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Abstract. Evolutionary algorithms (EAs) are predominantly employed to find solutions for continuous
optimization problems. As EAs are initially presented for continuous spaces, research on extending EAs
to find solutions for binary spaces is in growing concern. In this paper, a logic gate-based evolutionary
algorithm (LGEA) for solving some combinatorial optimization problems (COPs) is introduced. The
proposed LGEA has the following features. First, it employs the logic operation to generate the trial
population. Thereby, LGEA replaces common space transformation rules and classic recombination
and mutation methods. Second, it is based on exploiting a variety of logic gates to search for the best
solution. The variety among these logic tools will naturally lead to promote diversity in the population
and improve global search abilities. The LGEA presents thus a new technique to combine the logic gates
into the procedure of generating offspring in an evolutionary context. To judge the performance of the
algorithm, we have solved the NP-hard multidimensional knapsack problem as well as a well-known
engineering optimization problem, task allocation for wireless sensor network. Experimental results
show that the proposed LGEA is promising.
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1. Introduction

Evolutionary algorithms (EAs) such as genetic algorithm (GA) [9], particle swarm optimization (PSO) [7],
differential evolution algorithm (DE) [21], artificial bee colony (ABC) [11] and ant colony optimization (ACO) [6]
have been successfully applied to various complex optimization problems. The algorithm is based on mechanisms
found in nature. To search for the optimal solution, a population of solutions evolves by constantly simulating
selection and recombination/mutation operators, creating a new set of individuals, everyone competing with
others according to their fitness [20].

The original EAs are simple and efficient, but they are predominantly presented for continuous space. As many
optimization problems are defined in the binary space, research on extending EAs to solve binary combinatorial
optimization problems (COPs) has become in growing concern in recent years.
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Initially, Kennedy and Eberhart [12] proposed the binary PSO (BPSO) to extend the PSO for binary prob-
lems. The algorithm is characterized by a space transformation technique. The position is denoted as a real
vector, and thus a sigmoid function is employed to transform the position into its corresponding solution. Several
improved versions of BPSO have been developed. For instance, Chuang et al. [5] proposed a BPSO model that
uses chaotic maps for parameter adaptation. Bansal and Deep [2] introduced a modified version of BPSO in
order to increase the exploration ability. Recently, chih et al. [4] proposed a BPSO with time-varying accelera-
tion coefficients for the multidimensional knapsack problem. These BPSO algorithms have presented promising
performance on some benchmark problems. However, the binary coding scheme can be applied to limited types
of COPs. The GA has been widely considered to solve COPs [14,18]. However, the drawback of genetic methods
is that it may face up to the slow convergence rate and easily get stuck in local optimum due to its limited
exploration when solving NP-hard problems.

There have been only few attempts for presenting “pure“ binary mechanisms based on the evolutionary
concepts. Particularly, the logic operation has been shown to be effective in implementation of novel EAs for
binary problems. For instance, Kiran et al. [13] proposed a XOR-based artificial bee colony algorithm for binary
optimization (binABC). Marandi et al. [15] introduced the Boolean PSO to the Design of a Dual-Band Dual-
Polarized Planar Antenna. All these algorithms adopt the XOR tool to optimize binary problems. However, to
achieve better performance, more logic tools should be explored.

As a result, this paper proposes a logic gate-based evolutionary algorithm (LGEA) to extend the application
of EAs for solving some optimization problems in binary space. LGEA features the following characteristics.
First, it employs the logic operation to generate the trial population. Thereby, LGEA replaces common space
transformation rules and classic recombination and mutation methods. Second, it is based on exploiting a variety
of logic gates to search for the best solution. The logic gate implements either of the OR, AND, NOR, NAND,
XOR or XNOR gate via trial and error. The variety among these logic tools will naturally lead to promote
diversity in the population and improve global search abilities. The LGEA presents thus a new technique to
combine the logic gates into the procedure of generating offspring in an evolutionary context. The algorithm has
been tested by solving the multidimensional knapsack problem (MKP) [8] as well as an engineering optimization
problem, task allocation in wireless sensor network [24]. In the experiments, the algorithm is compared with the
existing binary evolutionary approaches. Experimental results show that the LGEA is promising.

The rest of this paper is organized as follows. Section 2 presents the proposed LGEA. The performance of the
LGEA algorithm on the MKP is evaluated in Section 3 and compared against the results existing in literature.
Section 4 is devoted to task allocation for wireless sensor network. The conclusions are finally summarized in
Section 5.

2. Logic gate-based evolutionary algorithm

In this section, the logic gate-based evolutionary algorithm (LGEA) is described. To improve the ability of
other EAs to solve binary problems, LGEA applies the logic gate operation to perform the binary perturbation,
where a variety of logic operators are exploited. In comparison with BPSO and GA, the LGEA is characterized
by a small number of control parameters. In the proposed method, the logic gate mechanism, called also “logic
mutation” is defined by a Boolean function that performs a logical mathematical relationship between two binary
candidate solutions to produce a new binary solution. At generation zero, the initial population is uniformly and
randomly generated within the search space. Thereafter, LGEA evolves the population towards the promising
solutions through repeated cycles of logic gate mechanism, crossover and selection. The main procedure of
LGEA is explained as follows.

2.1. Logic gate mechanism

After initialization, the algorithm performs the logic gate mechanism to generate a mutant vector V G
i related

to a target vector XG
i in the current population. The proposed algorithm can be designed by a variety of logic

gate strategies inspired from the Differential Evolution (DE) algorithm [21]. The DE algorithm employs the
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Figure 1. Logic gate mechanism with XOR-best2rand.

differential mutation while the LGEA exploits the logic mutation. Moreover, DE works with real parameters
while LGEA performs with binary variables. Let NP be the number of individuals in the population, then
for each target vector XG

i at generation G, its corresponding mutant vector Vi = (vi,1, vi,2, vi,3, . . . , vi,D),
i = 1, . . .NP can be created via certain logic gate strategy as follows.

