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CHANCE-CONSTRAINED DATA ENVELOPMENT ANALYSIS MODELING

WITH RANDOM-ROUGH DATA ∗

Rashed Khanjani Shiraz1, Madjid Tavana2,3,a and Debora Di Caprio4,5

Abstract. Data envelopment analysis (DEA) is a useful management tool for measuring the relative
efficiency of decision making units (DMUs) which consumes multiple inputs to produce multiple out-
puts. Although precise input and output data are fundamentally indispensable in classical DEA models,
real-world problems often involve random and/or rough input and output data. We present a chance-
constrained DEA model with random and rough (random-rough) input and output data and propose a
deterministic equivalent model with quadratic constraints to solve the model. The main contributions
of this paper are fourfold: (3.1) we propose a DEA model for problems characterized by random-rough
variables; (3.2) we transform the proposed chance-constrained model with random-rough variables
into a deterministic equivalent non-linear form that could be simplified as a deterministic model with
quadratic constraints; (3.3) we perform sensitivity analysis to investigate the stability and robustness of
the proposed model; and (3.4) we use a numerical example to demonstrate the feasibility and richness
of the obtained solutions.
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1. Introduction

Data envelopment analysis (DEA), initially developed by Charnes et al. [3], is a non-parametric method
to identify efficient production frontiers and evaluate the relative efficiency of decision making units (DMUs)
where each unit is responsible for converting multiple inputs into multiple outputs. The conventional DEA
models require precise and known values for the inputs and outputs. However, this assumption may not be
satisfied in many real-world problems characterized by imprecise and unknown data. As a consequence, a wide
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range of DEA models have been proposed to evaluate DMUs with uncertain data. Fuzzy, random, and rough
sets are commonly used to formalize the uncertainties inherent to real-world performance evaluation problems.

Land et al. [13] extended the chance-constrained DEA model proposed by Charnes and Cooper 1959 to
compute the efficiency of DMUs facing the uncertainty deriving from the inputs being deterministic and the
outputs jointly normally distributed. Olesen and Petersen [22] developed a chance-constrained DEA model by
imposing chance-constraints on the multiplier model. Olesen [21] presented a comparison of two different models
(Land et al. [13] and Olesen and Petersen [22]), both designed to extend DEA to the case of stochastic inputs
and outputs. Morita and Seiford [19] studied robustness of the efficiency results when input and output data
are subject to stochastic measurement error. Huang and Li [10] developed stochastic models in DEA by taking
into account the possibility of random variations in the input and output data. They proposed dominance
structures on the DEA and removed the Pareto efficient DMUs from the DEA envelopment side. Huang and Li
[11] developed the chance-constrained DEA model with separate chance-constraints. They defined the efficiency
dominance of a DMU using joint probabilistic comparisons of inputs and outputs with other DMUs. Talluri
et al. [32] applied chance-constrained DEA model to vendor evaluation.

Cooper et al. [4] presented a joint chance-constrained programming in the multiplier DEA model. Cooper et al.
[7], Li [14], and Bruni et al. [1] utilized joint chance- constraints to extend the concept of “Stochastic efficiency”
to a measure called “α-stochastic efficiency”. Cooper et al. [6] used chance-constrained programming to extend
congestion in DEA models. Cooper et al. [5] provided chance-constrained programming models for identifying
technical efficiencies and inefficiencies. Sueyoshi [30] proposed a stochastic DEA model to plan the restructuring
strategy in the petroleum industry by incorporating futuristic data in their stochastic model. Tsionas and
Papadakis [36] developed Bayesian inference techniques in stochastic DEA models. Udhayakumar et al. [37]
used a genetic algorithm to solve the chance-constrained DEA models involving the concept of satisficing. Wu
et al. [38] proposed a stochastic DEA model by considering undesirable outputs with weak disposability. This
model not only deals with the existence of random errors in the collected data, but also depicts the production
rules uncovered by the weak disposability of undesirable outputs.

Tavana et al. [33] developed three imprecise DEA models in the presence of probability-possibility, probability-
necessity and probability-credibility constraints where fuzziness and randomness simultaneously exist in an eval-
uation problem. Tavana et al. [34] introduced random fuzzy variables in DEA when randomness and vagueness
coexist in the same problem. The authors propose three DEA models for measuring the radial efficiency of
DMUs when the input and output data are random fuzzy variables with Poisson, uniform and normal distri-
butions. Hence, they extend the formulation of the possibility-probability and the necessity-probability DEA
models with random fuzzy parameters to a production possibility set where the random fuzzy inputs and outputs
have normal distributions with fuzzy means and variances. Tavana et al. [35] proposed a chance-constrained
DEA model with birandom input and output data. They formulate a super-efficiency model with birandom
constraints and obtain a non-linear deterministic equivalent model to solve the super-efficiency model.

Since the pioneering work of stochastic theory and rough set theory, several approaches have been well-
developed and applied to a wide variety of real-world problems (Lempel and Moran, [15]). These approaches
include expectation models Liu, [17], chance-constrained programming (Charnes and Cooper, 1959; Liu, [17]),
and dependent-chance programming (Liu, [16]; Liu, [18]). However, randomness and roughness are always treated
separately in all of the models in the literature.

Random phenomenon is one class of uncertainty that has been studied by many scholars in connection with
mathematical programming problems. In real-world problems, it is not unusual to have to deal with two or
more concurrent uncertainty factors. However, many researchers believe that the classical one-fold uncertain
variables (random, fuzzy, and rough variables) cannot always be used to clearly represent complicated and
involved real-world problems where randomness and roughness coexist at the same time. In such cases, the
concept of random-rough variable turns out to be a useful tool in dealing with these two types of uncertainty
simultaneously. Recently Khanjani et al. [12], Tavana et al. ([33, 34], 2014) and Paryab et al. [23] presented
DEA models with two-fold uncertain data. Khanjani et al. [12] proposed fuzzy rough DEA models based on the
expected value and possibility approaches. Paryab et al. [23] proposed DEA models using a bi-fuzzy data based
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possibility approach. However, there has been no attempt to study randomness and roughness simultaneously
in DEA problems.

An input or output variable in a DEA problem can be a normally distributed random variable, and its
mean values can still be a rough variable. In this study, we consider random variables with rough parameters
(random-rough variables) in DEA problems. Liu [17] introduced the concept of random-rough variable by
combining randomness and roughness. Liu [18] extended the concept of random-rough variable and proposed
a random-rough expected value model (EVM). Xu and Yao ([40, 41, 42, 43]) discussed the basic definitions and
properties of random-rough variables, and introduced EVM, chance-constrained, dependent-chance, and bi-level
models. Xu and Yao [40] showed that random-rough variables can represent many real-world problems including
seasonal products selling (e.g., ice cream, Christmas trees, and woolen materials) where demand may vary from
one year to another. They further argue that the historical data in these seasonal problems are subject to
stochastic variations and that the expected value of the stochastic distribution is imprecise and varies from year
to year. Finally, Xu and Yao ([40,41,42,43]) proposed several crisp equivalent models and applied them to many
real-world queuing, inventory, and production planning problems.

The main contributions of this paper are fourfold: (3.1) we propose a DEA model for problems characterized
by random-rough variables; (3.2) we transform the proposed chance-constrained model with random-rough
variables into a deterministic equivalent non-linear form that could be simplified as a deterministic model with
quadratic constraints; (3.3) we perform sensitivity analysis to investigate the stability and robustness of the
proposed model; and (3.4) we use a numerical example to demonstrate the feasibility and richness of the obtained
solutions. The remainder of this paper is organized as follows. In Section 2, we provide some preliminaries and
definitions about rough and random-rough variables. In Section 3, we introduce the random-rough CCR model
proposed in this study. In Section 4, we present the mathematical details of the expected value operator and
in Section 5, we introduce a sensitivity analysis framework for this model. In Section 6, we present a numerical
example to demonstrate the applicability of the proposed random-rough CCR model. Finally, in Section 7, we
present our conclusions and future research directions.

2. Preliminaries and definitions

Rough set theory (Pawlak, [24,25]) is an efficient mathematical tool to deal with imprecise, inconsistent, and
incomplete data. Pawlak and Skowron [26, 27, 28] have extensively studied rough sets and their applications.
Dubois and Prade [8] extended rough set theory into the fuzzy direction. Tao and Xu [31] presented a rough
multiple objective programming model for a solid transportation problem. Other researchers have successfully
applied rough set theory to feature selection, attribute reduction, and rule learning problems (Nguyen, [20];
Qian et al., [29]).

Trust theory, introduced by Liu [17], is a branch of mathematics that studies the behavior of rough events.
Trust theory is the foundation for rough programming like probability theory is for stochastic programming and
possibility theory is for fuzzy programming. In particular, in order to describe two-fold uncertain events, such as
random-rough variables, Liu [17] mixed trust measures with probability measures. Random-rough variables turn
out to be useful tools to deal with two types of uncertainty (namely, randomness and roughness) simultaneously.
In this section we present a series of definitions, axioms, and theorems which provide the basis of theory of
random-rough variables.

Definition 2.1 (Liu, [18]).

