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MODELLING AND ANALYSIS OF A BULK SERVICE QUEUEING MODEL
WITH MULTIPLE WORKING VACATIONS AND SERVER BREAKDOWN

S. JEYAKUMAR! AND B. SENTHILNATHAN?

Abstract. In this paper, a single server queue with variable batch size service, Poisson bulk arrival
with multiple working vacations and server breakdown is considered. In working vacation, the server
works with different rates rather than completely stoping the service during the vacation period. In
this model, during the working vacation the server starts the service if it finds at least one customer
in the queue with a maximum of ‘b’ customers, otherwise the server serves with variable batch size.
Service time in working vacation and in regular period follows general distribution. The probability
generating function of a queue size at an arbitrary time epoch as well as other completion epochs is
derived. Expected queue length in a steady state is obtained. Also a numerical illustration is presented.
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1. INTRODUCTION

Bulk queueing models have been analyzed in the past by several authors. In these models, the customers
arrive in bulk and provide the service in batches. Server vacation models are useful for the systems in which
the server wants to utilize the idle time for different purposes. Application of vacation models can be found in
production line systems, designing local area networks and data communication systems. Queueing systems with
general bulk service and vacations have been studied extensively by many authors. Doshi [3] and Takagi [13]
have made comprehensive surveys of queueing systems with vacations.

Lee [8] has developed a procedure to calculate the system size probabilities for a bulk queueing model.
Krishna Reddy et al. [7], Arumuganathan and Jeyakumar [1] have studied Bulk queueing models with different
parameters. Jeyakumar and Senthilnathan [5] have discussed a study on the behavior of the server breakdown
without interruption in a M*/G(a,b)/1 queueing system with multiple vacations and closedown time.

Working vacation policies of queueing systems have gained much attention in the literature recently. In many
real life situations, the server can be used in various forms under different rates (service in low rate) during
the vacation period. Such a queueing system is called a queue with working vacation and was introduced by
Servi and Finn [12]. Zhang and Xu [19] have investigated an M/M/1 queue with multiple working vacations and
N-policy using quasi birth and death processes through matrix-geometric solution method. Liu et al. [11] have
discussed stochastic decompositions in the M/M/1 queue with working vacations. A batch arrival MX /M/1
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queue with single working vacation was studied by Xu et al. [16]. They derived PGF of the stationary system
length distribution by using matrix analytic method. Tian et al. [14] have discussed the M/M/1 Queue with
Single Working Vacation.

Wu and Takagi [15] extended Servi and Finn [12] M/M/1/WV model to an M/G/1/WV model, where the
service times during service period, the service times during working vacation as well as vacation times are
generally distributed. Queue-length distribution of the M/G/1 queue with working vacations (M/G/1/WV)
was presented by Kim et al. [6]. A GI/M/1 queue with multiple working vacations has been investigated by
Baba [2]. Li and Tian [9] have provided a detailed discussion of a GI/M/1 queue with single working vacation.
A bulk input Geom™! /Geom/1 queue with single working vacation has been analyzed by Xu et al. [17]. They
derived PGF of the stationary queue size using the matrix analysis method, from which they got the stochastic
decomposition result for the PGF of the stationary queue size. Li et al. [10] have considered an M/G/1 queue
with exponentially working vacations using matrix analytic approach and they derived the expected number of
customers in the queue at an arbitrary time epoch and obtained other measures too. Yi et al. [18] have presented
the steady-state queue-length distribution of the Geo/G/1 queue with disasters.

In the literature of queueing models with working vacation, it is observed that, working vacation queueing
models with server breakdown is not available in the literature except Jain and Jain [4] also it is noted that
papers on bulk service with working vacation do not exist in the literature. It is needed to steady the problem
existing in a real time situation, which is discussed in the following section, which is the motivation for the
development of this paper.

Our paper differs from the existing ones in the following way: for the first time to our knowledge the working
vacation and server breakdown concept is newly considered for a variable batch size service queuing model which
is of most practical importance. Probability generating function of queue length distribution at an arbitrary
time epoch in steady state is obtained by using supplementary variable technique by Lee’s method. Also the
PGF of queue size at various completion epochs such as idle in working vacation, service in working vacation
and renovation in working vacation are obtained.

This paper is organized as follows: In Section 2, the description of the queueing model and the steady state
equations has been developed. Queue size distribution is discussed in Section 3. The probability generating
function (PGF) of the queue length distribution in steady state at an arbitrary time completion epoch as well
as the probability generating function of idle in working vacation, service completion in working vacation and
service completion in regular period epochs are derived in Section 4. Expected queue length of the queueing
system is obtained in Section 5. Numerical results are presented in Section 6. Finally the findings concluded in
Section 7.

2. DESCRIPTION OF THE MODEL AND SYSTEM EQUATIONS

A practical situation for the proposed model is observed in flare nuts production industries wherein our
attention is focused on turret lathe machine. By using this machine they produce the flare nuts by machining
operations like turning, drilling, threading and cutting the brass rod. Turret lathe is a semi automatic machine
and it has the provision to vary the speed of the machining operations by using the lever. The operator can
provide the batch service for producing minimum ‘1’ flare nut to maximum ‘b’ flare nuts in the working vacation
period with slow service rate. After completing a working vacation period, if the requirement of the flare nuts is
more than the threshold value (a), the operator provides the batch service for producing minimum ‘a’ flare nut
to maximum ‘b’ flare nuts at a faster rate of speed by changing over the lever to complete the process early. This
is a practical and existing situation in day-to-day affairs of a machine shop. In case of server break down, the
server can manage the service to complete the batch by manual operation after which, the renovation process
will take place.

The above process can be modeled as bulk service queueing model with multiple working vacations and server
breakdown. In this queueing system, during the working vacation period, the server provides the batch service
for minimum ‘1’ customer to maximum of ‘b’ customers in slow service rate. Also if the system becomes empty,
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it remains idle. After completing a batch of service in working vacation, if there is any breakdown in the server
with probability (), the renovation of service station will be considered with slow renovation rates ;. After
completing the renovation of the service station or if there is no breakdown of the server with probability (1—m),
again it starts the service (slow rate) with maximum of ‘b’ customers till the working vacation is complete. At the
end of the working vacation, if it finds ‘a’ customers in queue, it starts the service at a fast rate (regular period)
with maximum of ‘b’ customers. After completing a batch of service in regular period, if there is any breakdown
in the server with probability (7), the renovation of service station will be carried out with different renovation
rates 7. After completing the renovation of service station in regular period or if there is no breakdown of the
server with probability (1 — 7), if the queue length is greater than ‘a’, again it starts the regular service with
maximum of ‘b’ customers. Otherwise, it continues with another working vacation and so on. Service time and
renovation time in working vacation and in regular period are follows the general distribution.