(1) “best2rand”
V G

i = XG
best ⊕ XG

r1
(2.1)

(2) “rand2rand”
V G

i = XG
r1

⊕ XG
r2

(2.2)

(2) “old2rand”
V G

i = XG
i ⊕ XG

r1
(2.3)

The indices r1, r2 are randomly chosen from the interval [1, NP ] and are also different from the index i. XG
best

is the best individual vector with the best fitness value at generation G. ⊕ is a logic gate, which implements
either of the following operators.

“XOR” (2.4)
“AND” (2.5)
“OR” (2.6)

“XNOR” (2.7)
“NAND” (2.8)

“NOR” (2.9)

To undergo the logic mutation, the logic operator is selected by trial and error in order to find the optimized
solution. For instance, in (2.10), the mutant vector V G

i is generated by XOR-best2rand strategy as defined
in (2.1) and (2.4). Figure 1 shows logic gate mechanism with XOR-best2rand.

V G
i = XOR

(
XG

best, X
G
r1

)
(2.10)

2.2. Crossover mechanism

To increase the diversity of population, each of the target vector XG
i and its associated mutant vector V G

i

undergo crossover mechanism to produce a trial vector UG
i = (ui,

G
1 , ui,

G
2 , ui,

G
3 , . . . , ui,

G
D ). In basic versions,

EAs employ the one-point crossover [17] defined as follows. Given a crossover rate CR, the bits of trial vector
UG

i are inherited from the associated mutant vector V G
i , beginning from a randomly determined index till the

first time rand() > CR; rand() is a random number between [0, 1]. The remaining bits of the trial vector UG
i

are copied from the associated target vector XG
i . Figure 2 shows the crossover mechanism.
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Figure 2. Crossover mechanism.

2.3. Selection mechanism

The fitness values of the newly generated trial vectors are evaluated. Then, a selection mechanism is processed.
The fitness value of each trial vector f(UG

i ) is compared to its related target vector f(XG
i ) in the present

population. If the trial vector has better or equal fitness value than the associated target vector, this gets replaced
by the trial vector in the next generation. Otherwise, the old vector is retained. The selection mechanism can
be expressed as follows.

XG
i

+1 =

{
UG

i , if f(UG
i ) ≥ f(XG

i )
XG

i , otherwise
(2.11)

The computational procedure of the LGEA is summarized below.

Step 1. Initialize the parameters and the population with random binary solutions.
Step 2. Evaluate the fitness value for each individual.
Step 3. Generate the mutant vector V G

i for each target vector XG
i via one of the strategies (2.1)−(2.3) using

one of the logic gates (2.4)−(2.9).
Step 4. Generate the trial vector UG

i for each target vector XG
i by crossover operator as described in Figure 2.

Step 5. Evaluate fitness value of the trial population.
Step 6. Select individual between the target and trial vector as defined in (2.11).
Step 7. If the stopping criterion is not reached go to Step 3, else return the individual with the best fitness as

the solution.

3. Performance on the multidimensional knapsack problem

In this section, the multidimensional knapsack problem (MKP) is used to verify the effectiveness of the LGEA
and especially to show the potential of the logic gate mechanism for binary optimization. Our main motivation for
choosing the MKP as a test problem is due to the fact that it can be viewed as a general framework for any type
of binary problems with positive coefficients. Yet, the problem itself is difficult to solve (NP-hard). Moreover,
due to its practical importance, the MKP has been subject to many investigations in different domains [16]. In
particular, there are some publications in the field of evolutionary computation related the MKP [4].

3.1. Problem description

Generally, the knapsack problem can be explained as the following idea. Suppose a hitch-hiker wants to fill a
knapsack. There are items available to select, but the capacity of the knapsack is limited. The hitch-hiker tries
to maximize the total profit of the items in the knapsack while not overloading it.

The multidimensional knapsack problem (MKP) is a generalization of the standard knapsack problem. The
MKP can formally be described as follows. Given a set of n items with profits cj and a set of m knapsacks
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Figure 3. Flowchart of the LGEA operation with XOR-best2rand for solving the MKP.

with capacities bi(k = 1, . . . , m). Each item i requires aij units of weight in each knapsack i. The variable xj

denotes the decision whether or not the item j is selected for given knapsacks (xj = 1 if item j is selected in
the knapsack; xj = 0 otherwise). The goal is to find the subset of items that yield the maximum profit (3.1)
without exceeding the knapsack capacities – knapsack constraint (3.2).

Maximize f(X) = C.X (3.1)
Subject to A.X ≤ B (3.2)

X ∈ {0, 1}n

with C ∈ N∗n, A ∈ Nm∗n, B ∈ Nm

3.2. LGEA for the MKP

The LGEA is used in this section to solve the MKP. Figure 3 shows a simplified flowchart of the LGEA
operation with XOR-best2rand for solving the MKP. The step by step implementation is described as follows.

Step 1. Initialize the parameters and the binary individuals. The binary solution x0
i,j is randomly initialized

by (3.3).

x0
i,j =

{
1, if rand() < p0

0, otherwise
(3.3)

where rand() is a random number uniformly distributed in the range [0, 1]; p0 is the desired percentage
of selected items. However, the above randomly created solution XG

i may not respect the knapsack
constraint. If the knapsack capacity violates the knapsack constraint, the bits of infeasible solution are
repaired by converting from one to zero until the infeasible solution is transformed to the feasible one.



830 A. ALLAH FERJANI ET AL.

Step 2. Evaluate the fitness value of each initialized solution. Compute the individual with the best fitness
value.