The structure (Λ,∆,A, π) is called a rough space if Λ is a nonempty set, A is a σ-algebra of subsets of Λ, ∆
is an element in A, and π is a set function on A satisfying the following axioms:

Axiom 1. π {Λ} <∞;

Axiom 2. π {∆} > 0;

Axiom 3. π {A} > 0, for any A ∈ A;
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Figure 1. Rough approximation.

Axiom 4. For every countable sequence of mutually disjoint events {Ai}∞i=1 inA, we have:

π

{ ∞⋃
i=1

Ai

}
=

∞∑
i=1

π {Ai}.

If, in particular, π{∅} = 0, then π is a measure on (Λ,A) and the tuple (Λ,A, π) is also a measure space.

Definition 2.2 (Liu, [18]).
A rough variable ξ̄ is a measurable function from a rough space (Λ,∆,A, π) to the set of real numbers.

The concept of rough set (Powlak, 1982) is based on the existence of a universe of objects U (a non-empty
finite set of objects) and an indiscernibility relation R on U , such as an equivalence relation, representing the
lack of knowledge about the objects in U . Given X ⊆ Uone can approximate X by constructing the lower and
upper approximations of X. The lower approximation of X, denoted by X, is a subset of X containing all the
objects surely belonging to X with respect to R. The upper approximation of X, denoted by X, is a superset
of X containing all the objects possibly belonging to X with respect to R.

Definition 2.3. Let X be a subset of a finite universe of objects Uendowed with an indiscernibility relation R.
The pair (X,X) represents the collection of all subsets of U having the same lower and upper approximations
as X and it is called a rough set

Figure 1 provides a visual representation of a rough set and its approximations. The dotted curve together
with its internal points represents X. The two thick curves together with their inner points represent the upper
(X) and lower (X) approximation, respectively.

Definition 2.4 Liu, [18].
Let (Λ,∆,A, π) be a rough space. The upper and lower trust of an event K ∈ A are defined by:

(Tr)
Upper {K} =

π {K}
π {Λ}

and (Tr)
Lower {K} =

π {K ∩∆}
π {∆}

·

Finally, the trust of Kis defined by:

Tr{K} =
1

2

[
(Tr)

Upper {K}+ (Tr)
Lower {K}

]
.



CHANCE-CONSTRAINED DATA ENVELOPMENT ANALYSIS MODELING WITH RANDOM-ROUGH DATA 263

The trust also defines a measure on A. More precisely: (a) Tr {Λ} = 1; (b) Tr {∅} = 0; (c)

Tr {A} 6 Tr {B} , for every A,B ∈ Awith A ⊆ B; and(d)Tr {A}+ Tr {Ac} = 1, for everyA ∈ A.

Assume that Λ = {λ : c 6 λ 6 d}, ∆ = {λ : a 6 λ 6 b}, where c 6 a < b 6 d, A coincides with the Borel
algebra on Λ and π is the Lebesgue measure. Then, the identity function ξ (λ) = λ is a rough variable. Such a
rough variable is usually denoted by ξ̄ = ([a, b] , [c, d]).

Definition 2.5 (Rough Arithmetic) (Liu, [17]).
Let ξ̄ = ([a1, a2] , [a3, a4]), a3 6 a1 < a2 6 a4, and η̄ = ([b1, b2] , [b3, b4]), b3 6 b1 < b2 6 b4. The rough

arithmetic of ξ̄ and η̄is defined as follows:

ξ̄ + η̄ = ([a1 + b1, a2 + b2] , [a3 + b3, a4 + b4]) and kξ̄ =

{
([ka1, ka2] , [ka3, ka4]) , if k > 0;

([ka2, ka1] , [ka4, ka3]) , if k < 0.

where k is a non-zero real value.

Definition 2.6 Liu, [18].
Let ξ̄ be a rough variable defined on a rough space (Λ,∆,A, π). The expected value of ξ̄ is defined by:

E(ξ̄) =

∫ +∞

0

Tr {ξ > r}dr −
∫ 0

−∞
Tr {ξ 6 r}dr,

provided that at least one of the two integrals is finite. In particular, if ξ̄ = ([a, b] , [c, d]) with c 6 a < b 6 d,
then E

[
ξ̄
]

= 1
4 (a+ b+ c+ d)

Definition 2.7 Liu, [18]. Let ξ̄ be a rough variable and α ∈ (0, 1] .
Then:

ξsup (α) = sup
{

r : Tr
{
ξ̄ > r

}
> α

}
is called the α− optimistic value of ξ̄, and

ξinf (α) = inf
{

r : Tr
{
ξ̄ 6 r

}
> α

}
is called α− pessimistic value of ξ̄.

Definition 2.8. A random-rough variable is a function ˜̄ξ from a rough space (Λ,∆,A, π) to a collection of

random variables ξ̃(λ) such that for every Borel set B of <, ξ̃ (λ) (B) = Pr
{
ξ̃ (λ) ∈ B

}
is a measurable function

of λ ∈ Λ.

Definition 2.9 Liu, [18]. A random-rough variable ˜̄ξ is said to have a normal distribution, if the random
variable ξ̃(λ) has a normal distribution whose expected value µ̄ is approximated by a rough set (X,X), or its
standard deviation σ̄ is approximated by a rough set (X,X), or both of them.

Henceforth, we will write ˜̄ξ ∼ N
(
µ̄, σ2

)
to denote a random-rough variable whose expected value µ̄ is

approximated by a rough variable of the form ([a, b], [c, d]), with c 6 a < b 6 d.

Definition 2.10 Liu, [18]. Let ˜̄ξ be a random-rough variable defined on the rough space (Λ,∆,A, π). Then, its
expected value is defined by:

E(˜̄ξ) =

∫ +∞

0

Tr
{
λ ∈ Λ

∣∣∣E [ξ̃ (λ)
]
> r

}
dr −

∫ 0

−∞
Tr
{
λ ∈ Λ

∣∣∣E [ξ̃ (λ)
]
6 r

}
dr

Definition 2.11 Convex function. Bazaraa et al., 1990.
Let S be a nonempty set of <n. A function f : S → < is called a convex function if, for every x1, x2 ∈ <n,

f (x1) 6= f (x2), and every λ ∈ (0, 1), we have:

f (λx1 + (1− λ)x2) 6 λf (x1) + (1− λ) f (x2) .
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Definition 2.12 Bazaraa et al., 1990. A programming problem is called convex if it has a convex feasible set
and a convex objective function.

Theorem 2.13.

(a) ξinf (α) is an increasing function of α ∈ [0, 1] and ξsup (α) is a decreasing function of α ∈ [0, 1].

(b) ξinf (α) = ξsup (1− α) and ξsup (α) = ξinf (1− α) for 0 6 α 6 1

(c) ξinf (α) 6 ξsup (α) for 0 6 α 6 0.5

(d) ξinf (α) > ξsup (α) for 0.5 6 α 6 1.

3. The CCR model with random-rough data

Stochastic programming problems are optimization problems with random parameters. In stochastic pro-
gramming, the parameters or the coefficients are usually characterized by a probability distribution. After the
introduction of rough sets by Pawlak [24], some scholars developed the concept of two-fold uncertain variables
and combined rough variables with fuzzy and random variables. An explicit use of the classical deterministic
DEA models for measuring the true relative efficiency is not possible due to the lack of complete knowledge
and information in complex real-life problems. In this section, we present the mathematical details of the ap-
proach proposed in this study for solving CCR models in which the input and output data are assumed to be
random-rough variables.

As in Section 2, we will use an over-lining bar to indicate rough data and an over-lining tilde to denote
random data. Moreover, we will add the superscripts I or O to show that a variable refers to the inputs or
outputs, respectively.

Let X̃j = (˜̄x1j , . . . , ˜̄xmj)
t ∈ <m and ˜̄Yj = (˜̄y1j , . . . , ˜̄ysj)

t ∈ <s be the random-rough input and output vectors
for the jth DMU, DMUj , with j = 1, . . . , n, each of them endowed with a normal distribution. For every
j = 1, . . . , n and i = 1, . . . ,m, let x̄ij and σij denote the expected value and the variance of the random
variable ˜̄xij , respectively, with the expected value x̄ij being represented by a rough variable. Similarly, for every
j = 1, . . . , n and r = 1, . . . , s, let ȳrj and σrj denote the expected value and the standard deviation of the random
variable ˜̄yrj , respectively, with the expected value ȳrj being represented by a rough variable. In summary, we
have:

˜̄xij ∼ N
(
x̄ij , σ

2
ij

)
, x̄ij = ([xaij , x

b
ij ], [x

c
ij , x

d
ij ]), x

c
ij 6 x

a
ij < xbij 6 x

d
ij

˜̄yrj ∼ N
(
ȳrj , σ

2
rj

)
, ȳrj = ([yarj , y

b
rj ], [y

c
rj , y

d
rj ]), y

c
rj 6 y

a
rj < ybrj 6 y

d
rj , (3.1)

Finally, let DMUp be the generic but fixed DMU under assessment. Thus, the sub-index p will be added to
indicate that a quantity refers to DMUp.

The chance-constrained CCR model with the random-rough data can be formulated as follows:

min θp
s.t.