. Notations and assumptions

The following notations are used in this paper
Arrival rate is A, let p, and pp be the service rate in working vacation and service rate in regular period
respectively, 71 and -, are the renovation rates in working vacation and renovation rate in regular period
respectively. Working vacation duration follows an exponential distribution with parametern. X is the group
size random variable, gj is the probability of X = k, X (z) is the Probability generating function (PGF) of X.
Let S,(.), Sp(.), R™)(.) and RP)(.) represent the cumulative distribution function (CDF) of service time in
working vacation, services time in regular period, renovation in working vacation, renovation in regular period
respectively and their corresponding probability density functions be s,(z), sp(x), ") (z) and r#)(z). Define
SO(t), SY(t), R(()W) (t) and R(B)( ) as the remaining service time in working vacation of a batch, remaining
service time in regular period of a batch, remaining renovation time in working vacation of a batch, remaining
renovation time in regular period of a batch at time ‘t’ respectively and denote S, (6), Sy (9), R™) (§) and
R(B) (0) the Laplace-Stieltje’s transform (LST) of S,, Sy, R™) and R(P)respectively.
We define,
Y(t) = (0), 1], {2}, [3] and {4} if the server is on (idle in working vacation)
[Busy in working vacation], {Busy in regular period},
[renovation in working vacation] and {renovation in regular period}

Z(t) = j, if the server is on jth working vacation.
Ny(t) = Number of customers in the service at time ‘t’.
N,(t) = Number of customers in the queue at time ‘¢’

The supplementary variables S9(t), Sp(t), R?W) (t) and R?B) (t) are introduced in order to obtain bivariate
Markov process {N (t),Y (t)}, where N(t) = {Nq(t), Ns(t)}.
Let us define the probabilities as,

qo(t) = P{Nq( =0, z < QO( y<ax+dt, Y(t) = 0}.
This denotes that there is no customer in the queue, if the system is idle.

Wij(z, t)dt = P{N(t) =14, Ng(t) = j, 2 < SJ(t) <z +dt, Y(t) =1}, 1
Pij(z,t)dt = P{Ny(t) =i, Ny(t) = j, 2 < Sy (t) <z +dt, Y(t) =2}, a
That means there are ‘4’ customers under service, ‘j’ customers in the queue, the server is busy with remaining

service time z in working vacation and regular period respectively.
In a similar manner, we define,

WV

RW)(z,t)dt = P {Nq(t) =n, & < Ry () <z +dt, V(1) = 3} )

R (x,0)dt = P{N,(t) = n, & < Rl (t) < & +dt, V(1) = 4}, n>0.
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This means that there are ‘n’ customers waiting in the queue under renovation in working vacation and regular
period.

We develop the system size equations. These equations provide the basis for the analysis given in sequel.
These equations are obtained at time ¢ + At considering all possibilities. One can note that when time ¢ is
increased by At, the remaining service time and renovation time in working vacation period and regular period
will be reduced by x — At. b

Golt + At) = qo(t)(1 — AA) + (1 —7) Y Wino(0,8) At + RS (0,) At
m=a
b

+(1=1) > pmo(0,) At + RS (0, 1) At (2.1)

b
Wio(x — At t + At) = Wig(, £)(1 — AMAt — nAt) + (1 — 1) > Wini(0, )5, (2) At + R (0, 1) 5, (z) At
m=1
b
+ Ao (t) giso() + (1 =) Y Pri(0,8)s,(2) At

m=a

+ BP0, 1) s, (z) At + nsv(ac)/Wio(y)dyAt, 1<i<,a—1, j>1 (2.2)

b
Wio(x — At, t+ At) = Wig(x,t)(1 — AMAt — At) + (1 = 1) Y Wini(0,) s, (z) At
m=1

+ RM™(0,1) 50 (2) At + Ago(t) giso(x), a <i < bj > 1 (2.3)
J
Wij(@ — At, t+ At) = Wiy (2, 6)(1 = AAt — nAt) + Y Wijp(z, )AgrAt j> 1, 1<i<b—1 (2:4)
k=1

J
Wiz — At, t+ At) = Wy (2, 1) (1 = AAL — nAt) + Y Waj i (x, t)Age At
k=1

b
+ (1 =7) > W (0,8)50(2) At + R{Y)(0,8) s0(2) At + Ao (t) gossso(2), 5 > 1

m=1

(2.5)
b
Polz — At, t + At) = Po(z,t)(1 — AAt) + (1 — 7) Z Proi(0,8) sp(2) At + R (0, 1) sy(x) At
+ nsb(x)/Wio(y)dyAt, a<i<b (2.6)

J

Pij(x — At, t + At) = Pyj(z,t)(1 — AAt) Z k(T AgR AL, §=1, a<i<b—1 (2.7)
" b

Poj(x — At, t+ At) = Poj(x,£)(1 = M) + Y Poj g (@, )Age At + (1 = 1) Y Prpy5(0,8)s(z) At
k=1 m=a

+ RyD(0,1) sy(2) At + sy ( /ij )dyAt, j > (2.8)
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b
R (@ — At,t+ At) = (1= AAt = nAORY (@,8) + 7> Wino(0,8) r™) () (2.9)

b
RV (@ — At,t+ At) = (1= MAL = nA)R (2,t) + 7Y Wi (0,8) ") (2)

m=a

+AZR(W) z)gr, n>1 (2.10)

b
R (x — At t + At) = (1= MRS (2,8) + 73" Paro(0,8) 7P () + 0P / R\ (y)dyAt  (2.11)

m=a

RB) (z — At t + At) = (1 = MAORP (z,8) + 7 Z P (0,8) 7 +>\ZR

m=a

+ P RW)(y)dyAt, n>1 (2.12)

In steady state, let us define for x > 0, P, ; (z) = tlim P j(zt)a<i<b W;;(z)= thm Wi j(z,t),1<i<b
for and j > 0, RY (z) = tlim RY (z,t) and RB (z) = tlim RB (z,t) for n > 0.
— 00 —00

2.2. Steady state system equations

Dividing equations (2.1)—(2.12) by At and letting the limit At — 0, the steady state queue size equations
are obtained as

b
Ago = (1=7) > Wino(0) 0) + RS™(0) + (1 —7) Zp 0(0) + RSP (0) (2.13)

m=a

b
~Wip(@) = A+ Wio(z) + (1= 1) Y Wini(0) so(2) + R (0) s0(x)

b o0
+ Ao gisu(x) + (1 =7) Y Pri(0)sy(2) + R (0) s0(x) + sy (2) / Wio(y)dy, 1<i<a-—1

(2.14)
b
~Wip(@) = A+ Wio(x) + (1= 1) > Wini(0,8) s,(2) + R (0) s0(2) + Aqo(t) giso(z), a<i<b
m=1
(2.15)
, J
—Wii(@) = =N+ n)Wij(x) + > Wij_g(z,)Age, 1<i<b—1,j>1 (2.16)
k=1
J b
—Wy; (@) = —(A + 1) W (z Z (@, )Agk + (1= 1) Y Wi (0,8)50(x) +Rb+3 (0, 1) sy ()
=1 m=1
+ /\QO( )gb-‘r]S'U('T)’ j=1 (2'17)
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b
—PZ./O( )= —=AP(x) + (1 —m) Z Pi(0,t) sp(x Rz(.B)((),t) sp(z) + nsb(x)/Wio(y)dy, a<i<b
(2.18)
) J
—Pj(x) = =APy(x) + Y Py x(@,)Agk, a<i<b—1,j>1 (2.19)
k=1
J b
—ij(x) = —APy; (z) + Z ij,k(:c,t)kgk +(1-m Z Pmb+j(0,t)8(1')
k=1 m=a
+ B0,8) sy(x) + nsula) / Wisp)dy, > 1 (2.20)
R (@)= -+ R (z) + 7 Z Wino ") (z) (2.21)
—RM" (z) = —~A+ )R (2) + = Z Wonn (0, ) 7 ) + )\ZR(W) )gr, n=1 (2.22)
b [ee)
AP @) = AR @)+ 7 Y Pn(0.0r P @)+ P 0) [ R )y (223)
m=a 0
—R;B)/(x):—)\R;B) +7rZPmn 0,t) B (x +)\ZR z)gp +nr® /R(W) n>1
(2.24)
3. QUEUE SIZE DISTRIBUTION
The Laplace-Stieltjes transforms of P;;(x) Wi;(x), R (x) and R (x) are defined as follows:
Py;(0) = / e ?"Pyj(z)dz, Wij(0) = / e "Wy (x)da, RP) (0) = / e " RP) (z)da
0 0 0
and -
RW)(9) = / e "2 RMW) (z)dz.
0
Taking Laplace—Stieltje’s transforms on both sides of the equations (2.13)—(2.24) we get,
b
OWio(0) — Win(0) = (A + n)Wio(0) — 5,(6 { (1-7) Z Wini(0) + R (0) + Ago g
=1
b
+(1=7) Y Pri(0) + R +n/WZO dy 1<i<a-—1 (3.1)
) b
OWio(0) — Wio(0) = (A 4+ n)Wio(0) — 5,(0) | (1 — ) Z Wi (0) + R( (0) + Aqo 921 , a<i<b (3.2)
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~ J
OWii(0) — Wi (0) = A+ Wi (6) = AD Wij x(0) gr, 1<i<b—1,>1 (3:3)