Step 3. Generate the mutant vector V G
i via best2rand strategy using one of the logic gates (2.4)−(2.9). For

example, we employ XOR-best2rand as defined in (2.10):

V G
i = XOR(XG

best, X
G
r1

)

where XG
best is the individual with the best fitness value at generation G and XG

r1 is a randomly chosen
solution from the current population.

Step 4. Generate the trial vector UG
i by crossover operator as described in Figure 2.

Step 5. For the newly generated trial solutions, evaluate the knapsack constraints according to (3.2). If the
knapsack constraints are violated, the infeasible solution would be repaired as the mentioned repair
process.

Step 6. Evaluate fitness value of the newly generated trial population according to (3.1).
Step 7. Select individual between target population and trial population as defined in (2.11).
Step 8. If the stopping criterion is not reached go to Step 3, else return the individual with the best fitness

value as the ultimate solution for the MKP.

3.3. Experimental results and comparison studies

In this section, we present the numerical experimental results of the MKP based on the proposed LGEA.
The performances of LGEA are evaluated on several experiments using benchmarks of the operations research
library (OR-library) [3]. The experiments are performed on Windows 7/ Pentium r© Dual- Core CPU T4500
2.3 GHz machine and implemented in Matlab. In this study, we compare the LGEA algorithm with the other
existing evolutionary-based approaches.

In the experiments in this section, according to the analyses in Section 2, the configurations of switching the
logic gate (⊕) between different operators (XOR, OR, AND, XNOR, NOR, NAND) by trial and error is used.
To improve the convergence, we select best2rand strategy. The crossover rate (CR) is taken in the range of
0.005-0.1 to preserve diversity in the population. The maximum number of generations (Gmax) was 20 000. The
simulation experiments were based on a total of 30 runs.

In the first experiment, we compare the LGEA algorithm with BPSO-based algorithms, namely: CBPSO1 [5],
MBPSO [2], BPSOTVAC [4] and CBPSOTVAC [4] on SENTO, WEING, WEISH, HP and PB knapsack bench-
marks. We employ for that the five performance criteria proposed in [4]: the success ratio (SR), the mean
absolute deviation (MAD), the mean absolute percentage of error (MAPE), the minimal error (LE) and the
standard deviation of the solution (SD). The comparative results are presented in Tables 1, 2 and 3. The results
clearly show that LGEA outperforms the binary PSO algorithms on the different performance criteria with a
significant difference. Moreover, while it is difficult for the BPSO algorithms to obtain the optimal solutions,
LGEA manages to find the optimal solutions in all instances.

Another experiment is performed to compare LGEA with three other binary population-based algorithms,
including two genetic algorithms (OGA [14] and GADS [18]) and a fish swarm algorithm (IbAFSA) [1] on
Peterson knapsack benchmarks. The performance criteria are listed in Table 4, where SR denotes the success
rate, and AE, LE and SDE represent the average, least and standard deviation of errors, respectively. According
to LE, compared with the GAs, LGEA is able to find the optimal solutions in all instances. According to AE,
LGEA performs better than the other methods. These results prove that LGEA has better consistency to achieve
relatively good solutions in different runs.

In the last experiment, we solve problems with higher dimension to demonstrate the potential of the LGEA.
We have considered Glover and Kochenberger knapsack benchmarks whose size is ranging from 100 to 2500 items
and the number of constraints is between 15 and 100. The LGEA is compared with a binary fruit optimization
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Table 1. Comparison between LGEA and MBPSO, CBPSO1, BPSOTVAC and CBPSOTVAC
algorithms on SENTO and WEING testing problems.