Tr

P
 n∑
j=1

˜̄xijλj − ˜̄xipθp 6 0

 > 1− β

 > α, i = 1, . . . ,m,

Tr

P
 n∑
j=1

˜̄yrjλj − ˜̄yrp > 0

 > 1− β

 > α, r = 1, . . . , s, (3.2)

λj > 0, j = 1, . . . , n.
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where β ∈ (0, 1] and α ∈ (0, 1] are the pre-determined thresholds defined by the decision maker for identifying
an allowable chance of failing to satisfy the constraints. P(•) denotes the probability of the event (•) and Tr[•]
stands for the trust measure of the event [•].

Assume ˜̄hi =
n∑
j=1

˜̄xijλj − ˜̄xipθp. Due to the normal distribution of ˜̄xij ,
˜̄hi also has a normal distribution with

the following mean:

h̄i = E(˜̄hi) =

n∑
j=1

x̄ijλj − x̄ipθp

For the inner part of the first constraints of model (3.2), we have:

P

 n∑
j=1

˜̄xijλj − ˜̄xipθp 6 0

 > 1− β ⇔ P



(
n∑
j=1

˜̄xijλj − ˜̄xipθp

)
− E

(
˜̄hi

)
√√√√var

(
n∑
j=1

˜̄xijλj − ˜̄xipθp

) 6 −
E
(

˜̄hi

)
√√√√var

(
n∑
j=1

˜̄xijλj − ˜̄xipθp

)


> 1− β

Thus, we have:
n∑
j=1

x̄ijλj − x̄ipθp − σI˜̄hiΦ
−1 (β) 6 0

where Φ is the cumulative distribution function of the standard normal distribution and:

σI˜̄hi
(λj , θp) =

√√√√√var

 n∑
j=1

˜̄xijλj − ˜̄xipθp


=

√√√√ n∑
j=1

n∑
k=1

λjλkcov(˜̄xij , ˜̄xik) + θ2
pvar(˜̄xip)− 2θp

n∑
j=1

λjcov(˜̄xij , ˜̄xip)

Therefore, it results in the following constraint:

Tr

 n∑
j=1

x̄ijλj − x̄ipθp − σI˜̄hiΦ
−1(β) 6 0

 > α
A similar method can be applied to the second constraint in (3.2) and obtain:

Tr

 n∑
j=1

ȳrjλj − ȳrp + Φ−1(β)σO˜̄hr
> 0

 > α
where ˜̄hr =

n∑
j=1

˜̄yrjλj − ˜̄yrp, h̄r = E(˜̄hr) =
n∑
j=1

ȳrjλj − ȳrp and

σO˜̄hr
(λj) =

√√√√√var

 n∑
j=1

˜̄yrjλj − ˜̄yrp

 =

√√√√ n∑
j=1

n∑
k=1

λjλkcov (˜̄yrj , ˜̄yik) + var (˜̄yrp)− 2

n∑
j=1

λjcov (˜̄yrj , ˜̄yrp).
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As a result, model (3.2) gives rise to the following chance-constrained programming model:

min θp
s.t.

Tr

 n∑
j=1

x̄ijλj − x̄ipθp − σI˜̄hi(λj , θp)Φ
−1(β) 6 0

 > α, i = 1, . . . ,m,

Tr

 n∑
j=1

ȳrjλj − ȳrp + Φ−1(β)σO˜̄hr
(λj) > 0

 > α, r = 1, . . . , s, (3.3)

λj > 0 , j = 1, . . . , n.

Liu [18] has proposed three methods for converting rough programming model into a deterministic program-
ming model. These three methods are known as the rough EVMs, rough chance-constrained programming, and
the α-optimistic and α-pessimistic value operators for rough variables.

Following Xu et al. [44], we use the α-optimistic and α-pessimistic value operators for rough variables to
transform the rough programming model (3.3) into a deterministic model, that is, into maximum programming
and minimum programming under the α trust level of a rough variable ξ. The α-optimistic and α-pessimistic
values of the rough variables are as follows.

Based on Theorem 1, if α ∈ (0.5, 1], then, ξinf (α) > ξsup (α). Thus, the α-pessimistic and α-optimistic values
for the rough variables are represented by the interval

[
ξsup (α) , ξinf (α)

]
. It follows that for α ∈ (0.5, 1], the

rough variables x̄ij and ȳrj can be transformed into the intervals
[
x

sup(α)
ij , x

inf(α)
ij

]
and

[
y
sup(α)
rj , y

inf(α)
rj

]
, re-

spectively. Hence, the implementation of the αoptimistic and αpessimistic operators to (3.3) yields the following
interval non-linear program:

min θp
s.t.

n∑
j=1

λj

[
x

sup(α)
ij , x

inf(α)
ij

]
− σI˜̄hi (λj , θp)Φ

−1 (β) 6 θp
[
x

sup(α)
ip , x

inf(α)
ip

]
, i = 1, . . . ,m, (3.4)

n∑
j=1

λj

[
y

sup(α)
rj , y

inf(α)
rj

]
+ Φ−1 (β)σO˜̄hr

(λj) >
[
ysup(α)
rp , yinf(α)

rp

]
, r = 1, . . . , s,

λj > 0, j = 1, . . . , n.

The minimum efficiency score of model (3.4) for DMUp is attained if its observations consist of minimum
inputs and maximum outputs. Ifα ∈ (0.5, 1], then the α-optimistic value (and hence the upper bound) is obtained
by solving the following non-linear programming model:(

θ∗p
)inf(α)

RRDEA
= min θ

inf(α)

p

s.t.
n∑

j = 1
j 6= p

x
inf(α)
ij λj + λpx

sup(α)
ip − σI˜̄hi

(
λj , θ

inf(α)

p

)
Φ−1 (β) 6 xsup(α)

ip θ
inf(α)

p , i = 1, . . . ,m,

n∑
j = 1
j 6= p

y
sup(α)
rj λj + λpy

inf(α)
rp + Φ−1 (β)σO˜̄hr

(λj) > y
inf(α)
rp , r = 1, . . . , s, (3.5)

λj > 0 , j = 1, . . . , n.
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The α-pessimistic value (lower bound) is obtained by solving the following non-linear programming model:

(
θ∗p
)sup(α)

RRDEA
= min θ

sup(α)

p

s.t.

n∑
j = 1
j 6= p

x
sup(α)
ij λj + λpx

inf(α)
ip − σI˜̄hi

(
λj , θ

sup(α)

p

)
Φ−1 (β) 6 xinf(α)

ip θ
sup(α)

p , i = 1, . . . ,m,

n∑
j = 1
j 6= p

y
inf(α)
rj λj + λpy

sup(α)
rp + Φ−1 (β)σO˜̄hr

(λj) > y
sup(α)
rp , r = 1, . . . , s, (3.6)

λj > 0 , j = 1, . . . , n.

Given the functional forms of σI˜̄hi
(λj , θ

·
p ) and σO˜̄hr

(λj), it is obvious that models (3.5) and (3.6) are non-

linear programming problems. These two non-linear programming models can be transformed into programming
models with quadratic constraints. Suppose that viand ur are the nonnegative variables substituting σI˜̄hi

(λj , θ
∗
p)

and σO˜̄hr
(λj), respectively. If α ∈ (0.5, 1], then the α-optimistic value (and hence the upper bound) is obtained

by solving the following model:

(
θ∗p
)inf(α)

RRDEA
= min θ

inf(α)
p

s.t.

n∑
j = 1
j 6= p

x
inf(α)
ij λj + λpx

sup(α)
ip − viΦ−1 (β) 6 xsup(α)

ip θinf(α)
p , i = 1, . . . ,m,

n∑
j = 1
j 6= p

y
sup(α)
rj λj + λpy

inf(α)
rp + Φ−1 (β)ur > y

inf(α)
rp , r = 1, . . . , s,

v2
i=

n∑
j = 1
j 6= p

n∑
k = 1
k 6= p

λjλkcov(˜̄xij , ˜̄xik) +
(
θinf(α)
p

)2

var(˜̄xip)− 2θinf(α)
p

n∑
j = 1
j 6= p

λjcov(˜̄xij , ˜̄xip), i = 1, . . . ,m,

u2
r =

n∑
j = 1
j 6= p

n∑
k = 1
k 6= p

λjλkcov(˜̄yrj , ˜̄yik) + var(˜̄yrp)− 2

n∑
j = 1
j 6= p

λjcov(˜̄yrj , ˜̄yrp), r = 1, . . . , s, (3.7)

vi, ur, λj > 0 , i = 1, . . . ,m, r = 1, . . . , s, j = 1, . . . , n.
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And the α-pessimistic value (lower-bound) is obtained by solving the following model:(
θ∗p
)sup(α)

RRDEA
= min θ

sup(α)
p

s.t.

n∑
j = 1
j 6= p

x
sup(α)
ij λj + λpx

inf(α)
ip − viΦ−1 (β) 6 xinf(α)

ip θsup(α)
p , i = 1, . . . ,m,

n∑
j = 1
j 6= p

y
inf(α)
rj λj + λpy

sup(α)
rp + Φ−1 (β)ur > y

sup(α)
rp , r = 1, . . . , s, (3.8)

v2
i=

n∑
j = 1
j 6= p

n∑
k = 1
k 6= p

λjλkcov(˜̄xij , ˜̄xik) +
(
θsup(α)
p

)2

var(˜̄xip)− 2θsup(α)
p

n∑
j = 1
j 6= p

λjcov(˜̄xij , ˜̄xip), i = 1, . . . ,m,

u2
r =

n∑
j = 1
j 6= p

n∑
k = 1
k 6= p

λjλkcov(˜̄yrj , ˜̄yik) + var(˜̄yrp)− 2

n∑
j = 1
j 6= p

λjcov(˜̄yrj , ˜̄yrp), r = 1, . . . , s,

vi, ur, λj > 0 , i = 1, . . . ,m, r = 1, . . . , s, j = 1, . . . , n.