k=1
b

OWy;(6) — Wi (0) = (A +m) W (6) — 5,(6) [(1 — 1) > W (0) + R (0) + Ao gbﬂ]

m=1

0Pi0(6) — Pio(0) = APy (8) — 54(6) [(1 — 7)Y Poi(0) + R (0) + / Wio<y>dy] , a<i<b  (35)
0

b oo
0.Fy;(8) — Py (0) = APy;(8) — 3(6) [(1 =) Y Py (0) + RS (0) 4 / Wh; (y)dy]
m=a 0

J
=Y Py k(@Agr, =1 (3.7)
k=1
~ ~ b ~
0RM™ (0) — RS (0) = A+ RS (0) — 7Y Wino(0) R (6) (3.8)
m=1
~ ~ b ~ n
ORM (0) — RIV(0) = A+ mRI(0) = 73" Winn(0) R () = A" R (g, n>1 (3.9)
m=1 k=1
b oo
RS (0) — RV (0) = AR (0) = 7 Y Pro(0) B (0) — nRP) (6) / RE™ (y)dy (3.10)
m=a 0
_ ~ b ~ n ~ ©0
ORP)(0)~RP)(0) = AR (0)—7 > P (0)RP ()~ 2>~ R, (0)gi—nRP) (0) / RM(y)dy, n>1
m=a k=1 0
(3.11)

j=0 7=0
RW)(z,0) =Y RY(0)z", R™)(2,0)=>Y R} (0)z"
n=0 n=0
RP)(z,0)=> " RE(0)2", RP)(2,0)=> RF0)2" (3.12)
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By multiplying the equations (3.1)—(3.11) with suitable power of z™ and summing over n, (n = 0 to co) and
using (3.12)

b
Aqo = [1-7‘1’ Z +R(()W) (1-m) meo (B)(O)l, Jj=z1

m=1

(3.13)

b
(0 — X — 15+ MX(2))Wilz,0) = Wi(z,0) — Sy {1—7r ) > Wai(0) + R (0) + Ao gi

m=1

b
+(1=7) Y Pri(0) + R (0) +nVT/i(z,0)} . 1<i<a-—1 (3.14)

b
(0 — X —n+AX(2))W;(2,0) = Wi(z,0) — S,(6) [(1 — 1) Y Wini(0) + R (0) + Aqogi] a<i<b—1

(3.15)

(3.17)
b b—1
(0 — X+ AX(2))Py(2,0) = 2°Py(2,0) — Sy {Z 1—n) | Pn(z,0) —ZPmJ(O)H]
m=a 7=0
b—1
+|RP) (2,00~ 3" R (0) zj] +77Wb(z,0)} (3.18)
7=0
b
(0= X—n+XX(2)RY)(2,0) = R™)(2,0) — # RW) (0) >~ Wy, (2,0) (3.19)
b
(0 = X+ AX(2))RP) (2,0) = RP)(2,0) — RP) (0) | Y Py (2,0) +77]'~E(W)(z,0)] : (3.20)

By substituting # = A + 7 — AX(2) in the equations (3.14)—(3.16) and (3.19), # = A — AX (2) in the equa-
tions (3.17), (3.18) and (3.20), we get,

b
Wi(z,O):S A+n—2X(z { (1—-m) ZWW W) (0) + Aqo gi
m=1

b
+(1—m) ZPW +R(B)()+nWi(z,0)},1<i<a—1 (3.21)
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b
Wi(2,0) = Sy(A 41 — AX (2 [142%, R(W)()+)\qogi], a<i<b—1
m=1

b b—1 i
Wi (2,0) = S,(A +1— AX (2 { Z 1—m7 [ (2,0) — Z Wi (0)27
m=1 7=0

b—1 T
+ |RM)(z,0) - ZPJW) ] QO[X(Z)_ZQkal } iz1
k=1 J

Sv(A = AX(2))f (2)
—(1=1)SvA4+n7—=2AX(2)) =7 Sy(A+ 17— AX(2))RW) (A + 71— AX(2))

Wb(Z,O) = b

where
b—1 b—1 b
A2 = [(1=m) 7 R+ = AX ()] D Wnl2,0) = (1=m) D2 3 Wy (0)2
m=1 j=0m=1
b—1 b—1
- ZREW) (0) 27 + X [qo [X(z) - gkzkH
J=0 k=1
b
P(2,0) = S50 — AX(2)) [(1 — ) S Pui0) + R (0) + Wil o>] a<i<hb—1
b o b—1
"Py(2,0) = Sp(A — AX(2)) { Z (1—m) | Pn(z,0) — ij(O)zjl
m=a =0
b—1
+ [RP)(z,0) — REB)( )zjl +nWh(z 0)} j=1
=0
P _ Sy (A= AX(2)f (2)
b(Z,O) = = = —
— (1 =m) Se(A = AX(2)) = mSp(A — AX (2))R(E) (A — XX (2))
where,

b—1

b—1 b
f2(2) = |(1 =7) + 7 RB(\ - AX(Z))] ST Pu(2,0) =3 Pj(0)27 = SRV (0) 2
j=0m=a

m=a

+nr RBI(A = XX (2))RM)(2,0) + nWy(z,0)
b

Z W, (2,0)

m=1

b
> P (2,0) +77R(W)(z,0)] :

m=1

R™(2,0) =7 R™) (A + 71— A\X (2))

RB)(z,0) =7 RB) (A = AX (2))

(3.22)

(3.23)

(3.24)
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Using the equations (3.21) to (3.27) in (3.14) to (3.20) we get,

Sy(A 41— AX(z ]{1—7r 2 Wini(0 0) + R™ (0) + Ao gs
P

b
~ HL=m) 3 Poil0)+ B 04030}

Wiz, 0) = (=TS E)

1<i<a—1 (3.28)

