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CONTINGENT DERIVATIVES AND NECESSARY EFFICIENCY CONDITIONS

FOR VECTOR EQUILIBRIUM PROBLEMS WITH CONSTRAINTS

Do Van Luu1,∗ and Tran Van Su2

Abstract. We establish Fritz John necessary conditions for local weak efficient solutions of vector
equilibrium problems with constraints in terms of contingent derivatives. Under suitable constraint
qualifications, Karush–Kuhn–Tucker necessary conditions for those solutions are investigated.
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1. Introduction

Vector equilibrium problems is an important part of nonlinear analysis and have been intensively studied in
recent years. They include as special cases vector variational inequality problem, vector optimization problem
and many other problems. There is a lot of papers dealing with optimality conditions for vector equilibrium
problems and their special cases in terms of various subdifferentials, contingent derivatives and contingent
epiderivatives (see, e.g., [3, 5–19,21–23], and references therein).

It is well known that the contingent cones are nonconvex, but they contain almost every existing tangent cone,
and so, they give rich informations about the local behavior of sets. The contingent derivatives of set-valued maps
defined by means of contingent cones are well suited to develop optimality conditions for vector optimization
problems with set-valued functions. The notion of contingent derivatives of set-valued maps introduced by
Aubin [1]. It is extended in a natural way the corresponding notion for real-valued functions by Jiménez and
Novo [8], where contingent derivatives for the stable real-valued functions (called also the calm functions in [9])
are studied. Note that a locally Lipschitz function is stable, but the converse are false. The notion of contingent
epiderivative for real-valued functions is introduced in [2] by Aubin and Frankowska. Jiménez and Novo [8]
obtained a rich caculus for contingent derivatives of stable and steady real-valued functions. In the context of
vector optimization, notion of contingent derivative is useful in order to get optimality conditions for efficiency.
Some necessary and sufficient conditions for multiobjective optimization problems involving inequality and
equality constraints with stable and steady real-valued functions via contingent derivatives are investigated in [8].
Optimality conditions for strict minimizers in multiobjective optimization problems via contingent epiderivatives
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and hypoderivatives of scalar functions are established by Jiménez et al. [9]. Some necessary and sufficient
conditions for efficiency of vector equilibrium problems via contingent epiderivatives are recently obtained by
Su [23].

The aim of the present paper is to develop Fritz John and Karush–Kuhn–Tucker necessary conditions for
local efficient solutions of constrained vector equilibrium problems via contingent derivatives. After some pre-
liminaries, Section 3 is devoted to developing Fritz John necessary conditions for local weak efficient solutions
of vector equilibrium problems involving inequality, equality and set constraints. Section 4 deals with constraint
qualifications and Karush–Kuhn–Tucker necessary conditions for local weak efficient solutions of vector equi-
librium problems with constraints. The results obtained in Sections 3 and 4 are applied to vector variational
inequalities and vector optimization problems with constraints in Section 5.

2. Preliminaries

Let X,Y be real normed linear spaces, and let G be a set-valued map from X to Y . The domain and the
graph of G are the following sets, respectively,

dom G := {x ∈ X : G(x) 6= ∅},
graph G := {(x, y) ∈ X × Y : y ∈ G(x), x ∈ domG}.

Let C ⊆ X and x ∈ C. We recall that the contingent cone to C at x is

T (C;x) := {v ∈ X : ∃tn → 0+,∃vn → v such that x+ tnvn ∈ C,∀n}.

The interior tangent cone to C at x is

IT (C;x) := {v ∈ X : ∃δ > 0 such that

x+ tu ∈ C,∀t ∈ (0, δ],∀u ∈ B(v; δ)},

where B(v; δ) stands for the open ball of radius δ around x.

Definition 2.1 ([1]). Let (x, y) ∈ graph G. The contingent derivative of G at (x, y) is the set-valued map
DG(x, y) from X to Y defined by

v ∈ DG(x, y)(u)⇐⇒ (u, v) ∈ T (graph G, (x, y)),

which means that
graph DG(x, y) = T (graph G, (x, y)).

Let f be a single-valued map from X to Y . For the set-valued map x 7−→ {f(x)}, Definition 2.1 is of the
following form.

Definition 2.2 ([8]). The contingent derivative of f at x ∈ X in a direction v ∈ X is the following set defined by

∂∗f(x)v :=

{
y ∈ Y : ∃(tnvn)→ (0+, v) such that lim

n→∞

f(x+ tnvn)− f(x)

tn
= y

}
.

Note that ∂∗f(x)v is a closed set and the set-valued map ∂∗f(x)(.) is positively homogeneous.

Recall that the Hadamard directional derivative of f : X → Y at x in the ditrection v ∈ X is the following
limit:

df(x; v) := lim
(t,u)→(0+,v)

f(x+ tu)− f(x)

t
,
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if it exists. The function f is called Hadamard differentiable at x iff df(x; v) exists for all v ∈ X. If f is Hadamard
differentiable at x, then for all v ∈ X, ∂∗f(x)v = {df(x; v)}.