Problem #Benchs #Items Algorithm SR MAD MAPE LE SD

Sento1 30 60 MBPSO 0.16 44.81 0.0058 229 43.23

CBPSO1 0 198.29 0.026 302 49.92

BPSOTVAC 0.57 8.74 0.0011 34 11.52

CBPSOTVAC 0.39 136.28 0.021 3146 357.78

LGEA 1 0 0 0 0

Sento2 30 60 MBPSO 0.03 24.85 0.0029 81 18.8

CBPSO1 0 103.32 0.012 150 25.78

BPSOTVAC 0.27 9.42 0.001 38 7.04

CBPSOTVAC 0.2 53.53 0.0063 633 101.03

LGEA 1 0 0 0 0

Weing1 2 28 MBPSO 0.82 110.79 0.0008 801 250.43

CBPSO1 1 0 0 0 0

BPSOTVAC 1 0 0 0 0

CBPSOTVAC 0.92 51.25 0.0004 1961 281.98

LGEA 1 0 0 0 0

Weing2 2 28 MBPSO 0.65 117.45 0.0009 1700 314.08

CBPSO1 1 0 0 0 0

BPSOTVAC 1 0 0 0 0

CBPSOTVAC 0.88 123.19 0.0009 3341 545.5

LGEA 1 0 0 0 0

Weing3 2 28 MBPSO 0.11 1053.2 0.0112 3500 876.78

CBPSO1 1 0 0 0 0

BPSOTVAC 0.92 6.42 0.00007 160 25.53

CBPSOTVAC 0.75 173.07 0.0019 3789 672.42

LGEA 1 0 0 0 0

Weing4 2 28 MBPSO 0.76 570.6 0.0049 4001 1270.8

CBPSO1 1 0 0 0 0

BPSOTVAC 1 0 0 0 0

CBPSOTVAC 0.97 42.83 0.0004 3774 378.58

LGEA 1 0 0 0 0

Weing5 2 28 MBPSO 0.52 1629.21 0.017 4778 1923.5

CBPSO1 1 0 0 0 0

BPSOTVAC 1 0 0 0 0

CBPSOTVAC 0.94 85.62 0.0009 4728 572.82

LGEA 1 0 0 0 0

Weing6 2 28 MBPSO 0.36 310.2 0.0023 1340 322.4

CBPSO1 1 0 0 0 0

BPSOTVAC 0.97 11.7 0.00009 390 66.86

CBPSOTVAC 0.87 91.71 0.0007 2460 343.45

LGEA 1 0 0 0 0

Weing7 2 105 MBPSO 0.02 660.86 0.0006 6111 1130.6

CBPSO1 0 32 690.6 0.0308 42 425 5002

BPSOTVAC 0 281.23 0.00026 2069 383.74

CBPSOTVAC 0 11 272.9 0.011 154 486 30 020

LGEA 1 0 0 0 0

Weing8 2 105 MBPSO 0.03 5824.7 0.0095 44731 4704.3

CBPSO1 0 118 166 0.234 160 402 15 988

BPSOTVAC 0.35 1872.44 0.0030 6463 2000.9

CBPSOTVAC 0.20 27 128.4 13.7 623 862 75 169

LGEA 1 0 0 0 0
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Table 2. Comparison between LGEA and MBPSO, CBPSO1, BPSOTVAC and CBPSOTVAC
algorithms on WEISH testing problems.

Problem #Benchs #Items Algorithm SR MAD MAPE LE SD

Weish1 5 30 MBPSO 0.82 10.9 0.0024 114 26.34

CBPSO1 1 0 0 0 0

BPSOTVAC 1 0 0 0 0

CBPSOTVAC 0.94 5.45 0.0012 248 32.81

LGEA 1 0 0 0 0

Weish2 5 30 MBPSO 0.55 8.39 0.0018 123 18.01

CBPSO1 0.79 1.05 0.00023 5 2.04

BPSOTVAC 0.64 1.8 0.00040 5 2.41

CBPSOTVAC 0.66 4.12 0.0009 231 23.12

LGEA 1 0 0 0 0

Weish3 5 30 MBPSO 0.63 20.54 0.0051 141 34.98

CBPSO1 1 0 0 0 0

BPSOTVAC 0.99 0.63 0.00015 63 6.3

CBPSOTVAC 0.95 9.21 0.0024 394 52.69

LGEA 1 0 0 0 0

Weish4 5 30 MBPSO 0.96 1.76 0.0004 56 8.99

CBPSO1 1 0 0 0 0

BPSOTVAC 1 0 0 0 0

CBPSOTVAC 0.99 8.59 0.0023 859 85.9

LGEA 1 0 0 0 0

Weish5 5 30 MBPSO 0.99 0.54 0.00012 54 5.4

CBPSO1 1 0 0 0 0

BPSOTVAC 1 0 0 0 0

CBPSOTVAC 0.98 8.11 0.0021 742 74.45

LGEA 1 0 0 0 0

Weish6 5 40 MBPSO 0.32 15.36 0.0028 56 14.39

CBPSO1 0.65 5.47 0.00098 34 7.92

BPSOTVAC 0.59 6.68 0.00121 18 8.19

CBPSOTVAC 0.53 23.21 0.0044 518 79.28

LGEA 1 0 0 0 0

Weish7 5 40 MBPSO 0.64 10.2 0.0018 122 18.92

CBPSO1 0.83 3.45 0.0006 25 7.79

BPSOTVAC 0.96 0.7 0.00013 18 3.45

CBPSOTVAC 0.78 19.17 0.0036 511 71.95

LGEA 1 0 0 0 0

Weish8 5 40 MBPSO 0.44 7.24 0.0013 72 13.07

CBPSO1 0.64 0.72 0.00013 2 0.96

BPSOTVAC 0.79 0.42 0.00008 2 0.82

CBPSOTVAC 0.68 8.84 0.0016 418 42.81

LGEA 1 0 0 0 0

Weish9 5 40 MBPSO 0.78 10.61 0.0021 200 25.65

CBPSO1 0.96 1.36 0.0003 34 6.69

BPSOTVAC 1 0 0 0 0

CBPSOTVAC 0.85 13.01 0.0027 641 65.7

LGEA 1 0 0 0 0

Weish10 5 50 MBPSO 0.56 10.84 0.0017 83 22.17

CBPSO1 0.07 42.57 0.0068 141 33.65

BPSOTVAC 0.91 1.43 0.0002 68 9.56

CBPSOTVAC 0.67 57.16 0.0102 1394 188.63

LGEA 1 0 0 0 0
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Table 2. Continued.