500t =AX () = 5,0)] A= 7) % W)+ B ©) 4|
Wi(z,0) = 0= A=+ AX(2) a<i<b—1 (3.29)
e (S +71-2X(2) = 5,(0)] £1(2)
" [zb—(l—w) Sy(A+n—AX(2)) =7 Sy (A + 1 — AX(2)) ROV (A + 1 — AX(z))} (0 —X—n+AX(2))
(3.30)
where
b—1 b—1 b
fi(2) = [(1 — 1)+ TR (A 49— AX (= ] Win(2,0) = (1 =) 3 3" Whi(0)27
m=1 j=0m=1

b—1
il
k=1

(560 = AX(2)) - 5,(0)] {(1 —7) Y Pai0) + B (0) + 0 Wi, 0)}

: = m=a <i<b— .
Pi(z,0) =2+ \X(2)) , a<i<b—1 (3.31)

i (S50 = AX(2)) = 5,(6)] fo()
Py(2,0) = _ _ _ (3.32)
[zb (1= 1) S — AX(2)) — T Sp(A — AX(2) BB (A — AX(z))} (0 — X+ AX(2))

where
b—1 b b—1
folz) = [(1 )+ mRP (A - AX (2 ] Z Pu(2,0) =3 S Puj(0)27 = 3" R (0) 29
j=0m=a 7=0
+ g RP) (A = AX (2))R™)(2,0) + nW(z,0)
™ [RWV)(A F - AX(2)) - R<W>(a)} { S W, (5, 0)}
RW)(z,0) = m=a (3.33)

0 — X+ X (2))

. [R<B>(A “AX(2)) - R® (9)] { S By (2,0) + W (2, 0)]

R®)(z,0) = e /\;(:Zl)) : (3.34)
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4. PROBABILITY GENERATING FUNCTION OF QUEUE SIZE
4.1. PGF of queue size at various epochs
The PGF of queue size at various completion epochs are obtained as follows:
(a) Service in working vacation completion epoch
Using equations (3.28) to (3.30) and substituting § = 0 and after some algebra, we get,
b—1

<SU<A+n—AX<z>>—1>{z<z >d<W>+{bi<z—z)gz+X<z>}déB)

i=1 i=1

+ { rzl(zb — 2V + X(z)} - 1} d") 4 b aij a4+ zbn}

i=1 =1

Psw(z) = ~ = = :
[zb (1= )8 (A = AX(2)) = 7SN+ 1 — AX (2)) R (A + 1 — AX(z))] (=X — 1+ AX(2))

(4.1)
(b) Renovation in working vacation completion epoch

Using equations (3.33) and substituting § = 0 and after some computation, we get,

Ilo{bzl(zb 2') (W)+{Z(z —2')g i+X(z)}ng>

. { [bi(zb ~ i) + X(z)] — 1} d(()W) +2° ‘12_:1 dEB) + zbﬂ}

i=1 i=1

Rpw(z) = - - .
[zb — (1= M)A+ 1 — AX(2)) — 78 (A + 1 — AX(2)) R (A + 1 — )\X(z))} (=X =71+ AX(2))

Lo = [WSU(A = AX(2)RM A+ 1 — AX(2)) — 7Sy(A+ 1 — AX(z))} . (4.2)

(c) Idle period completion epoch

From equation (3.13),

{a + ™
Put(z) = A——, (4.3)
O3 = [(1=m)8,(A + 1= AX(2)) + 78 (A + 7 = AX () RW) (A0 = AX () — 1],
O4 = [(1 — 1SN+ 17— AX(2)) + 1S (A + 1 — AX (2)) RPN + 19— AX (2)) — 1] ,
O5 = O5(=A + AX(2)) 2% — Sy(A + 17— AX(2)) — 02] .
4.2. PGF of queue size at an arbitrary time epoch
The PGF of the queue size at an arbitrary time epoch is obtained as
b—1 b-1 ) ) )
= Wn(2,0)4Ws(2,0) + > Pru(2,0)4Py(2,0) + qo + R™(2,0) + R (2,0). (4.4)

m=1 m=a
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Substitute (3.28) to (3.34) in (4.4) with 6§ = 0 we get,

- b—1 . a—1 .
A=A =1+ AX(2)) [2" = Su(A+ 7 = AX(2)) - 01 04 {z (20— 2)d® — 3 dP) 2 — (P

i=a =1

+ {05+06+{n/\ {zb(gv()\—l—n—)\X(z))—l)OAL {(Sv(/\+n—AX(z))+Ol) fl gr+ {X(z)—:gi gkzk}

+{7rR(B) A+7—AX(2))0104+7 <zb—§b()\—)\X(z))—Oz> 0102}{{;( b—zi)gi+X(z)]—1}}} P

—l—{Os—i—{z m{ AN —AX (2)) = 1) (8 (A+1—AX (2))+01)04

+{7rR(B) A1 —AX(z ))0104+7r( ~ 8 = AX(2)) — )0102}} {Zdﬁ’” +j§d§w)]
—{0s +m {25+ 0 - AX (2 O4+{7rR(B) A1 — AX(2))0104

1

—|—7r(zb Sp(h — AX(2)) — )0102}}}b A"z

1=

oo {m {26.0n-2x@)-00: {{B.0en-2xG)+00 E gt [x)- E aust| b1}

£ {7RP (A tn=AX ()01 0atr (=S, (A=AX(2))—0) 0,05} { rg (Zb_zi)gﬁx(z)]q}}}dgw)
+20{ {A0u {(-A=1+2X () [P = 8.(A+n=AX (2) = O] #3180 A+7—=2X (2)) 1) [(So(A+n—AX (2)+04)

+1 {7 R A+n—-AX(2))01 04+ ("= (A-AX(2))=02) 0102} } }+0s

P(z) = . .
(A= AX (2)) (= A+ AX (2)) [zb—SU()\—i—n—)\X(z))—Ol] [zb—Sb()\—)\X(z))—Oz}

This represents the PGF of number of customers in queue at an arbitrary time epoch.

4.3. Steady state condition

The probability generating function defined in (4.5) has to satisfy P(1) = 1. In order to satisfy this condition,
applying L’Hospital rules and equating the expression to 1, we have,

b—1
{zm (N2 + Ns) > (b—1i)di® + nA(N1 + Ne) Z id®

i=a =1

+ {og + 04 + {n/\(Nl +bNz + (SV1) 0}) { {(D+DV)=1)+ (D+DV)(Ns + No) =1} > g + 1}}

k=1
b—1
— DAN2 > kgi + nAN: (Xl)} }

k=1
+2Ns Z —i)gi + (Ns + 2(Rb1)Ns +2(SV 1)V 0 (2N5 (X 1) — 1)} a?

+ {05 + M {(D + DMWY (Ny 4 bNy + (SV1) O + N3 + Ni) + (N + 2(Rb1)Ns + 2(SV1) DO} + 2bN5)

a—1 b—1
di® + dﬁw)}
R

i=1

+20DM (b — (Sb1) — (Sbl)(2>)o’2}

—{05 + {(N1 +bN2 + (SV1) O4((D + DY — 1)) 4+ (D + D™)(N3 + Na)

b—1
+(Ng 4 2(Rb1)Ns + 2(SV1) D0} + 2bN5) + 27D (b — (Sb1) — (Sb1)<2))02} > d™ — (AN +2N5) > id{™

i=1
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b1
+ {015/ + 04 + {nA(Nl +bN2 + (SV1)0)) { {((D+D<1)) 1)+ (D+D<1))(N3 + Na) — 1} ng + 1}}

k=1

b—1
+ 0’ MD + DV)( N1 + (SV1) O + N+ Nu) — nAN> Y kgi + nAN>(X1) } }
k=1

1=1

b—1
+2N5 > (b—1i)gi + (Ne + 2(Rb1)Ns + 2(SV1) M 0})(2N5 (X 1) — 1)} a?