Proposition 3.1. Both model (3.7) and model (3.8) are feasible for every level of α and β

Proof. Let λj =

{
1 j = p
0 j 6= p

, j = 1, . . . , n. Also, let θ
inf(α)
p = 1 for model (3.7) and θ

sup(α)
p = 1 for

model (3.8).
It is trivial to check that vi > 0 and ur > 0. Therefore, this solution is feasible for both model (3.7) and

model (3.8). �

Proposition 3.2. Let β ∈ (0, 0.5] and α ∈ (0.5, 1]. Then, for DMUp, 0 <
(
θ∗p
)inf(α)

RRDEA
6 1 and 0 <(

θ∗p
)sup(α)

RRDEA
6 1.

Proof. Let λp = 1, λj = 0 for all j 6= p, and θ
sup(α)
p = 1. Then, vi > 0, ur > 0 and all constraints of model (3.8)

are satisfied. Thus, this is a solution. Due to the minimization of model (3.8), the lower bound of
(
θ∗p
)sup(α)

RRDEA

must be less than or equal to unity. Then, −Φ−1(β) > 0 and vi > 0 with respect to β 6 0.5 and, as a result,
the first constraint in model (3.8) is converted into the following inequality:

θsup(α)
p >

n∑
j=1

x
sup(α)
ij λj + λpx

inf(α)
ip

x
inf(α)
ip

> 0, i = 1, . . . ,m,

We claim that
(
θ∗p
)sup(α)

RRDEA
> 0. Indeed, assume that

(
θ∗p
)sup(α)

RRDEA
6 0. Then, λj = 0. From the second constraint

in model (3.8) it follows that y
sup(α)
rp 6 0 which contradicts y

sup(α)
rp > 0. Therefore, the lower bound of θ

sup(α)
p

must be greater than zero. As a consequence, 0 <
(
θ∗p
)sup(α)

RRDEA
6 1 holds. A similar reasoning shows that

0 <
(
θ∗p
)inf(α)

RRDEA
6 1 also holds. �
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Proposition 3.3. Let β ∈ (0, 0.5]. Then, there exists at least one efficient DMUp, that is, there exists p ∈
{1, . . . , n} such that

(
θ∗p
)inf(α)

RRDEA
= 1.

Proof. Suppose that ∀p ∈ {1, . . . , n},
(
θ∗p
)inf(α)

< 1 with λ∗p and
(
θ∗p
)inf(α)

representing the optimal solution to
model (3.7). By the first constraint of model (3.7), we have:

n∑
j = 1
j 6= p

x
inf(α)
ij λj − viΦ−1 (β) 6 xsup(α)

ip

((
θ∗p
)inf(α) − λ∗p

)
, ∀i = 1, . . . ,m.

We claim that λ∗p <
(
θ∗p
)inf(α)

. Indeed, if λ∗p >
(
θ∗p
)inf(α)

, then

((
θ∗p
)inf(α) − λ∗p

)
6 0, which implies that the

right hand-side of the inequality above is non-positive; a contradiction to the fact that −Φ−1 (β) is positive for

β 6 0.5. It follows that λ∗p <
(
θ∗p
)inf(α)

< 1.

Now, divide both sides of all the constraints of model (3.7) by 1− λ∗p. The constraints become:

Const. 1 :

n∑
j = 1
j 6= p

(
λj

1− λ∗p

)
x

inf(α)
ij − vi

1− λ∗p
Φ−1 (β) 6 xsup(α)

ip

(
θ∗p
)inf(α) − λ∗p
1− λ∗p

, i = 1, . . . ,m,

Const. 2 :

n∑
j = 1
j 6= p

(
λj

1− λ∗p

)
y

sup(α)
rj +

ur
1− λ∗p

Φ−1 (β) > yinf(α)
rp , r = 1, . . . , s,

Const. 3 :
(

vi
1−λ∗

p

)2

=
n∑

j = 1
j 6= p

n∑
k = 1
k 6= p

λj
1−λ∗

p

λk
1−λ∗

p
cov (˜̄xij , ˜̄xik) +

(
(θ∗p)

inf(α)−λ∗
p

1−λ∗
p

)2

var (˜̄xip)

−2
(θ∗p)

inf(α)−λ∗
p

1−λ∗
p

n∑
j = 1
j 6= p

λj
1−λ∗

p
cov (˜̄xij , ˜̄xip) ,

Const. 4 :
(

ur
1−λ∗

p

)2

=
n∑

j = 1
j 6= p

n∑
k = 1
k 6= p

λj
1−λ∗

p

λk
1−λ∗

p
cov (˜̄yrj , ˜̄yik) +

(
1−λ∗

p

1−λ∗
p

)2

var (˜̄yrp) − 2
n∑

j = 1
j 6= p

λj
1−λ∗

p
cov (˜̄yrj , ˜̄yrp)

Therefore, we have

Const. 1 :

n∑
j = 1
j 6= p

λ̄jx
inf(α)
ij − v̄iΦ−1 (β) 6 xsup(α)

ip

(
θ̄p
)inf(α)

, i = 1, . . . ,m,

Const. 2 :

n∑
j = 1
j 6= p

λ̄jy
sup(α)
rj + ūrΦ

−1 (β) > yinf(α)
rp , r = 1, . . . , s,
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Const. 3 :
(
v̄2
i

)2
=

n∑
j = 1
j 6= p

n∑
k = 1
k 6= p

λ̄j λ̄kcov (˜̄xij , ˜̄xik)+
((
θ̄p
)inf(α)

)2

var (˜̄xip)−2
(
θ̄p
)inf(α)

n∑
j = 1
j 6= p

λ̄jcov (˜̄xij , ˜̄xip) ,

Const. 4 : (ūr)
2

=

n∑
j = 1
j 6= p

n∑
k = 1
k 6= p

λ̄j λ̄kcov (˜̄yrj , ˜̄yik) + var (˜̄yrp)− 2

n∑
j = 1
j 6= p

λ̄jcov (˜̄yrj , ˜̄yrp)

where
(
θ̄p
)inf(α)

=
(θ∗p)

inf(α)−λ∗
p

1−λ∗
p

, λ̄j =
λj

1−λ∗
p
, j 6= p,v̄i = vi

1−λ∗
p
, ūr = ur

1−λ∗
p
, and λ̄p = 0. These are feasible solu-

tions to model (3.7) and
(
θ̄p
)inf(α)

<
(
θ∗p
)inf(α)

which contradicts the optimality of
(
θ∗p
)inf(α)

in the minimization

problem. Thus, it can be deduced that there exists p ∈ {1, . . . , n} such that
(
θ∗p
)inf(α)

= 1. �

Proposition 3.4. Let β ∈ (0, 0.5] and α1, α2 ∈ (0.5, 1] with α1 > α2. Then, for DMUP , we have:

(a)
(
θ∗p
)inf(α1)

RRDEA
>
(
θ∗p
)inf(α2)

RRDEA
.

(b)
(
θ∗p
)sup(α2)

RRDEA
>
(
θ∗p
)sup(α1)

RRDEA
.

Proof. Assume that α1 > α2 Theorem 1 yields: y
inf(α1)
rj > yinf(α2)

rj

y
sup(α1)
rj 6 ysup(α2)

rj

and

x
inf(α2)
ij 6 xinf(α1)

ij

x
sup(α2)
ij > xsup(α1)

ij

(3.9)

The constraints in (3.5) can be written as:

n∑
j = 1
j 6= p

λjx
inf(α)
ij − σI˜̄hi (λj , θ)Φ

−1 (β) 6
(
θinf(α)
p − λp

)
x

sup(α)
ip , i = 1, . . . ,m (3.10)

n∑
j = 1
j 6= p

λjy
sup(α)
rj + Φ−1 (β)σO˜̄hr

(λj) > (1− λp) yinf(α)
rp , r = 1, . . . , s (3.11)

If β 6 0.5 and Φ−1 (β) 6 0, the left-hand-side of (3.10) is non-negative for positive data and we have θ
inf(α)
p > λp.