Problem #Benchs #Items Algorithm SR MAD MAPE LE SD

Weish11 5 50 MBPSO 0.4 29.48 0.0053 167 43.95

CBPSO1 0.05 79.9 0.0144 191 47.06

BPSOTVAC 0.88 7.42 0.0013 113 25.72

CBPSOTVAC 0.62 110.85 0.028 2245 403.03

LGEA 1 0 0 0 0

Weish12 5 50 MBPSO 0.65 16.35 0.0026 226 35.68

CBPSO1 0.09 57.3 0.0092 191 42.35

BPSOTVAC 0.89 0.29 0.00005 19 1.91

CBPSOTVAC 0.71 107.5 0.020 1497 304.43

LGEA 1 0 0 0 0

Weish13 5 50 MBPSO 0.87 8.47 0.0014 155 25.19

CBPSO1 0.15 59.33 0.0098 159 40.97

BPSOTVAC 1 0 0 0 0

CBPSOTVAC 0.85 38.62 0.0075 1725 180.04

LGEA 1 0 0 0 0

Weish14 5 60 MBPSO 0.66 16.09 0.0023 100 25.95

CBPSO 0 210.47 0.031 347 66.79

BPSOTVAC 0.98 0.62 0.00089 31 4.36

CBPSOTVAC 0.79 116.23 0.021 2127 364.66

LGEA 1 0 0 0 0

Weish15 5 60 MBPSO 0.72 10.55 0.0014 70 18.64

CBPSO1 0 193.51 0.0266 359 59.99

BPSOTVAC 1 0 0 0 0

CBPSOTVAC 0.8 161.45 0.030 2978 554.35

LGEA 1 0 0 0 0

Weish16 5 60 MBPSO 0.44 7.66 0.0011 87 17.49

CBPSO1 0 139.24 0.0195 259 47.07

BPSOTVAC 0.54 1.16 0.00016 8 1.71

CBPSOTVAC 0.43 143.29 0.023 1931 367.29

LGEA 1 0 0 0 0

Weish17 5 60 MBPSO 0.56 5.76 0.0007 41 7.38

CBPSO1 0 91.8 0.0107 170 32.79

BPSOTVAC 1 0 0 0 0

CBPSOTVAC 0.72 85.29 0.011 1035 227.16

LGEA 1 0 0 0 0

Weish18 5 70 MBPSO 0.38 14.65 0.0015 94 18.4

CBPSO1 0 259.34 0.0278 367 54.01

BPSOTVAC 0.75 2.79 0.00029 15 5.25

CBPSOTVAC 0.53 99.14 0.011 1595 275.53

LGEA 1 0 0 0 0

Weish19 5 70 MBPSO 0.55 20.83 0.0027 149 33.67

CBPSO1 0 429.39 0.059 615 83.65

BPSOTVAC 0.65 4.9 0.0006 35 7.13

CBPSOTVAC 0.62 169.45 0.028 3060 489.37

LGEA 1 0 0 0 0

Weish20 5 70 MBPSO 0.53 10.81 0.0011 69 15.99

CBPSO1 0 336.41 0.037 528 89.41

BPSOTVAC 0.78 3.78 0.0004 20 7.53

CBPSOTVAC 0.69 117.89 0.015 2482 410.74

LGEA 1 0 0 0 0



834 A. ALLAH FERJANI ET AL.

Table 2. Continued.

Problem #Benchs #Items Algorithm SR MAD MAPE LE SD

Weish21 5 70 MBPSO 0.61 17.85 0.0019 88 24.97

CBPSO1 0 347.65 0.039 499 84.42

BPSOTVAC 0.74 6.06 0.0007 24 10.41

CBPSOTVAC 0.67 125.78 0.016 2574 378.38

LGEA 1 0 0 0 0

Weish22 5 80 MBPSO 0.33 29.73 0.0033 112 31.55

CBPSO 0 674.21 0.082 935 94.69

BPSOTVAC 0.16 15.12 0.00169 18 6.63

CBPSOTVAC 0.17 172.8 0.024 3063 486.71

LGEA 1 0 0 0 0

Weish23 5 80 MBPSO 0.24 29.65 0.0036 126 35.43

CBPSO1 0 670.43 0.087 902 119.64

BPSOTVAC 0.85 1.11 0.00013 36 5.11

CBPSOTVAC 0.58 179 0.026 3114 437.23

LGEA 1 0 0 0 0

Weish24 5 80 MBPSO 0.27 17.48 0.0017 70 18.09

CBPSO1 0 367.36 0.0373 499 56.96

BPSOTVAC 0.7 3.04 0.00029 31 6.44

CBPSOTVAC 0.55 113.72 0.012 1841 295.79

LGEA 1 0 0 0 0

Weish25 5 80 MBPSO 0.29 15.13 0.0015 61 13.39

CBPSO1 0 449.77 0.0475 648 86.21

BPSOTVAC 0.49 4.54 0.00045 24 7.09

CBPSOTVAC 0.32 112.43 0.013 2321 361.88

LGEA 1 0 0 0 0

Weish26 5 90 MBPSO 0.31 27.32 0.0028 114 24.27

CBPSO1 0 895.39 0.103 1122 126.39

BPSOTVAC 0.36 11.44 0.0012 47 12.81

CBPSOTVAC 0.28 270.13 0.04 4084 710.77

LGEA 1 0 0 0 0

Weish27 5 90 MBPSO 0.65 23.7 0.0024 203 48.62

CBPSO 0 967.43 0.109 1205 120.34

BPSOTVAC 0.99 0.39 0.00004 39 3.9

CBPSOTVAC 0.83 211.46 0.028 3915 640.43

LGEA 1 0 0 0 0

Weish28 5 90 MBPSO 0.64 15.21 0.0016 144 26.72

CBPSO1 0 980.45 0.115 1266 122.32

BPSOTVAC 0.87 2.99 0.00031 23 7.77

CBPSOTVAC 0.62 368.74 0.06 4387 887.33

LGEA 1 0 0 0 0

Weish29 5 90 MBPSO 0.46 26.73 0.0029 154 34.74

CBPSO1 0 981.44 0.117 1180 108.56

BPSOTVAC 0.86 3.19 0.0003 79 10.09

CBPSOTVAC 0.48 384.5 0.057 4891 854.5

LGEA 1 0 0 0 0

Weish30 5 90 MBPSO 0.38 11.6 0.001 57 14.48

CBPSO1 0 548.1 0.0516 760 87.58

BPSOTVAC 0.87 0.52 0.00005 4 1.35

CBPSOTVAC 0.63 203.79 0.021 2836 491.81

LGEA 1 0 0 0 0
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Table 3. Comparison between LGEA and MBPSO, CBPSO1, BPSOTVAC and CBPSOTVAC
algorithms on HP and PB testing problems.