+ {nA(Nl + No) + (AX1) (N2 4+ Ns) 4+ An(bO% — (N3 + Ni) + n°AX(D + D) (N1 4 (SV1) Oy + N3 + Na)
+(Ns + 2(Rb1)N5 + 2(SV1)D0Y) + 20D (b — (Sb1) — (Sb1)<2))02}}

=20\ (Sy(n) — D)(AX1) (b — AE(X)E(Sy) — nAE(X)E(Ry)).
(4.6)
Since pz(-B), pEW) are the probabilities of ‘4’ customers being in the queue, it follows that left hand side of the
above expression must be positive. Thus P(1) = 1 is satisfied only iff

b— AE(X)E(Sy) — TAB(X)E(Ry) > 0, if p = AE(X)E(Sy) — TAE(X)E(Ry)/b (4.7)

then p < 1 is the condition to be satisfied for the existence of steady state for the model under consideration.

Computational aspects: Equation (4.5) gives has “2b” unknowns p(()B)7 pr), ...pglf)l and pgw), pgw)

9

.. pg‘ivl) . The denominator of (4.5) has the polynomial with degree ‘2b’ therefore it has ‘2b’ roots. By Rouche’s
theorem of complex variables, [zb — So(A 47— AX(2)) — 01} [zb — S\ — AX(2)) — 02} has 2b—1 zeros inside

and one on the unit circle |z| = 1. Since P (z) is analytic within and on the unit circle, the numerator must
vanish at these points, which gives ‘2b’” equations in ‘20’ unknowns. These equations can be solved by using any
suitable numerical technique, for instance MATLAB routines.

5. EXPECTED QUEUE LENGTH

5.1. Expected queue length at various completion epochs

Expected queue length at various completion epoch are obtained to know the effect of the idle period in
working vacation, service in working vacation and service in regular period.

(a) Service in regular period completion epoch

The mean queue length Esp(Q) at a service in regular period completion epoch is got by differentiating the
PGF and substitute z = 1 which is obtained from (3.31) and (3.32) withf = 0. We get

b—1 b—1 a—1 a—1
UM S (b= 0)d® + U S bb—1) — i@ — 1))d? + (L + 7d® 4 Iy S dP 4 LY ST idP
i—=a i=a =1 =1
a—1 b—1
+ 1805 (i = 1)+ (L + M) d 4 (50 4 UD) a0+ rd P S = ety S

i=1 i=1

b—1 b—1
+(IP +7I) S i d (I 47T S i — 1AM + gL 4oL + b(b — DnLsY + 0 (JD + 7))
=1 i=1

Esp(Q) = 2417;42 [(AX1)(b— Sbl — wRb1)]?

(5.1)
where the expression for Ui(l) S, Lgl) S, and Ji(l) S are defined in Appendix A.
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(b) Renovation in regular period completion epoch

The mean queue length Erp(Q) at a renovation in regular period completion epoch is found by differentiating
the PGF and substitute z = 1 which is obtained from (3.34) with 6 = 0. We get

b—1 b—1 a—1 a—1
U7 % (b= )di? + U Y (b(b— 1) =i — 1) + (L + IV + 57 ¥ a? + L Y id?
i=a i=a i=1 i=1
a—1 b—1
+ 1P % il = 1)d” 4 (L2 ) a4 (0 + UP) a4 (I 4w+ I - wa) $ d™)
i=1 i=1

b—1 b—1
+(D +ma$0) Y id™ + (1P +1a(P) Y i - )d + 9L + L + b6 — D)LY + 0 (S + 7y
ERB(Q) _ =1 =1

24m2 A2 [(AX1)(b — Sb1 — wRb1))?

(5.2)

where the expression for Ui(2) S, L§2) S, Ji(?’) S, Ji(4) S and Ji(2) S are defined in Appendix B.

(c) Service in working vacation completion epoch

By calculating Py, (1), one can get Esw (@) at service in working vacation completion epoch,
b—1 a—1
105 0= Wi+ Q1 X P+ Q87R + (@57 +Q")Wo +QfY

1= 1=

where,

IV =n A(SV1), LY = WX1)A(D-1), Y =9 B - 1), [} =n A(D-1), Q1"
=y [pr? + 1V + 1 - 1]
b—1
Q- lff) [@—nzgi x| 1+ —I;D] Q) = [~ 1]

i=1

and

A= 1= =mSv(m) - aSvmhv(m)] . B = b= (1 =m)(SV1) = 7(SV1) v () = xSy () (RV1)]
C = [b(b “ 1) — (1 —7)(SV2) — n(SV2)Ry (1) — w8y (1)(RV2) — zw(sm)(Rm)] .
(d) Renovation in working vacation completion epoch
Erw (Q) at service in working vacation completion epoch is obtained by substituting z = 1 in Py, (2).
b—1 a—1
e > (b—i)Wi+ QY > P+ QP Py + (QF) + Q¥ YWo + Q)
Erw(Q) = = = (5.4)

772A2
where,
12 =y ASVDW, 12 = AX)ADD —1), I = 5 BOW 1), 1 =5 A(DD — 1), QP
==y [or? + 1P+ 1 - 1]

b—1
of = |1 |69 T
i=1

I - z@] QP = [ - 1]
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and

A= (1= =mSv(m) —mSvmRy )], B = b= (1= m)(SV1) = 7(SV1)Ry(n) - 7Sy () (RV1)],

C = [b(b “ 1) — (1 —7)(SV2) — n(SV2)Ry (1) — w8y (1)(RV2) — 27r(SV1)(RV1)] .

5.2. Expected queue length at an arbitrary time epoch

Differentiating (4.5) with respect to z, and z = 1, then the mean queue length E(Q) at an arbitrary time
epoch is,

U +UP) S - ™ + (VS +01) 2((6—1)—z‘<z‘—1)>d<3>

" [Lu)+L<2>+W(J<2>+J<4>)+J2<1>+J2<2>+24T2( W Q<2>)] S a®

i=1
+(L§Y + L) ; id® + (LYY + L) ;1 i(i = 1)d + [L0 + 1P + U + U + 247208 + Q)] df”
+ [Jf” +J UM U 4 ur QY + QP + Q5 + Q(Q))] A" + 24T (18) + 1Y) bi b —i)a™
+ [0+ I m (P )+ I 4 I = (g )] z "
+(5 + I5Y (1P + I5Y) Z d™ + (I + IO + 1P + 1) T it - D

i=1
+{n (L(”+L(2))+bn(L(”+L(2))+b(b (L8 + L) +n(I0 + I 4 (437 +24TEQSD +Q) |
2472 A2 [(AX1)(b — Sb1 — wRb1))?

EQ) =
(5.5)

where the expression for U S L S S U(z) S, L S J(S) S, J(4) S and J( )'S are defined in Appen-
dices A and B.

6. NUMERICAL ILLUSTRATION

To illustrate the impact of proposed model we analyze the model numerically. In the flare nuts production
industries, flare nuts are ordered in bulk and it follows Poisson distribution. The nuts are produced in turret
lathe machine (TLM), whose service follows an exponential distribution. At a time 10 flare nuts can be produced
in regular period with fast service rate by TLM After the service completion, if the requirement of the flare
nuts is less than the threshold values it performs the service in slow service rate in working vacation In case of
server break down, the server can manage the service to complete the batch by manual operation after which,
the renovation process will take place.