Furthermore, θ
inf(α)
p = λp = 1 is a feasible solution in (3.5) and hence we have 1 > θinf(α)

p . It follows that 1 > λp.
The relationships in (3.9), (3.10) and (3.11) indicate that the feasible region of the constraints in (3.5) for α1

is not greater than the one for α2. Consequently, (a) holds. Reasoning in a similar way, we can shows that (b)
also holds �

Proposition 3.5. Let β1, β2 ∈ (0, 1] with −Φ−1 (β1) > −Φ−1 (β2) and α ∈ (0.5, 1]. Then, for DMUp, we have:

(a) (θ∗)
inf(α)
β1

> (θ∗)
inf(α)
β2

;

(b) (θ∗)
sup(α)
β1

> (θ∗)
sup(α)
β2

.
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Proof. Let λ̄j , v̄i, and θ̄
inf(α)
p be a feasible solution to model (3.7) at the level (α, β1). Since −Φ−1 (β1) >

−Φ−1 (β2), we must have:

n∑
j = 1
j 6= p

x
inf(α)
ij λ̄j + λ̄px

sup(α)
ip − v̄iΦ−1 (β2) 6

n∑
j=1

x
inf(α)
ij λ̄j + λ̄px

sup(α)
ip − v̄iΦ−1 (β1) 6 xsup(α)

ip θ̄inf(α)
p , i = 1, . . . ,m,

n∑
j=1

y
sup(α)
rj λ̄j + λ̄py

inf(α)
rp + Φ−1 (β2) ūr >

n∑
j=1

y
sup(α)
rj λ̄j + λ̄py

inf(α)
rp + Φ−1 (β1) ūr > y

inf(α)
rp , r = 1, . . . , s,

Thus, λ̄j , v̄iand θ̄
inf(α)
p still is a feasible solution to model (3.7) at the level (α, β2). Hence, the efficiency at β1

is greater than or equal to the efficiency at β2.
The proof of (b) is similar. �

Proposition 3.6. Let β1, β2 ∈ (0, 1], with −Φ−1 (β1) > −Φ−1 (β2), and α1, α2 ∈ (0.5, 1], with α1 > α2. Then,
for DMUp, we have:

(a) (θ∗)
inf(α1)
β1

> (θ∗)
inf(α2)
β2

;

(b) (θ∗)
sup(α2)
β1

6 (θ∗)
sup(α1)
β2

.

Proof. Let λ̄j , v̄i and θ̄
inf(α)
p be a feasible solution to model (3.7) at the level (α1, β1). The constraints of (3.5)

can be rewritten as:

n∑
j=1

x
inf(α)
ij λj − viΦ−1 (β) 6 xsup(α)

ip

(
θinf(α)
p − λp

)
, i = 1, . . . ,m,

n∑
j=1

y
sup(α)
rj λj + Φ−1 (β)ur > y

inf(α)
rp (1− λp) , r = 1, . . . , s,

According to Theorem 2.13, we know that: y
inf(α1)
rj > yinf(α2)

rj

y
sup(α2)
rj > ysup(α1)

rj

and

x
inf(α1)
ij > xinf(α2)

ij

x
sup(α2)
ij > xsup(α1)

ij

For −Φ−1 (β1) > −Φ−1 (β2) and α1 > α2 we must have the following:

n∑
j=1

x
inf(α2)
ij λ̄j − v̄iΦ−1 (β2) 6

n∑
j=1

x
inf(α1)
ij λ̄j − v̄iΦ−1 (β1) 6 xsup(α1)

ip

(
θ̄

inf(α1)
p − λ̄p

)
6

x
sup(α2)
ip

(
θ̄

inf(α2)
p − λ̄p

)
, i = 1, . . . ,m,

n∑
j=1

y
sup(α2)
rj λ̄j + Φ−1 (β2) ūr >

n∑
j=1

y
sup(α1)
rj λ̄j + Φ−1 (β1) ūr > y

inf(α1)
rp

(
1− λ̄p

)
> yinf(α2)

rp

(
1− λ̄p

)
, r = 1, . . . , s,

Thus, λ̄j , v̄i and θ̄
inf(α)
p still is a feasible solution to model (3.7) at probability level (α2, β2). Hence, it can

be concluded that the efficiency at (α1, β1) is greater or equal to the efficiency at (α2, β2). Similarly, we can
establish (b). �
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Proposition 3.7. If β ∈ (0, 0.5], then, both model (3.5) and model (3.6) represent convex programming problems
and have global optimal solutions.

Proof. First, we prove that σI˜̄hi
(λj , θ) and σO˜̄hr

(λj) are convex functions. σI˜̄hi
(λj , θ) and σO˜̄hr

(λj) can be redefined

as follows:

σI˜̄hi
(λj , θ) =

√
(θ,−λ1, . . . ,−λn)V (θ,−λ1, . . . ,−λn)

t

σO˜̄hr
(λj) =

√
(1,−λ1, . . . ,−λn) V̄ (1,−λ1, . . . ,−λn)

t

where V and V̄ are the variance-covariance matrices for corresponding set of constraints.
To simplify notations, we let X = (θ,−λ1, . . . ,−λn)

t
and Ψ (X) =

√
XtV X. It is easy to prove that Ψ (X)

is a convex function. Indeed, given Ψ (X) =
√
XtV X and η ∈ (0, 1), we have:

Ψ (ηX1 + (1− η)X2) =

√
η2Xt

1V X1 + (1− η)
2
Xt

2V X2 + 2η (1− η)Xt
1V X2

6 η
√
Xt

1V X1 + (1− η)
√
Xt

2V X2 = ηΨ (X1) + (1− η)Ψ (X2)

Thus, Ψ (X) is a convex function.
Consider now the following functions:

Hi (λ) =

n∑
j = 1
j 6= p

x
inf(α)
ij λj + λpx

sup(α)
ip − σI˜̄hi

(
λj , θ

inf(α)
p

)
Φ−1 (β)− xsup(α)

ip θinf(α)
p 6 0,

gr (λ) = −
n∑

j = 1
j 6= p

y
sup(α)
rj λj − λpyinf(α)

rp − Φ−1 (β)σO˜̄hr
(λj) + yinf(α)

rp 6 0.

Since β 6 0.5, we have −Φ−1 (β) > 0 and, hence, Hi (λ) and gr (λ) are convex functions. Therefore, models
(3.5) and (3.6) represent convex programming problems and have global optimal solutions. �

4. Deterministic random-rough CCR model with expected value operator

In order to solve an uncertain model with random-rough parameters, the model should be first converted
into a deterministic model. The technique for computing the expected value is straight-forward and efficient.
Assume that n DMUs (j = 1, . . . , n) are to be assessed, each using amounts ˜̄xij of m random-rough inputs
(i = 1, . . . ,m) to produce amounts ˜̄yrj of s random-rough outputs (r = 1, . . . , s). The following random-rough
CCR model results from considering the random-rough inputs and outputs for DMUp:

min θp
s.t.

n∑
j=1

˜̄xijλj − ˜̄xipθp 6 0, i = 1, . . . ,m,

n∑
j=1

˜̄yrjλj − ˜̄yrp > 0, r = 1, . . . , s, (4.1)

λj > 0, j = 1, . . . , n.
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The random-rough expected value form of the above model is given by:

min θp
s.t.

E

 n∑
j=1

˜̄xijλj − ˜̄xipθp

 6 0, i = 1, . . . ,m,

E

 n∑
j=1

˜̄yrjλj − ˜̄yrp

 > 0, r = 1, . . . , s, (4.2)

λj > 0, j = 1, . . . , n.

Proposition 4.1. Let ˜̄ξ be a normally distributed random-rough variable, ˜̄ξ ∼ N
(
µ̄, σ2

)
, whose density func-

tion, denoted by f (x), is defined as follows:

f (x) =
1

σ
√

2π
e−

(x−µ̄)2

2σ2 , −∞ < x < +∞

where µ̄ = ([a, b] , [c, d])is a rough variable. Then, the expected value of ˜̄ξ is obtained as follows:

E[ ˜̄ξ] =
1

4
[a+ b+ c+ d] .

Proof. By the definition of the expected value operator (see Def. 10), we have:

E
(

˜̄ξ
)

=

∫ +∞

0

Tr
{
λ ∈ Λ

∣∣E [ξ̄ (λ)
]
> r

}
dr −

∫ 0

−∞
Tr
{
λ ∈ Λ

∣∣E [ξ̄ (λ)
]
6 r

}
dr

=

∫ +∞

0

Tr

{∫
x∈Λ

xf (x) dx > r

}
dr −

∫ 0

−∞
Tr

{∫
x∈Λ

xf (x) dx 6 r

}
dr

=

∫ +∞

0

Tr

{∫ +∞

−∞

1

σ
√

2π
xe−

1
2 ( x−µ̄σ )

2

dx > r

}
dr −

∫ 0

−∞
Tr

{∫ +∞

−∞

1

σ
√

2π
xe−

1
2 ( x−µ̄σ )

2

dx 6 r

}
dr

=

∫ +∞

0

Tr {µ̄ > r}dr −
∫ 0

−∞
Tr {µ̄ 6 r}dr =

1

4
(a+ b+ c+ d) .

Employing the expected value of the normally-distributed random-rough variables, we are able to construct a
deterministic linear programming model to evaluate the efficiency of each DMU in the uncertain environment.
Subsequently, applying Proposition 4.1, we can represent the deterministic CCR model based on the expected
value approach as follows:

θ∗EVM = min θp
s.t.

n∑
j=1

(
xaij + xbij + xcij + xdij

)
λj 6

(
xaip + xbip + xcip + xdip

)
θp, i = 1, . . . ,m,

n∑
j=1

(
yarj + ybrj + ycrj + ydrj

)
λj >

(
yarp + ybrp + ycrp + ydrp

)
, r = 1, . . . , s,

λj > 0, j = 1, . . . , n.
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5. Sensitivity analysis

Sensitivity analysis is one of the most interesting and promising research areas in linear programming. In this
section, sensitivity analysis is proposed to adjust the input and output data.