Problem #Benchs #Items Algorithm SR MAD MAPE LE SD

Hp1 4 28 MBPSO 0.1 37.52 0.0112 109 25.52

CBPSO1 0.64 5.5 0.0016 30 7.84

BPSOTVAC 0.38 11.44 0.0034 33 10.69

CBPSOTVAC 0.29 14.1 0.0042 72 13.69

LGEA 1 0 0 0 0

Hp2 4 35 MBPSO 0.11 46.22 0.015 136 39.15

CBPSO1 0.73 4.58 0.0014 19 7.65

BPSOTVAC 0.67 6.51 0.0021 116 13.95

CBPSOTVAC 0.59 12.39 0.0039 114 21.35

LGEA 1 0 0 0 0

Pb1 4 27 MBPSO 0.11 32.62 0.0107 104 24.32

CBPSO1 0.61 5.93 0.0019 30 7.92

BPSOTVAC 0.46 9 0.0029 30 9.44

CBPSOTVAC 0.4 10.26 0.0033 61 10.52

LGEA 1 0 0 0 0

Pb2 4 34 MBPSO 0.16 44.69 0.014 154 39.31

CBPSO1 0.8 4.28 0.00135 95 11.49

BPSOTVAC 0.73 4.5 0.00142 31 7.68

CBPSOTVAC 0.51 14.45 0.0046 87 18.73

LGEA 1 0 0 0 0

Pb4 2 29 MBPSO 0.27 2639.8 0.029 4751 1803

CBPSO1 0.99 2.03 0.00002 203 20.3

BPSOTVAC 0.91 228.1 0.0025 3233 797.1

CBPSOTVAC 0.84 304.33 0.0033 3498 875.1

LGEA 1 0 0 0 0

Pb5 10 20 MBPSO 0.08 49.42 0.024 117 24.36

CBPSO 0.99 0.17 0.00008 17 1.7

BPSOTVAC 0.84 2.72 0.0013 17 6.26

CBPSOTVAC 0.8 3.4 0.0016 17 6.83

LGEA 1 0 0 0 0

Pb6 30 40 MBPSO 0.28 27.36 0.038 147 29.12

CBPSO1 0.55 8.47 0.011 34 10.99

BPSOTVAC 0.5 8.7 0.012 31 9.99

CBPSOTVAC 0.54 17.74 0.028 351 40.17

LGEA 1 0 0 0 0

Pb7 30 37 MBPSO 0.05 19.89 0.019 82 16.29

CBPSO1 0.41 5.64 0.0055 22 5.88

BPSOTVAC 0.47 5.43 0.0053 20 5.71

CBPSOTVAC 0.4 13.05 0.013 126 24.25

LGEA 1 0 0 0 0

algorithm (bfoa2 [23]) and a hybrid EDA-based algorithm (HEDA [22]). The results of the comparison are
given in Table 5, where Min.Dev and Ave.Dev are the minimum and average percentage deviations from the
best-known values, respectively. The results show that LGEA is also competitive on bigger MKP instances.
Compared with bfoa2 and HEDA algorithms, LGEA is able to obtain relatively better average deviations, and
the minimal deviations of S-CLPSO in all instances are less than 1%. For the GK08 knapsack benchmark,
according to Table 6, LGEA manages to yield better solution than the best known one. This proves that the
logic gate mechanism in LGEA is contributing to binary optimization. Overall, the performance results reveal
that LGEA is promising.
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Table 4. Comparison between LGEA and OGA, GADS and IbAFSA algorithms on Peterson
testing problems.

Prob. Method SR AE LE SDE

PT2

OGA – – 0.00 –

GADS 100.00 0.00 0.00 0.00

b-AFSA 100.00 0.00 0.00 0.00

LGEA 100.00 0.00 0.00 0.00

PT3

OGA – – 0.00 –

GADS 100.00 0.00 0.00 0.00

b-AFSA 100.00 0.00 0.00 0.00

LGEA 100.00 0.00 0.00 0.00

PT4

OGA – – 0.00 –

GADS 100.00 0.00 0.00 0.00

b-AFSA 100.00 0.00 0.00 0.00

LGEA 100.00 0.00 0.00 0.00

PT5

OGA – – 10.00 –

GADS 73.33 2.67 0.00 4.50

b-AFSA 33.33 17.67 0.00 21.28

LGEA 100.00 0.00 0.00 0.00

PT6

OGA – – 0.00 –

GADS 6.67 52.70 0.00 27.70

b-AFSA 16.67 58.83 0.00 50.00

LGEA 20.00 42.60 0.00 38.75

PT7

OGA – – 13.00 –

GADS 0.00 155.10 93.00 31.80

b-AFSA 6.67 94.53 0.00 56.43

LGEA 20.00 173.40 0.00 145.57

Table 5. Comparison between LGEA and bFOA2 and HEDA2 algorithms on Glover and
Kochenberger testing problems.

Problem n × m Best known LGEA bFOA2 HEDA2
Min.Dev Ave.Dev Min.Dev Ave.Dev Min.Dev Ave.Dev

GK01 100× 25 3766 0.3983 0.6638 0.5576 0.7554 0.6107 0.9360
GK02 100× 50 3958 0.4295 0.5375 0.6569 0.8518 0.7580 0.9790
GK03 150× 25 5650 0.6726 0.8673 0.7965 0.9150 0.9381 1.1531
GK04 150× 50 5764 0.8848 0.9739 0.8675 1.0279 1.0930 1.2673
GK05 200× 25 7557 0.9528 1.2783 1.0057 1.1930 1.2439 1.4960
GK06 200× 50 7672 0.6257 0.9515 0.8472 0.9802 1.1210 1.4436
GK07 500× 25 19, 215 0.9732 1.0503 1.4312 1.5194 1.7018 1.8460
GK09 1500× 25 58, 085 1.0485 1.0737 2.1744 2.2816 2.4585 2.5461
GK10 1500× 50 57, 292 0.9879 1.0075 1.7437 1.7905 2.0177 2.1170
GK11 2500× 100 95, 231 1.1173 1.1209 1.5037 1.5738 1.7043 1.7348

Table 6. Simulation results of GK08 testing problem.

Problem n × m LGEA Best known
GK08 500 × 50 18 808 18 801
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Figure 4. The network model and its adjacency matrix.

