε. This implies:
k′

D

kD
=

n − k′

n − k
� 1 + ε

so A yields a 1 + ε-approximation (recall that the objective value, i.e., the value of an optimal solution, is
the dual parameter).

2. n < ((1+ε)k−k′)/ε � (1+ε)k/ε. In this case, the exhaustive search in O∗(2n) is also O∗(2(1+ε)k/ε), hence FPT.

This completes the proof of the theorem. �

Note that, for minimization problems approximable in polynomial time within ratios that are functions of k
(i.e., of the optimum), item 1 of Theorem 3.1 applies without any restriction on the values of these ratios.
On the other hand, for maximization problems (item 2), such a case implies the existence of parameterized
approximation schemata that are subexponential in k.

Observe that min independent dominating set does not meet the conditions of Theorem 3.1. Indeed, the best
known polynomial time achievable approximation ratio for min independent dominating set is Δ + 1, where Δ
is the maximum degree of the input graph and can be aribatrily larger than O(log n), and it is inapproximable
within Δ1−ε, for any ε > 0 in polynomial time [15].

The scope of Theorem 3.1 encompasses more problems than subset problems, for instance, coloring problems.
Of course, the classical min vertex coloring problem does not meet the conditions of item 1, since it is inapprox-
imable in polynomial time within better than n1−ε, for any ε > 0 [22]. Moreover, as it is proved in [3], D-min
vertex coloring is APX-hard. So, a parameterized approximation schema by means of Theorem 3.1 is impossible
for min vertex coloring. Consider two edge-coloring problems: the classical min edge coloring and the max edge
coloring3 problem. The former is polynomially approximable within ratio 4/3 [20] and the latter one within
ratio 2 [16]. Thus, by Theorem 3.1, both problems admit FPT approximation schemata when parameterized by
the dual parameter m − k (where m denotes the size of the edge set of the input graph).

We now give two corollaries of Theorem 3.1.

Corollary 3.2. D-min set cover, D-min dominating set, D-min feedback vertex set, D-min edge coloring, D-max
edge coloring parameterized by k, admit parameterized approximation schemata.

Recall that as it has been mentioned in Section 1, even max sat and min sat can be seen as subset problems.
Moreover, min sat is polynomially approximable within constant ratio [4]. Thus, the following holds.

Corollary 3.3. D-max sat and D-min sat parameterized by k are approximable by parameterized approximation
schemata.

The results of Corollaries 3.2 and 3.3 offer interesting insights on the possible relations between classical poly-
nomial approximation and parameterized approximation that deserve further investigation.

4. Some words about “differential” parameterization

Another interesting parameter, not systematically studied yet, is the differential parameter. It can be defined
by ω − k, where ω is the worst-case solution value of an instance [11]. Informally, given an instance I of a
combinatorial problem Π, ω(I) is the optimal value of a problem Π′ defined on the same set of instances and
having the same feasibility constraints as Π, but Π′ has the opposite goal.

Although for some minimization subset problems, differential and dual parameters coincide (min vertex
cover, min set cover, min dominating set, etc., are such problems), this is not the case for any problem. For

3Given an edge-weighted graph G, the weight of a color M (that is a matching of G) is defined as the weight of the “heaviest”
edge of M and the objective is to determine a partition of the edges of G into matchings, minimizing the sum of their weights.
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min independent dominating set, for example, the value of a worst solution on an instance I is the size of a
maximum independent set (that is the largest of the independent dominating sets in I). Thus, min independent
dominating set, while in FPT when parameterized by the dual parameter (Prop. 2.1), becomes W[1]-hard when
parameterized by the differential parameter [6].

On the other hand, for many maximization subset problems as max independent set, max clique, knapsack,
etc., the wost solution (of value 0) is the empty set. There, the differential parameter coincides with the standard
one.

In max minimal vertex cover, the worst solution value is the size τ(G) of a minimum vertex cover. Thus,
denoting by k its standard parameter, its differential parameter is k − τ(G). The following easy proposition
holds for this problem.

Proposition 4.1. max minimal vertex cover parameterized by the differential parameter is W[1]-hard.

Proof. Given a graph G, let ι(G) be the size of a minimum independent dominating set and k the size of a
maximum minimal vertex cover. As k + ι(G) = n = α(G) + τ(G), it holds that k − τ(G) = α(G) − ι(G). Recall
that min independent dominating set parameterized by α(G) − ι(G) is W[1]-hard [6]; this implies that it is so
when parameterized by k−τ(G). If max minimal vertex cover was in FPT when parameterized by k−τ(G), one
by taking the complement of the solution, would be able to determine a minimum independent dominating set
in time parameterized by k− τ(G) = α(G)− ι(G), a contradiction (unless FPT = W[1]) since min independent
dominating set parameterized by α(G) − ι(G) is W[1]-hard. �

A more systematic study of the complexity of exactly or approximately solving problems parameterized by the
differential parameter (when such parameterization makes sense) seems to us an interesting direction of future
research.

5. Final remarks

We studied here parameterized approximability of subset problems, which constitute a very natural and
popular class of combinatorial problems. We have sketched a systematic approach for approximating subset
problems when parameterized by the dual parameter, i.e., parameter “size of the instance minus standard
parameter”. We showed that such parameterization is able to produce non-trivial parameterized approximation
results that, in many cases, can also fit another polynomial-time approximation paradigm: the differential
approximation. Studying parameterized approximability of problems with respect to any parameter for which
they are known to be hard is very important and adds deeper insights on the parameterized intractability of
the world of combinatorial problems.

Finally, a particularly interesting problem is the existence of a dual prameterized approximation schema for
min vertex coloring. As we have mentioned in Section 3 (above Cor. 3.2), such a schema is not achievable by
application of Theorem 3.1. Is such schema achievable by ad hoc methods? Can we prove that, under some
credible complexity hypothesis, such a result is impossible. This, to our opinion, is a rather difficult open
question that deserves further research.
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edged.
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