Let σIij and σOrj be the standard deviations of ˜̄xij and ˜̄yrj , respectively, and assume that all inputs and outputs
are statistically independent. The independence assumption implies both cov (x̄ij , x̄ik) = 0 and cov (ȳrj , ȳrk) = 0
and allows for the following definition of adjusted inputs and outputs.

Definition 5.1. Let all inputs and outputs be statistically independent. The adjusted inputs and outputs can
be defined as follows:

ȳinf(α)
rp = yinf(α)

rp − σorpΦ−1 (β) , ȳsup(α)
rp = ysup(α)

rp − σorpΦ−1 (β) , r = 1, . . . , s (5.1)

x̄
inf(α)
ip =x

inf(α)
ip + σIipΦ

−1 (β) , x̄
sup(α)
ip = x

sup(α)
ip + σIipΦ

−1 (β) , i = 1, . . . ,m (5.2)

ȳ
sup(α)
rj = y

sup(α)
rj + σorjΦ

−1 (β) , ȳ
inf(α)
rj = y

inf(α)
rj + σorjΦ

−1 (β) , j 6= p, r = 1, . . . , s (5.3)

x̄
sup(α)
ij =x

sup(α)
ij − σIijΦ−1 (β) , x̄

inf(α)
ij = x

inf(α)
ij − σIijΦ−1 (β) , j 6= p, i = 1, . . . ,m (5.4)

Proposition 5.2. If β ∈ (0, 0.5], then

(a) −
n∑

j = 1
j 6= p

y
sup(α)
rj λj + (λp − 1) yinf(α)

rp − Φ−1 (β)σor (λ) 6 (λp − 1) ȳinf(α)
rp −

n∑
j = 1
j 6= p

ȳ
sup(α)
rj λj , r = 1, . . . , s

(b)

n∑
j = 1
j 6= p

x
inf(α)
ij λj +

(
λp − θinf(α)

p

)
x

sup(α)
ip − Φ−1 (β)σIi (λ, θ) 6

n∑
j = 1
j 6= p

x̄
inf(α)
ij λj − x̄sup(α)

ip , i = 1, ..,m

(c) −
n∑

j = 1
j 6= p

y
inf(α)
rj λj + (λp − 1) ysup(α)

rp − Φ−1 (β)σor (λ) 6 (λp − 1) ȳsup(α)
rp −

n∑
j = 1
j 6= p

ȳ
inf(α)
rj λj , r = 1, . . . , s

(d)

n∑
j = 1
j 6= p

x
sup(α)
ij λj +

(
λp − θinf(α)

p

)
x

inf(α)
ip − Φ−1 (β)σIi (λ, θ) 6

n∑
j = 1
j 6= p

x̄
sup(α)
ij λj − x̄inf(α)

ip , i = 1, ..,m

where

σIi (λ, θ) =

√√√√√√√
n∑

j = 1
j 6= p

λ2
j

(
σIij
)2

+
(
θ
inf(α)
p − λp

)2 (
σIip
)2

and σOr (λ) =

√√√√√√√
n∑

j = 1
j 6= p

λ2
j

(
σOrj
)2

+ (1− λp)2 (
σOrp
)2
.

Proof. Reasoning as in the proof of Proposition 3.3, we have λ∗p <
(
θ∗p
)inf(α)

< 1. Since it is an optimal solution,

we have
(
θ∗p
)inf(α)

6 1, λ∗p 6 1, and
(
θ∗p
)inf(α) − λ∗p > 0. Therefore:

σIi (λ, θ) =

√√√√√√√
n∑

j = 1
j 6= p

λ2
j

(
σIij
)2

+
(
θ

inf(α)
p − λp

)2 (
σIip
)2
6

n∑
j = 1
j 6= p

λjσ
I
ij +

(
θinf(α)
p − λp

)
σIip i = 1, . . . ,m,
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Similarly,

σor (λ) =

√√√√√√√
n∑

j = 1
j 6= p

λ2
j

(
σorj
)2

+ (1− λp)2 (
σorp
)2
6

n∑
j = 1
j 6= p

λjσ
o
rj + (1− λp)σorp, r = 1, . . . , s.

Finally, letting vi = σIi (λ, θ) and ur = σOr (λ), we obtain (b) and (a), respectively. Reasoning in a similar way,
statements (c) and (d) can be easily obtained. �

Now consider the following linear programming problems:
Deterministic upper-bound CCR model

θ̃∗inf = min θ
inf(α)
p

s.t.

n∑
j = 1
j 6= p

x̄
inf(α)
ij λj + λpx̄

sup(α)
ip 6 x̄sup(α)

ip θinf(α)
p , i = 1, . . . ,m, (5.5)

n∑
j = 1
j 6= p

ȳ
sup(α)
rj λj + λpȳ

inf(α)
rp > ȳinf(α)

rp , r = 1, . . . , s,

x̄
inf(α)
ij , x̄

sup(α)
ip , ȳ

inf(α)
rp , ȳ

sup(α)
rj as in equations (5.1)−(5.4)

vi = σIi (λ, θ) as defined in Proposition 5.2
ur = σOr (λ) as defined in Proposition 5.2
vi, ur, λj > 0,j = 1, . . . , n.
Deterministic lower-bound CCR model

θ̃∗sup = min θ
sup(α)
p

s.t.

n∑
j = 1
j 6= p

x̄
sup(α)
ij λj + λpx̄

inf(α)
ip 6 x̄inf(α)

ip θsup(α)
p , i = 1, . . . ,m,

n∑
j = 1
j 6= p

ȳ
inf(α)
rj λj + λpȳ

sup(α)
rp > ȳsup(α)

rp , r = 1, . . . , s,

x̄
inf(α)
ip , x̄

sup(α)
ij , ȳ

inf(α)
rj , ȳ

sup(α)
rp as in equations (5.1)−(5.4)

vi = σIi (λ, θ) as defined in Proposition 5.2
ur = σOr (λ) as defined in Proposition 5.2
vi, ur, λj > 0 , j = 1, . . . , n.
Model (5.5) is a deterministic linear programming model that allows us to extend the CCR model with

rough variables presented by Xu et al. [44] to a CCR model with the adjusted input and output values

(x
inf(α)
ij , y

sup(α)
rj ) and (x

sup(α)
ip , y

inf(α)
rp ) defined as in relations (5.1)–(5.4) for DMUj , j = 1, . . . , n.
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Proposition 5.3. Let 0 < β < 0.5. The following implication holds.

(a) If (θ∗)
inf(α)

= 1for DMUp in model (3.7), then θ̃∗inf = 1 in model (5.5).
Equivalently:

(b) If θ̃∗inf < 1 for DMUp in model (5.5), then (θ∗)
inf(α)

< 1 in model (3.7).

Proof. We show (b). Suppose that θ̃∗inf < 1 in model (5.5). Due to the fact that 0 < β < 0.5, we have
Φ−1(β) < 0. At the same time, by the definition of adjusted inputs and outputs (Def. 5.1, Eqs. (5.1)−(5.4)), we

have ȳ
inf(α)
rp > y

inf(α)
rp , ȳ

sup(α)
rp > y

sup(α)
rp and x̄

inf(α)
ij < x

inf(α)
ij , x̄

sup(α)
ip < x

sup(α)
ip .

Since a solution of model (5.5) is also a solution of model (3.7), there exists a solution with (θ∗)
inf(α)

= θ̃∗inf < 1
for model (3.7). �

The counterpart of Proposition 5.3 for the lower bound efficiency (θ∗) can be also proved. We leave it to the
reader to work out the details.

Corollary 5.4. Let 0 < β < 0.5. The following implication holds.

(a) If DMUp is stochastic rough efficient, i.e. θ̃∗inf = 1, then DMUp is efficient for the adjusted inputs and
outputs in the deterministic model (5.5).
Equivalently:

(b) If DMUp is inefficient for the adjusted inputs and outputs in model (5.5), then DMUp is stochastic rough
inefficient.

5.1. Sensitivity analysis for the BCC output-oriented model

In this section, we extend the sensitivity analysis to the BCC output-oriented model with adjusted input-
output. Let us first consider the following output-oriented BCC model:

max ϕp
s.t.

n∑
j=1

xijλj 6 xip, i = 1, . . . ,m,

n∑
j=1

yrjλj > ϕpyrp, r = 1, . . . , s, (5.6)

n∑
j=1

λj = 1,

λj > 0, j = 1, . . . , n.

Definition 5.5. DMUp is said to be efficient if the optimal value of ϕp is equal to one (ϕ∗p = 1).