4. Application to task allocation for wireless sensor network

The second application is of the LGEA is an engineering optimization problem in the domain of in-network
processing that is concerned with task allocation for wireless sensor network (WSN). Yang et al. [24] have
been applied a Binary Particle Swarm Optimization (BPSO) variant recently. Authors in [10,19] considered the
standard Genetic Algorithm (GA) tool to provide the well-performing task allocation scheme. In this work, the
proposed LGEA is used to search for the best task allocation scheme. The problem is firstly formulated as a
multiobjective constrained optimization problem. The individuals of LGEA are encoded with binary matrices
to represent candidate task allocation schemes. The task-workload and the connectivity are considered as con-
straints to guarantee the completion of each task and important data transaction among the selected nodes.
A fitness function including the number of active nodes and their load distribution is designed to evaluate the
quality of each solution.

4.1. Problem definition

The network model, task model and cost functions are presented to develop our framework for the task
allocation problem.

4.1.1. The network model

The WSN is composed of a number of heterogeneous sensor nodes deployed randomly in the monitoring
region. The network topology is modelled by a weighted undirected graph G = (N, R) as described in Figure 4;
N = {Nj : j = 1, 2, . . . , n} is the set of vertices corresponding to the network nodes. R is the set of edges
corresponding to the direct communication link among nodes. There is no direction for the edges since all
the nodes have the same maximum transmission range the communications are bidirectional. Each node Nj is
characterized by (aj , bj), aj is the load for the processor of node Nj and bj is includes the load for transmitting
and receiving a data packet. The weight on each edge, di,j , is equivalent to the direct communication link between
Ni and Nj . When di,j is smaller than the maximum transmission range, the two nodes are directly connected
to each other. The network model can be denoted by its adjacency matrix Cx = (Cxi,j)n×n ∈ {0, 1}n×n, which
informs of the direct communication among nodes.

Cxi,j = 1 if node i is directly connected to node j.
Cxi,j = 0 if node i is not connected to node j.

4.1.2. The task model

A WSN application can be executed by a sequence of processing tasks. The tasks and their performance
order can be represented by the Directed Acyclic Graph (DAG).The set of vertices are expressed as M =
{Mi : i = 1, 2, . . . , m}. Each task is characterized by its computation workload P = {Pi : i = 1, 2, . . . , m} and
its communication workload L = {Li : i = 1, 2, . . . , m}. The workload of each task respects the energy supply
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Figure 5. DAG for the task model.

of a single node. The direction of edges describes the priority among different tasks. For a given edge, if Mi is
the immediate predecessor of Mj, Mj must be executed after Mi has been achieved. A DAG for tasks [24] is
shown in Figure 5.

4.1.3. Cost functions

To achieve cooperative in-network processing in WSN with less energy consumption and longer network
lifetime, the total number of active nodes, both of the computation and communication load uniformity are
considered as cost functions.

(1) The number of active nodes: A node that is selected for a specialized task is named as an active node. The
number of active nodes for all the tasks in WSN

can be expressed by an m × n matrix. An element of C is ci,j , which denotes whether the node Nj is active
for task Mi. When Nj is selected for Mi, ci,j = 1. Otherwise ci,j = 0. Then, the total number of active nodes
in WSN for all the tasks is repersented by (4.1).

C =
m∑

i=1

n∑
j=1

ci,j (4.1)

(2) The computation load uniformity: The equilibration of loads of sensor nodes plays a key role in balancing
the energy consumption. The computation energy of sensor nodes for all the tasks in WSN can be expressed by
a m × n matrix A. ai,j is an element of A. When the node Nj is not selected for task Mi, ai,j = 0. Otherwise,
ai,j represents a certain amount of computation load. In this study, the computational load uniformity of WSN
can be measured by the deviation of computation load of the sensor nodes among all the tasks (DP) as (4.2).

DP =
m∑

i=1

|Ai − Pi| (4.2)

Ai =
∑n

j=1 ai,j is the total computation load of all the nodes assigned with the task Mi, Pi is the computation
workload of task Mi, which is also the expectation of energy consumption for computation for all the sensor
nodes.

(3) The communication load uniformity: The communication energy of sensor nodes for all the tasks in WSN
can be expressed by a m × n matrix B. bi,j is an element of B. When the node Nj is not selected for task Mi,
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bi,j = 0. Otherwise, bi,j represents a certain amount of communication load. The communication load uniformity
can be calculated by (4.3).

DL =
m∑

i=1

|Bi − Li| (4.3)

Bi =
∑n

j=1 bi,j is the total communication load of all the nodes assigned with the task Mi, Pi is the communi-
cation workload of task Mi, which is also the expectation of energy consumption for communication for all the
sensor nodes.

4.1.4. Problem formulation

An application is decomposed of m processing tasks to be simulated in the WSN. The set of tasks is represented
by M = {Mi : i = 1, 2, . . . , m}. For a specific task Mi, a group of k sensor nodes Ns = {Nsk : k = 1, 2, . . . , n} is
selected. The selected nodes must have adequate resource capabilities for completing the different task workloads.
Moreover, they must be connected with each other to ensure the prerequisite data exchange. The aim of task
allocation is to obtain a scheme that can achieve the best global network performance under the required
constraints on task workload and connectivity. In this work, we propose optimization metrics for a task allocation
scheme. The metrics include the total number of active nodes, total deviation of computation loads and total
deviation of communication loads of the sensor nodes among all the tasks. Therefore, the task allocation problem
can be formulated as a multiobjective constrained optimization problem. The general optimization formulation
of the objective function with weights for each metric is expressed by (4.4).

minimize f(X) = α × C + β × DP + γ × DL (4.4)

where C is total number of the active nodes in WSN; DP and DL are the total computation and communication
load deviations of the sensor nodes among all the tasks.

(1) Task workload constraint : According to the DAG of tasks, each task requires a workload on computation as
well as on communication. Moreover, the assigned group of nodes must be capable to accomplish the task. A task
Mi needs a total computation load Pi and a total communication load Li. To finish Pi, the total computation
load of the selected nodes Ai should be larger than Pi. To finish Li, the total computation load of the selected
nodes Bi should be larger than Li. The constraints on task workloads for the current individual are expressed
as (4.5).