Computational analysis for various combinations of service time distributions is exhibited. The unknown
probabilities of the PGF of the queue size at an arbitrary time epoch and other computations are carried out
using MATLAB. Numerical results are shown in the tables that are self-explanatory (Tabs. 1 through 7). The
notations used in these tables are same as those defined earlier in the text.

6.1. Effect of duration of working vacation and service rates on queue length

The expected queue length E(Q) is computed for various values of n versus different service rates in working
vacation are presented in Tables 1 and 2. Let us assume a = 3, b =10, up =9, A =4, vy =2, 72 =4 and 7
follows exponential distribution.

It is assume that, the service rate in working vacation and in regular period follow exponential distribution
with parameters u, and u;, respectively. The E(Q) is presented for different values of 7 in Table 1.

It is assume that, the service rate in working vacation and in regular period follow 2-Erlangian distribution
with parameters u, and u;, respectively. The E(Q) is presented for different values of 7 in Table 2.



500 S. JEYAKUMAR AND B. SENTHILNATHAN

TABLE 1. Expected queue length for M*/ M(1,10); M(3,10)/1.

Expected queue length
/v~ 1.0 15 2 25 3 35 1
0.5  5.5666 5.0697 4.5254 4.0369 3.1569 2.9364 2.5587 2.1671
1.0  6.1524 5.7158 5.0299 4.8555 4.5986 4.0444 3.5222  3.0349
1.5 7.0999 6.3524 5.9754 5.5698 5.0854 4.5398  4.0497  3.4697
2.0 75268 7.0241 6.4698 6.0698 5.7222 5.2975  4.9697  4.0482
2.5  7.9531 7.4232 7.0254 6.3584 6.0697 5.5264 5.0666 4.5297
3.0 85112 8.0658 7.2231 6.8152 6.4842 6.0854 5.7987 5.1234

TABLE 2. Expected queue length for M* /E5(1,10); E(3,10)/1.

Expected queue length
n/mv —q5 1.0 15 2 25 3 35 1
0.5  2.0928 1.9812 1.7129 1.5123 1.5621 1.3111 1.2817 1.0812
1.0 24567 2.1612 1.9812 1.8721 1.7812 1.5211 1.4128 1.2181
1.5 29118 2.5281 2.3212 2.1281 2.0821 1.8821 1.7181 1.6721
2.0 3.5219 3.1728 29181 2.7218 25232 2.3211 2.1221 1.9812
2.5  3.9128 3.7182 3.5627 3.1672 2.9123 27813 2.5672 2.3621
3.0 45522 3.9977 3.7672 3.5272 3.3321 3.0128 2.8123  2.5123

TABLE 3. Arrival rate and Service rate in working vacation (2-Erlangian) vs. Expected queue
length (with server breakdown pp, = 5, n = 3).

Y, Expected queue length
Ho 0.5 1.0 1.5 2 2.5 3 3.5 4
0.5 0.9521 0.7547 0.6214 0.5587 0.4224 0.2234 0.1872 0.1255
1.0 14101 1.3870 1.2116 1.0697 0.9784 0.847 0.7241 0.6241
1.5 3.0231 2.8036 2.6297 2.4541 2.2296  2.041 < 1.8222 1.5222
2.0 3.5204 3.0893 2.8234 2.6887 2.4269 2.2557 2.0014 1.8341
2.5 5.2267 45777  4.0248 3.8574 3.6224 3.4784 3.2241 3.1254
3.0 9.7208 8.5254 7.0555 6.8111 6.5201 6.0248 5.8221 5.5221

From the Tables 1 and 2, we observe that while the duration of the working vacation increases, the E(Q)
increases and when service rate in working vacation increases then the E(Q) decreases. For instance, when
service rate u, = 1.5, we get E(Q) = 3.7672 for n = 3 whereas for service rate u, = 2.5 we get E(Q) = 3.3321
for n = 3 (see Tab. 2).

TABLE 4. Arrival rate and Service rate in regular period (2-Erlangian) vs. Expected queue
length (with server breakdown pu, =2, n = 3).

N Expected queue length
2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
0.5 2.9458 2.7012 2.5369 2.4258 2.3256 2.2258 1.9222 1.7251
1.0 5.0254 4.8254 4.6685 4.4698 4.0333 3.7241 3.5585 3.0240
1.5 8.5324 7.0555 6.5254 6.3222 6.0265 5.8222 5.4541 3.3258
2.0 10.5412  9.1241 8.5222 8.0542 7.4254 7.0695 6.8264 5.0975
2.5 12.1211  11.5825 11.2872 10.8064  9.7241 8.7587 7.1255 6.0485
3.0 19.5254  17.1236 16.2268 15.1269 14.1221 13.2257 12.1298 10.8263
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FIGURE 1. Prob. of breakdown vs. Queue length (for various service rates in MWV).
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FIGURE 2. Prob. of breakdown vs. Queue length (for various service rates in regular period).
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FIGURE 3. Renovation rate vs. Queue length (for various service rates in MWV).
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FIGURE 4. Renovation rate vs. Queue length (for various service rates in regular period).

It is observed from the above table that the expected queue length is higher if the service rates follow the
exponential distribution than the service rate that follows the 2-Erlangian distribution for a fixed value of 7.
For example, when service rate p,, = 1.5, we get E(Q) = 3.7672 for n = 3 (see Tab. 2). Whereas for service rate
1y = 1.5 we get F(Q) = 7.2231 for n = 3 (see Tab. 1).

6.2. Effect of arrival rate on queue length

The expected queue length E(Q) computed for various arrival rates are presented in the Tables 3 and 4. We
show the effect of A and p, on the queue length when up and n are fixed in the Table 3 also the effect of A and
wy on the queue length when pu, and 7 are fixed in Table 4.

From Tables 3 and 4, it could be seen that when the arrival rate of the customer increases then the E(Q)
increases and when the service rate in working vacation and in regular period increases then the E(Q) decreases.
For instance, when service rate u, = 2.0, we get E(Q) = 2.6887 for A = 2.0 whereas for service rate p, = 3.0
we get F(Q) = 2.2557 for A = 2.0 (see Tab. 3). Also, when service rate up = 4.0, we get E(Q) = 8.0542 for
A = 2.0 whereas for service rate p, = 5.0 we get E(Q) = 7.0695 for A = 2.0 (see Tab. 4). These trends, in fact,
resemble the performance of the traditional queueing models.
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TABLE 5. Arrival rate and Service rate in working vacation (2-Erlangian) vs. Expected queue
length (without server breakdown u, = 5, n = 3).

Y, Expected queue length
Mo =05 1.0 15 2 25 3 35 1
0.5 04521 0.3542 0.2548 0.1452 0.1054 0.0975 0.0854 0.0754
1.0 0.9421 0.8546 0.7542 0.6542 0.5864 0.4625 0.3564 0.2685
1.5 1.5542  1.4724 1.3542 1.2642 1.1524 1.0245 0.8654 0.6521
2.0 29854 25342 20542 1.9654 1.7240 1.6524 1.4210 1.0524
2.5 4.5421  3.9450 3.0524 2.8540 2.3024 2.1354 1.9542 1.7243
3.0 6.5241 5.854 52542 4.0524 3.5243 3.0421 2.521  2.0213

TABLE 6. Arrival rate and Service rate in regular period (2-Erlangian) vs. Expected queue
length (without server breakdown p, = 2, n = 3).