Similarly to the CCR model with rough variables introduced by Xu et al. [44], we can formulate the deter-
ministic output-oriented BCC model with rough variables as follows:

Deterministic upper-bound BCC model

max ϕ
inf(α)
p

s.t.

n∑
j = 1
j 6= p

x
inf(α)
ij λj + λpx

sup(α)
ip 6 xsup(α)

ip , i = 1, . . . ,m,



CHANCE-CONSTRAINED DATA ENVELOPMENT ANALYSIS MODELING WITH RANDOM-ROUGH DATA 277

n∑
j = 1
j 6= p

y
sup(α)
rj λj + λpy

inf(α)
rp > ϕinf(α)

p yinf(α)
rp , r = 1, . . . , s,

n∑
j=1

λj = 1,

λj > 0, j = 1, . . . , n.

Deterministic lower-bound BCC model
max ϕ

sup(α)
p

s.t.
n∑

j = 1
j 6= p

x
sup(α)
ij λj + λpx

inf(α)
ip 6 xinf(α)

ip , i = 1, . . . ,m,

n∑
j = 1
j 6= p

y
inf(α)
rj λj + λpy

sup(α)
rp > ϕsup(α)

p ysup(α)
rp , r = 1, . . . , s, (5.7)

n∑
j=1

λj = 1,

λj > 0, j = 1, . . . , n.

In addition to the input-oriented CCR model with random-rough data, we can now formulate the deterministic
upper bound output-oriented BCC model as follows:

max ϕ
inf(α)
p

s.t.
n∑

j = 1
j 6= p

x
inf(α)
ij λj + (λp − 1)x

sup(α)
ip − Φ−1 (β)σIi (λ) 6 0, i = 1, . . . ,m,

n∑
j = 1
j 6= p

y
sup(α)
rj λj +

(
λp − ϕinf(α)

p

)
yinf(α)
rp + Φ−1 (β)σor (ϕ, λ) > 0, r = 1, . . . , s, (5.8)

n∑
j=1

λj = 1,

λj > 0, j = 1, . . . , n.

The deterministic lower bound output-oriented BCC can be obtained in a similar way. Moreover, as in

Proposition 9, for an optimal solution, we have ϕ
inf(α)
p > 1 and λ∗j 6 1, and, hence, also ϕ

inf(α)
p − λp > 0. Thus

σor (ϕ, λ) = ur =

√√√√√√√
n∑

j = 1
j 6= p

λ2
j

(
σorj
)2

+
(
ϕ

inf(α)
p − λp

)2 (
σorp
)2
6

n∑
j = 1
j 6= p

λjσ
o
rj +

(
ϕinf(α)
p − λp

)
σorp
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Similarly, we have:

σIi (λ) = vi =

√√√√√√√
n∑

j = 1
j 6= p

λ2
j

(
σIij
)2

+ (1− λp)2 (
σIip
)2
6

n∑
j = 1
j 6= p

λjσ
I
ij + (1− λp)σIip

Therefore, non-linear programming model (5.8) can be then converted into the following model:

max ϕ
inf(α)
p

s.t.

n∑
j = 1
j 6= p

x
inf(α)
ij λj + (λp − 1)x

sup(α)
ip − viΦ−1 (β) 6 0, i = 1, . . . ,m, (5.9)

n∑
j = 1
j 6= p

y
sup(α)
rj λj +

(
λp − ϕinf(α)

p

)
yinf(α)
rp + Φ−1 (β)ur > 0, r = 1, . . . , s,

n∑
j=1

λj = 1,

v2
i=

n∑
j = 1
j 6= p

n∑
k = 1
k 6= p

λjλkcov (˜̄xij , ˜̄xik) + (λp − 1)
2
var (˜̄xip) + 2 (λp − 1)

n∑
j = 1
j 6= p

λjcov (˜̄xij , ˜̄xip) , i = 1, . . . ,m,

u2
r =

n∑
j = 1
j 6= p

n∑
k = 1
k 6= p

λjλkcov (˜̄yrj , ˜̄yrk) +
(
ϕinf(α)
p − λp

)2

var (˜̄yrp)− 2ϕinf(α)
n∑

j = 1
j 6= p

λjcov (˜̄yrj , ˜̄yrp) , r = 1, . . . , s,

λj , vi, ur > 0, j = 1, . . . , n; i = 1, . . . ,m; r = 1, . . . , s.

Now consider the following linear programming problems for the output-oriented BCC model with adjusted
inputs and outputs defined as in (5.1)−(5.4):

Upper-bound BCC model with adjusted data

ϕ̃∗ = max ϕ
inf(α)
p

s.t.

n∑
j = 1
j 6= p

x̄
inf(α)
ij λj + λpx̄

sup(α)
ip 6 x̄sup(α)

ip , i = 1, . . . ,m,

n∑
j = 1
j 6= p

ȳ
sup(α)
rj λj + λpȳ

inf(α)
rp > ϕinf(α)

p ȳinf(α)
rp , r = 1, . . . , s,
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n∑
j=1

λj = 1,

λj > 0, j = 1, . . . , n.

Lower-bound BCC model with adjusted data

max ϕ
sup(α)
p

s.t.

n∑
j = 1
j 6= p

x̄
sup(α)
ij λj + λpx̄

inf(α)
ip 6 x̄inf(α)

ip , i = 1, . . . ,m,

n∑
j = 1
j 6= p

ȳ
inf(α)
rj λj + λpȳ

sup(α)
rp > ϕsup(α)

p ȳsup(α)
rp , r = 1, . . . , s, (5.10)

n∑
j=1

λj = 1,

λj > 0, j = 1, . . . , n.

This simply is the deterministic BCC model described by model (3.2) for DMUp with the adjusted input
and output values defined as in relations (5.1)–(5.4).

The discussion about the lower bound model is omitted in Propositions 5.6 and 5.7.

Proposition 5.6. Let 0 < β < 0.5.The following implication holds.

(a) If (ϕ
inf(α)
p )∗ = 1 for DMUp in model (5.9), then ϕ̃∗ = 1 in model (5.10).

Equivalently:

(b) If ϕ̃∗ > 1 for DMUp in model (5.10), then (ϕ
inf(α)
p )∗ > 1 in model (5.9).

Proof. We show (b). Suppose that ϕ̃∗ > 1 in model (5.10). Due to the fact that 0 < β < 0.5, we have
Φ−1(β) < 0. At the same time, by the definition of adjusted inputs and outputs (Def. 5.1, Eqs. (5.1)−(5.4)), we

have ȳ
inf(α)
rp > y

inf(α)
rp , ȳ

sup(α)
rp > y

sup(α)
rp and x̄

inf(α)
ij < x

inf(α)
ij , x̄

sup(α)
ip < x

sup(α)
ip .

Since a solution of model (5.10) is also a solution of model (5.9), there exists a solution with (ϕ
inf(α)
p )∗ = ϕ̃∗ > 1

for model (5.9). �

Corollary 5.7. Let 0 < β < 0.5. The following implication holds.

(a) If DMUp is stochastic rough efficient, i.e. (ϕ
inf(α)
p )∗ = 1, then DMUp is efficient for the adjusted inputs

and outputs in the deterministic model (5.10).
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Table 1. Random-rough inputs and outputs.

DMU Input 1 Input 2 Output 1 Output 2

1 N(([15,26], [13,38]), 1) N(([38,50], [26,66]), 1) N(([13,16], [11,19]), 1) N(([13,17], [9,25]), 1)

2 N(([8,12], [6,14]), 1) N(([15,18], [12,20]), 1) N(([16,20], [13,23]), 1) N(([15,19], [13,23]), 1)

3 N(([30,35], [18,49]), 1) N(([35,40], [23,46]), 1) N(([12,18], [9,22]), 1) N(([16,20], [8,22]), 1)

4 N(([11,19], [9,20]), 1) N(([9,15], [6,20]), 1) N(([50,61], [39,74]), 1) N(([49,63], [35,76]), 1)

5 N(([30,46], [20,52]), 1) N(([41,55], [28,66]), 1) N(([60,65], [50,75]), 1) N(([45,50], [40,65]), 1)

Equivalently:
(b) If DMUp is inefficient for the adjusted inputs and outputs in model (5.10), then DMUp is stochastic rough

inefficient.

Proposition 5.8. Let 0.5 < β < 1. The following implication holds.

(a) If ϕ̃∗ = 1 for DMUp in model (5.10), then,
(
ϕ

inf(α)
p

)∗
= 1 in model (5.9).

Equivalently:

(b) If
(
ϕ

inf(α)
p

)∗
> 1 for DMUp in model (5.9), then ϕ̃∗ > 1 in model (5.10).

Proof. We show (b). Since 0.5 < β < 1, we have Φ−1(β) > 0. Moreover, by Definition 5.1, we have ȳ
sup(α)
rj <

y
sup(α)
rj , ȳ

inf(α)
rp < y

inf(α)
rp and x̄

inf(α)
ij < x

inf(α)
ij , x̄

sup(α)
ip < x

sup(α)
ip . Thus, assuming that (ϕ

inf(α)
p )∗ > 1 in model

(5.9) implies that there exists a solution with ϕ̃∗ = (ϕ
inf(α)
p )∗ > 1 for model (5.10), when evaluating DMUp. �

Corollary 5.9. Let 0.5 < β < 1. The following implication holds.

(a) If DMUp is efficient for the adjusted inputs and outputs in model (5.10), then DMUp is stochastic rough
efficient.
Equivalently:

(b) If DMUp is stochastic rough inefficient, then DMUp is inefficient for the adjusted inputs and outputs in
model (5.10).