{
Ai ≥ Pi

Bi ≥ Li
(4.5)

The constraint on workload is then expressed by the limitation of the minimal load of the selected nodes for
a specialized task. The constraint on task workload is satisfied only when (4.5) is satisfied.

(2) Connectivity constraint : The connectivity would tell whether the selected nodes of a specialized task ensure
direct communication. When two nodes are connected, the distance between them must be within a range
distance R. The connectivity of the sensor nodes is defined in matrix Cx. As a result of this, the nodes that
violate the constraint on connectivity will be eliminated.

4.2. Task allocation using LGEA

The binary solution stands for a potential task allocation scheme for the WSN. It is encoded into a m × n
binary matrix XG

i ∈ [0, 1]m×n, where m is the total number of tasks in and n is the total number of sensor
nodes in the WSN.
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Each row of the solution expresses an allocation representation of a particular task. The priority of the tasks
is described by the order of rows in the solution, i.e. the tasks with the highest priority are in the first rows and
the tasks with the lowest priority are in the last rows.

XG
i =

⎡
⎢⎣

xi,11 . . . xi,1n

...
. . .

...
xi,m1 . . . xi,mn

⎤
⎥⎦

The binary value of each element in XG
i denotes whether a node is selected for a particular task. For example,

xi,pq is an element of XG
i . xi,pq = 1 means that the qth node is selected for the pth task. xi,pq = 0 means that

the qth node is not selected for the pth task.

4.2.1. LGEA-based task allocation

The objective of the proposed algorithm is to find out the optimal task allocation scheme that achieves
the best overall performance of the WSN. Each task is assigned to a proper group of nodes. The following
implementation steps describe the whole process:

Step 1. Create the DAG of the tasks and the graph for WSN. Initialize the parameters for tasks and WSN.
Step 2. Set the control parameters for LGEA.
Step 3. Initialize the binary solution with the satisfaction of task workload and connectivity constraints. The

population is randomly initialized in the binary domain as (4.6).

xi,pq =

{
1, if rand() < p0

0, otherwise
(4.6)

where rand is a random number; p0 is the pseudo probability of being “1” for the components of
individuals in the initial population. p0 stands for the desired percentage of the selected node q for the
task p.

Step 4. Generate the offspring individuals using the logic mechanism. For example, we exploit the XOR-
rand2rand strategy as defined in (2.2)−(2.4).

Step 5. Fulfill the constraint of connectivity for the trial solutions. Evaluate the constraint on task workload
using (4.5). If the constraint on task workload is not satisfied, then return to Step 4. Otherwise, go on
to Step 6.

Step 6. Evaluate the fitness value of the newly generated individuals according to the fitness function f as (4.4).
Step 7. Update the current population as follows: if the fitness of the trial individual is better than the old

value, the trial individual will be selected for the next generation.
Step 8. When the maximum number of generations is not reached go back to Step 4. Otherwise, return the

best individual.

4.3. Simulations

We design a simulation environment for the task allocation problem in order to test the effectiveness of LGEA.
Assume that the WSN is composed of a heterogeneous sensor nodes’ number deployed in a monitoring area of
50 m × 50 m. The nodes have different characteristics on computation and communication. The computation
and communication loads for a single sensor node are set to be uniformly distributed in the range of [1, n], n
is the number of sensor nodes. The number of tasks and their execution order are randomly initialized in the
simulation. Suppose that the computation load and communication load for each task is set to be uniformly
distributed in the range of [1, m], m is the number of tasks.

To confirm the improvement by the proposed logic gate mechanism, the proposed algorithm was compared
with two existing binary evolutionary algorithms: the GA and the BPSO algorithm. The maximum generation
number for all methods is 1000; for the BPSO the inertia weights are: wmax = 0.9, wmin = 0.4, the inertia
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Table 7. Experimental results of LGEA, BPSO and GA.

Algorithm LGEA BPSO GA

MF 5.1251 15.9246 22.1475

Best solution

f 3.2542 9.9464 13.2603
C 13 18 28
DP 2.5955 7.4976 8.5887
DL 1.2491 6.0850 9.5811

MF = mean best fitness.

Figure 6. The problem set up (* represents the sensor node).

Figure 7. Convergence curves of the mean best fitness.

constant is c = 2.0 and the velocity constant vmax is 6.0; for the GA the mutation rate is 0.2. For all the
simulations, the default number of tasks and sensor nodes are set to be 8 and 30 respectively. Figure 6 shows
the monitoring area for the WSN. Experimental results for performance comparison are listed in Table 7 in which
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C, DP and DL incorporated in the best solution are also given. It shows that the proposed LGEA can achieve
the best performance on the different metrics. The convergence curve of the mean best fitness value is depicted
in Figure 7. It can be seen that the BPSO and GA have slower convergence speeds and get easily stuck in local
minima. However, the LGEA needs less number of generations than BPSO and GA to converge to the global
best value.

5. Conclusion

A logic gate-based evolutionary algorithm (LGEA) has been proposed. In order to solve binary space prob-
lems, LGEA performs the binary perturbation using the logic gate mechanism. Common space transformation
mechanisms and classic recombination and mutation methods are replaced by the logic gate mechanism. Thus,
LGEA represents a new technique to combine the concept of logic gates into the procedure of generating off-
spring in an evolutionary algorithm. We have experimentally investigated the performances of our algorithm on
several benchmarks of the multidimensional knapsack problem (MKP). The algorithm was compared with ex-
isting binary EAs and showed a superior performance to them. To demonstrate the usefulness of the algorithm,
we have solved an engineering optimization problem, task allocation for wireless sensor network. Experimental
results have proved the potential of the logic gate mechanism.
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