Y, Expected queue length
=55 3.0 35 1.0 15 5.0 55 6.0
05 08754 0.7235 0.5042 0.3254 0.2452 0.1254 0.1054 0.0854
1.0 1.8634 1.5520 1.0654 0.7524 0.5521 0.3640 0.2854 0.1984
1.5 3.2584 2.8521 2.6540 1.9542 1.6653 1.0653 0.9875 0.7356
2.0  5.6265 4.4521 4.2640 3.8650 2.5654 2.0540 1.5640 1.1560
2.5  7.0254 6.8542 5.6552 4.7589 4.0587 3.5524 3.0421 2.7524
3.0 92215 8.1245 7.9654 5.2546 5.7541 4.0524 3.5524  2.8542
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FIGURE 5. Comparison bar chart for F(Q) with breakdown and without breakdown (various
service rate in working vacation).

From Figures 1 and 2 it is observed that while the probability of breakdown increases the E(Q) will also
increase. When the service rate p,, = 2.0 we get F(Q) = 5.0254 for probability of breakdown = = 0.4, whereas for
probability of breakdown m = 0.7, we get E(Q) = 18.2542. Also, the service rate p, = 4.0 we get E(Q) = 5.4875
for probability of breakdown 7 = 0.4, whereas for probability of breakdown 7 = 0.7, we get E(Q) = 26.1472.

It is observed that from Figures 3 and 4; while the renovation rate increases the E(Q) will also decrease. When
the service rate p, = 2.0, E(Q) is 3.2219 for renovation rate 3 = 3.0, whereas for renovation rate 71 = 6.0,
E(Q) is 0.9631. Also for the service rate u, = 3.5 we get E(Q) = 7.0254 for renovation rate vy, = 3.0, whereas
for renovation rate v2 = 6.0, E(Q) is 4.3690.

From Tables 3-6, Figures 5 and 6; it is observed that the expected queue length is higher when the breakdown
occurs.
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FIGURE 6. Comparison bar chart for F(Q) with breakdown and without breakdown (various
service rate in working vacation).
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FIGURE 7. Queue length at various completion epochs.

6.3. Expected queue length at different completion epochs

The numerical results for expected queue length at each completion epoch for the values p, = 2, up = 3,
7 = 4 is given below.

From Figure 7 it is observed that E(Q) is higher at service in regular period completion epoch and is lower
at renovation in working vacation completion epoch than the others for the same arrival rate.

7. CONCLUSION

A variable bulk service queueing model with multiple working vacations and server breakdown is analyzed
here. Probability generating function of queue size at an arbitrary time epoch and at different completion
epochs are obtained. Queue length for varying arrival rate, service rate in working vacation, service rate in
regular period and duration of working vacation are obtained. A numerical illustration is presented to show the
various performance measures of the proposed model.
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APPENDIX A
The Ui(l)/S, Lgl)/S, and Ji(l)/S in (4.7) and (5.5) are defined as follows:
A= (1= =mSv(m) —mSvmfy )], B = b= (1= m)(SV1) = 7(SV1)Ry(n) - 7Sy () (RV1)],

C = [b(b “ 1) — (1 7)(SV2) — n(SV2)Ry (1) — w8y (1)(RV2) — zw(sm)(Rvn] . D= Sy(n)

where,
Sbl = \.X1.E(Sb), Sb2 = \.X2.E(Sb) + \2. X 12. E(Sb)
Sb3 = A.X3.E(Sb) + 3.22.X1.X2.E(SV?) + A\>. X1 . E(Sb?)
Rbl = A.X1.E(Rb), Rb2 = \.X2.E(Rb)+)\?.X1%. E(Rb)
Rb3 = \.X3.E(Rb) + 3.)2.X1.X2.E(RV) + \>. X1°. E(Rb®)
SV1=AX1.E(SV),SV2 = \X2.E(SV)+ 2 .X12.E(SV?)
SV3=AX3.E(SV) +3\.X1.X2.E(SV?) + \3.X13.B(SV?)
RV1=\X1.E(RV),RV2 =X\.X2.E(RV)+\2.X12.E(RV?)
RV3 =AX3.E(RV)+3).X1.X2.E(RV?) + . X13.E(RV?),X1 = FB(X)=X'(1),X2= X"(1),3 = X"'(1)

Ty = (AX1)(b— Sbl—7.Rb1), Ty = (AX2)(b — Sbl—7.Rb1)+(AX1)(b(b — 1) —Sb2 — 7. Rb2 — 2.7.(Sb1)(Rb1))
= (AX2)(b(b—1) — Sb2 — 7.Rb2 — 2.7.(Sb1)(Rb1)), Ts=(AX3)(b — Sbl — 7. Rb1)
Ty = (AX1)(b(b—1)(b — 2) — Sb3 — 7. Rb3 — 3.7.(Sb2)(Rb1) — 3.7.(Sb1)(Rb2))
J = {(D—1)H, — [(SV1)Hy — (SV2)Hs]}
B0 ={2D =1 [(SYDD + (SV1) Hz = ((SV2)D + (SV2)) Hy]
—(DW + DY(D — 1)H, — 2(SV1)((SV1)D + (SV1))H3}

J§1> {2(SV1)Hs — (D — 1)Hy} , Jy = {(D — 1)Hs} ,J5 = {(D — 1)Hy — [(SV1)Hs — (SV2)H]}
= fiR1 + faRa + faRs + foRa — 20° [2f3 — 3f5 — 9fs — 6 fr — 6fs — 6.f10 — 18 f11 — 18 f12]
H2 = 120" [2fo + fa — fo] — 2f1Re, Hs = 120 f1, Hs = 120> [2fo + f4 — fo] — 2f1Rs
Hy = fiRs + faRes + fiRr + foRs + 2n° [2fs — 3f5 — 9fs — 6.fz — 6fs — 6.f10 — 18 f11 — 18f12)]
J1 = AT1(Sb1), fa = AT1(Sb2), f3 = AT1(Sb3), fa = AT2(Sb1), f5 = AT(Sb2), fo = AT3(Sb1)
Jr = ATy (Sb1), fs = AT5(Sb1), fo = BT1(Sbl), fio = BT1(Sb2), fi1 = BT>2(Sb1), fia = CT1(Sb1)
Ry = 36n(AX2) 4 24bn(AX1) 4 12b(b — 1)n?, Ry = 12bn° + 12n(AX 1), Rz = —12bn* + 36n(AX1)
Ry = —24bn* + 72n(AX1), Ry = —24bn* + 72n(AX1) — 24X 17>
Rs = 36n(AX2) + 24bn(AX 1) 4+ 12b(b — 1)1 + 12(X2)n> + 24(X 1)bn? + 24(X1)n(AX 1)
Rg = 120> + 12n(>\X1) +12(X1)n?, Ry = —12bm* + 36n(AX 1) — 48(X1)n?
1P ={W - na® -~ [svyOHD - (sva O EP] |,