6. Numerical example

In this section, we present a numerical example to demonstrate the applicability of the proposed framework
and exhibit the efficacy of the described procedures and algorithms. In this example, we consider five DMUs
with two random-rough inputs and two random-rough outputs as shown in Table 1. The random-rough inputs,
˜̄xij , and the random-rough outputs,˜̄yrj , are normally distributed with the following rough means and known
variances:

˜̄xij ∼ N (x̄ij , 1)

where x̄ij =
([
xaij , x

b
ij

]
,
[
xcij , x

d
ij

])
with xcij 6 xaij < xbij 6 xdij and ˜̄yrj ∼ N (ȳrj , 1). Similarly, ȳrj =([

yarj , y
b
rj

]
,
[
ycrj , y

d
rj

])
with ycrj 6 y

a
rj < ybrj 6 y

d
rj .

The data in Table 1 can be summarized as follows:
˜̄xij ∼ N (x̄ij , 1) and ˜̄yrj ∼ N (ȳrj , 1) where x̄ij =

([
xaij , x

b
ij

]
,
[
xcij , x

d
ij

])
, ȳrj =

([
yarj , y

b
rj

]
,
[
ycrj , y

d
rj

])
It is also assumed that inputs and outputs of two different DMUs are independent from each other. This

independence assumption implies that cov (˜̄xij , ˜̄xik) = 0 and cov (˜̄yrj , ˜̄yrk) = 0.
The upper and lower bounds corresponding to models (3.7) and (3.8), respectively, have been estimated

by using GAMS software. Recall that the lower bound provides the α-optimistic value, while the upper bound
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Table 2. Stochastic efficiency of model (3.7) and model (3.8).

DMU
Stochastic Efficiency

α = 0.6, β = 0.1 α = 0.6, β = 0.0 α = 0.6, β = 0.0 α = 0.7, β = 0.1 α = 0.7, β = 0.0 α = 0.7, β = 0.0

1 [0.1814, 0.2743] [0.1910, 0.2883] [0.1999, 0.3013] [0.1478, 0.3388] [0.1559, 0.3561] [0.1633, 0.3721]

2 [0.5033, 0.7217] [0.5377, 0.7730] [0.5705, 0.8225] [0.4203, 0.8657] [0.4487, 0.9291] [0.4758, 0.9908]

3 [0.1420, 0.1940] [0.1488, 0.2028] [0.1550, 0.2107] [0.1209, 0.2262] [0.1270, 0.2361] [0.1325, 0.2452]

4 [1.0000, 1.0000] [1.0000, 1.0000] [1.0000, 1.0000] [1.0000, 1.0000] [1.0000, 1.0000] [1.0000, 1.0000]

5 [0.4275, 0.5885] [0.4422, 0.6078] [0.4556, 0.6254] [0.3645, 0.6920] [0.3776, 0.7145] [0.3894, 0.7349]

Table 3. EVM efficiency model.

DMU EVM
1 0.1841
2 0.4741
3 0.1323
4 1.0000
5 0.4449

provides the α-pessimistic value, respectively. Six different α, β) threshold levels have been considered to evaluate
the performance of DMUs using models (3.7) and (3.8), that is:

(α = 0.6, β = 0.04), (α = 0.6, β = 0.05), (α = 0.6, β = 0.1), (α = 0.7, β = 0.04), (α = 0.7, β = 0.05), and
(α = 0.7, β = 0.1).

Table 2 presents the lower and upper bound efficiency values associated with the six above specified threshold
levels. As shown in this table, DMU4 turns out to be stochastic rough efficient at all the six given levels, whereas
DMUs 1, 2, 3 and 5 results inefficient at all the levels.

When β was kept unchanged and α was increasedfrom 0.6 to 0.7, the lower bound efficiency of DMUs reduced
while the upper bound efficiency increased. Consider for instance the (α = 0.6, β = 0.1) and (α = 0.7, β = 0.1)
levels, as an index for the behavioral analysis of the changes in the efficiency scores induced by α and β. The
lower bound efficiency score of DMU2 at (α = 0.6, β = 0.1) and (α0.7=, β = 0.1) levels are 0.5033 and 0.4203,
respectively. Also, the upper bound efficiency score of DM2 at (α = 0.6, β = 0.1) and (α = 0.7, β = 0.1) levels
are 0.7217 and 0.8657, respectively. Thus, Proposition 4 has been confirmed.

On the other hand, when α was kept unchanged and −Φ−1 (β) was increased, the corresponding upper and
lower bounds of the efficiency scores of the DMUs increased or remained unchanged. See Table 2. For example,
the upper bound efficiency score of DMU3 at the (α = 0.6, β = 0.1), (α = 0.6, β = 0.04), and (α = 0.6, β = 0.05)
levels are 0.1940, 0.2028 and 0.2107, respectively. Also the lower bound efficiency score of DMU3 for (α = 0.6,
β = 0.1), (α = 0.6, β = 0.04), and (α = 0.6, β = 0.05) levels are 0.1420, 0.1488, and 0.1550, respectively. Thus,
Proposition (3.5) has been confirmed.

Finally, it deserves to comment on the computational results obtained for the upper and lower bound effi-
ciency models (3.7) and (3.8) by changing α and β. When α and −Φ−1 (β) were increased simultaneously, the
corresponding upper bound efficiency value increases, whereas the corresponding lower bound decreases slightly.
For instance, as is shown in Table 2, the upper bound scores of DMU2 at the (α = 0.7, β = 0.05) and (α = 0.6,
β = 0.04) levels are 0.9908 and 0.7730, respectively. Also the lower bound efficiency score of DMU2 at the
(α = 0.7, β = 0.05) and (α = 0.6, β = 0.04) are 0.4758 and 0.5377, respectively. Thus, Proposition 6 has been
confirmed.

Next, we applied the random-rough EVM model (4.1) to calculate the efficiency of the DMUs. The results
are reported in Table 3. DMU4 was identified as the efficient unit with a score of one (Tab. 3). Compared to
the existing chance-constrained DEA models or approaches, the random-rough EVM was much easier to solve
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Table 4. Geometric efficiency and ranking of the DMUs.

DMU
Stochastic Efficiency

α = 0.6, β = 0.1 α = 0.6, β = 0.0 α = 0.6, β = 0.0 α = 0.7, β = 0.1 α = 0.7, β = 0.0 α = 0.7, β = 0.0

1 0.2231 (4) 0.2347 (4) 0.2454 (4) 0.2238 (4) 0.2356 (4) 0.2465 (4)

2 0.6027 (2) 0.6447 (2) 0.6850 (2) 0.6032 (2) 0.6457 (2) 0.6866 (2)

3 0.1660 (5) 0.1737 (5) 0.1807 (5) 0.1654 (5) 0.1732 (5) 0.1802 (5)

4 1.0000 (1) 1.0000 (1) 1.0000 (1) 1.0000 (1) 1.0000 (1) 1.0000 (1)

5 0.5016 (3) 0.5184 (3) 0.5338 (3) 0.5022 (3) 0.5194 (3) 0.5349 (3)

and implement. Using the random-rough EVM, to determine the efficiencies, only one pair of LP models was
solved for each DMU without any need to solve non-linear programming models. In particular, the random-rough
inputs and outputs made it easy to identify the best performing DMU.

However, the fi nal efficiency score for each DMU was characterized by an interval
[
(θ∗)

sup(α)
, (θ∗)

inf(α)
]

with respect to the (α, β) trust level and the ranking approach was used to rank the efficiencies of different
DMUs. The geometric average efficiency scores and the final rankings of the five DMUs are presented in the
Table 4.

Wang et al. [39] suggested a geometric average efficiency index for DMUj , namely:

θ
Geometric(α)
j =

√
θ

inf(α)
j × θsup(α)

j

The geometric average efficiency measures the overall performance of each DMU and is more comprehensive than
either of the lower bound and upper bound efficiencies. This efficiency can be seen as an overall performance
measure for each DMU and is much easier to compute and rank. Table 4 also shows the geometric average
efficiencies and ranking of the five DMUs as DMU4 � DMU2 � DMU5 � DMU1 � DMU3. Based on this
ranking, DMU4 is the best-performing DMU and DMU3 is the worst-performing DMU among the five DMUs
under consideration.

7. Conclusion and future research directions

The conventional DEA is a well-established methodology for measuring the relative efficiency of DMUs
which consumes crisp inputs and produce crisp outputs. Due to the uncertainties inherent in the real-world
performance assessment problems, precise input-output data values are often unavailable in the production
process. The variables in the real-world problems are often characterized as random-rough data.

In this study, we have considered a chance-constrained DEA model for solving DEA models with random-
rough inputs and outputs. By assuming that the DMUs operate in a random-rough environment, we have
proposed a deterministic non-linear model equivalent to the non-deterministic chance-constrained model. We
have also investigated the stability and robustness of the proposed random-rough DEA model through sensitivity
analysis. Finally, we have presented a numerical example to demonstrate the applicability of the proposed
framework and exhibit the feasibility and richness of the obtained solutions. Although, in this study, we have
considered a CCR DEA model, the proposed approach can provide insights for future research to address
uncertainty in other types of DEA models.
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