(DY —1)H! — [(SVl)“)Hg — (sv2) Wl )H

=
J§2> {2sv1)0E — (0O —1E Y a = {(p® - HHEP Y,
5 = {(

(DY — [(SV1)<1>H — (8vV2) W i 1)] }
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DY = xSy (n) Ry (n) — wSv (n).(SV1)V) = w(SV1) Ry (1) + wSv (n)(RV1) — m(SV1)

(SV2)M) = 7(SV2)Ry () + 7Sy (n)(RV2) 4 2x(SV1)(RV1) — 7(SV2)

(861)M) = 7(Sb1), (Sh2)H) = 7(Sb2) + 27 (Sb1)(Rb1), (Sb3)V) = 7(Sb3) 4 37(Sb2)(Rb1) + 37 (Sb1)(Rb2)
H(l) fl(l)R/+f2(1)R/+fi1)Ré+fé1)R£1_2"72 [Qfél) 3f(1) 9f(1) 6f(1) f(l) f(l) 18f(1) 18f(1)}
H =122 250 4 10 = 7] = 270 Ry, 1D = 120270, 1D =120 20 4 10 - 0] - 27V Ry
Y = [V R+ R+ £ R+ £5D Ry 2n? (280 =310 -4V —6£0 — 67 —67{5) — 1811 — 18117 |
O = AT (Sh1)D £ = ATy (S62) D, 1D = ATy (583) D), £ = ATy (Sb1) D, £V = ATy (Sh2)D)
£ = AT (Sh1) D Y = AT (5p1) D), £ = ATy (S61)D, £ = BTy (Sh1)D, £V = BTy (Sb2) D,

U = BTy (S61) ), Y = o1y (Sb1) D)

R} = 36n(\X2), R, = 12n(A\X 1), Ry = 36n(AX 1), R} = 72n(AX1), Ry = 72n(AX1) — 24(X 1)n?

RL = 360(AX2) + 12(X2)n* + 24(X1)n(AX 1), Rf = 12n(AX1) + 12(X 1)n?, R, = 36n(AX1) — 48(X 1)n?

Hi _ fl(l)Rl+f(1)R2+f(1)R3+fg§1)R4_2772 [2f5§1) 3]0(1) 9]0(1) 6f(1) f(l) f(l) 18f(1) 18f(1)

Hy = 1207 200+ 1V~ 157] —21"R

Ly =24 f1 My +48f4s Mo + My [2f3 —3f5 — 9f6 — 6f7 — 6fs] — 24foMy, Ly = 6 [fo — fa] M3
Lz = 6f1 M3, My = nA(AX2) +4nB(AX1) — n*C — AAX1)?, My = nA(AX1) — °B,

Ms = 2n*A, My = n°B

U, = [(J1 ) + 7 I + Ty + k(Js + 7)) + k(k — 1) (Js + 7JM) } Zg + (Js + w )
k=1
Uy = 1202 A% [T} (Sb2) — 1)],Us = 120> A2Ty (Sb1)

T(Sb
O1 =Sy (A +1—=AX(2) R A+ = AX(2)) = 1Sv(A+ 17— AX(2))
O3 = wSy(A+ 1= AX(2) R (A + 0 — AX (2)) = 7S (A + 0 — AX (2))

APPENDIX B

The Ui(z)/S, ng)/S, Ji(?’)/S, Ji(4)/S and Ji(Z)/S in (5.1) and (5.5) are defined as follows:

J® = {(D ~1)H? -~ [(SVl)HQ(Q) - (SVZ)Hg(,Q)} }
I = {20 1 [((sv)® + (sVi)EE — (V) + (sv2) i |
— (DD + D)(D —1)HP —2(SV1)((SV1)D + (Svl))H:Ez)}
I ={asvnn® — (D - 1)HP} g = {( —0aP g5 = {(0-DEP -~ [(svya? - (svE?] )
H = [P Ryt 1 Ry [ Ry 13V Ry — 20 2087 = 37 — 05 — 61 — 617 — 650 — 187 — 1873

H2(2) _ 12772 |:2f9 + f(2) f(2):| f 2)R2, (2) — 127]2f1(2)7 (2 _ 12 2 |:2f(2) + f(2) f(2):| _ 2f12 R
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HY = fP Ry + £ Ro+ £V Ro+ £V R 20 | 250 =310 =04V =6 110 —6 £V =6 15 — 1811} — 18713
f2= AT (S61)P)| 2 = ATl(SbQ)(z) f2 = AT\ (Sb3)?)| f2 = AT»(Sb1)P)| f2 = AT»(Sb2)?
f2 = AT3(S01)? f2 = AT, (Sb1) P, f2 = AT5(Sb1)?), f2 = BT, (Sb1) P, f2, = BT1(Sb2)?,
[ = BTa(Sb1)?, f7, = CTy(Sb1)?)
Ry = 36n(AX2) + 24bn(AX1) 4 12b(b — 1)n?, Ry = 12bn° + 12n(AX 1), Rz = —12bn* + 36n(\X1)
Ry = —24bn* + 72n(AX 1), Rg = —24bn* + 72n(AX 1) — 24X 11
Rs = 36n(AX2) + 24bn(AX 1) + 12b(b — 1)n? + 12(X2)n* + 24(X 1)bn* + 24(X 1)n(AX 1)
R = 120n* + 12n(AX1) + 12(X1)n?, Ry = —12bn* + 36n(AX1) — 48(X 1)n?

J0 = {(p® - na® ~ [(sv)@HP - (sv) 2 HP| |,
7 ={(0® -1y - (V)P Hy — (sv2) @ HP |}
H0 = {asvn @ - (0@ - 1)EP ), g = {(0® - P},
H = {(p® —nHP - [(sv)@HP - (sv) @ HP] |
D@ = DW (5V1)® = (b — (Sb1) + (1 + 7)(SR1)) DY + (SV1)V)
(SV2)® = (b(b—1)—(Sb2) —2m(Sb1)(SR1)+(1+7)(SR2)) DV + (b — (Sb1)(1 4+ 7)(SR1))mw(SV 1) 4+ (sV2)M)
(S61)® = 7(Rb1), (S52)?) = 7(Rb2) + 27 (Sb1)(Rb1), (Sb3)? = w(Rb3) + 37(Sb2)(Rb1) + 37(Sb1)(Rb2)
H® = (P R+ £ Ry + 1D Ryt 157 Ry =2 247 =357 - 0f — 647 61 ~6£{7 ~18£7 — 1877 |
HY =122 [217 + 7 = 17| = 20D Ry, B = 129 248 + 1P — 1] - 217 R
HY = 1P R+ 1§ R+ £ R+ £ R 2 |27 =31 -0 119 —6 £~ 6 £ 63 ~18 () — 1817
HY = [P Rt [ B f0 Rt £ Rao? (257 =312 072 —6 77 —6 £ —6 7 18417 1877 |
Hy = 120?207 + 17— 117] - 217 Ry
L =24 fP My + a8 £ P My + My 217 =318 — 0P — 67 — 6] — 24 M,
LY =6 [£7 — 1P| My, L) = 6£1Ms, My = nAAX2) + 4nBOXT) = n2C — AAX1)?,
My =nAAX1) —n?B, M3y = 20> A, My = °B

b—1
U = [ + 07+ () + I+ k(I + 7 d0) + k= DI + )] 3 gn+ (1 + 7
k=1
(2) _ 2 42 (2 _ (2) (2) _ 2 42
U = 1202 4% | T1(562)® — Ty(S61) P | USY = 1252 42T, (S61)@
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