Given f : X → R, the lower (resp. upper) Hadamard directional derivative of f at x ∈ X in the direction v
is defined by

df(x; v) := lim inf
(t,u)→(0+,v)

f(x+ tu)− f(x)

t(
resp. df(x; v) := lim sup

(t,u)→(0+,v)

f(x+ tu)− f(x)

t

)
·

If df(x; v) = df(x; v), then their common is Hadamard directional derivative df(x; v) of f at x in the direction
v.

If Y = R, df(x; v) and df(x; v) are finite, then by Remark 3.4 [8],

∂∗f(x)v ⊆ [df(x; v), df(x; v)]. (2.1)

If f is continuous in a neighborhood of x, the equality holds in (2.1), and so, ∂∗f(x)v is a convex set. In case
Y = Rm, it holds that

∂∗f(x)v ⊆
m∏
i=1

∂∗fi(x)v. (2.2)

The following class of stable functions provides a rich calculus for contingent derivatives.

Definition 2.3 ([8]). The map f : X → Y is said to be stable (call also calm in [9]) at x iff there exist numbers
α > 0 and δ > 0 such that

‖ f(x)− f(x) ‖6 α ‖ x− x ‖ (∀x ∈ B(x; δ)).

If f : X → Rm is stable at x, then by Remarks 3.4 [8], ∂∗f(x)v 6= ∅ and compact (∀v ∈ X). It should be
noted here that a locally Lipschitz function is stable, but the converse does not hold. This is illustrated by the
following example.

Example 2.4. Let f be a real-valued function defined on R as

f(x) =

{
x cos πx , if x 6= 0,

0, if x = 0.

Then f is stable at x = 0, but it is not locally Lipschitz at x = 0. It can be seen that ∂∗f(0)v = [−v, v].

If f : X → Y, g : X → Z, where Z is a normed space. Proposition 3.3 [8] shows that for each v ∈ X,

∂∗(f, g)(x)v ⊆ ∂∗f(x)v × ∂∗g(x)v. (2.3)

If f or g is Hadamard directionally differentiable at x in the direction v, then the equality in (2.3) is true.
Proposition 3.13 [8] shows that if f, g : X → Rm, f or g is stable at x, then

∂∗(f + g)(x)v ⊆ ∂∗f(x)v + ∂∗g(x)v. (2.4)

The equality holds in (2.4) if f or g is Hadamard directionally differentiable at x in the direction v.

The class of steady functions provides a rich calculus for contingent derivatives.
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Definition 2.5 ([8]). The function f : X → Y is called steady at x in the direction v or steady at (x, v) iff

lim
(t,u)→(0+,v)

f(x+ tu)− f(x+ tv)

t
= 0.

The function f is called steady at x iff it is steady at x in all directions. Proposition 3.6 [8] shows that f is
steady at (x, 0) if and only if it is stable at x. The class of steady functions is wider than the class of locally
Lipschitz functions or the class of Hadamard differentiable functions.

For a convex cone S ⊆ Rr, the positive polar cone to S is

S∗ := {µ ∈ Rr : 〈µ, y〉 > 0}.

The normal cone to S at y0 is N(S; y0) := −T (S; y0)∗.

3. Fritz John necessary conditions for local weak efficient solutions

Let K be a subset of Rn, and let F be a mapping from Rn×Rn to Rm. It can be seen that F = (F1, . . . , Fm).
Denote by Rm+ and Rm++ the nonnegative and positive orthants in Rm, respectively. Let us consider the following
vector equilibrium problem (VEP): Finding x ∈ K such that

F (x, y) /∈ −Rm++ (∀y ∈ K). (3.1)

A vector x is called a local weak efficient solution of (VEP) iff there exists a number δ > 0 such that (3.1) holds
for all y ∈ K∩B(x; δ). We set Fx(y) = F (x, y), Fk,x(y) = Fk(x, y) (∀k ∈ J := {1, . . . ,m}). Then, Definition (3.1)
is equivalent to that there is no y ∈ K such that

Fk,x(y) < 0 (∀k ∈ J).

Let g, h be maps from Rn into Rr,R`, respectively. Thus g = (g1, . . . , gr), h = (h1, . . . , h`), where gi, hj
are extended-real-valued functions defined on X(i ∈ I := {1, . . . , r}, j ∈ L := {1, . . . , `}). Let us consider the
following constrained vector equilibrium problem (CVEP): Find x ∈ K such that

F (x, y) /∈ −Rm++ (∀y ∈ K := {y ∈ C : gi 6 0(i ∈ I), hj(y) = 0(j ∈ L)}).

We set

I(x) := {i ∈ I : gi(x) = 0};
gI(x) := (gi)i∈I(x);

G := {x ∈ Rn : gi(x) 6 0, ∀i ∈ I};
GI(x) := {x ∈ Rn : gi(x) 6 0, ∀i ∈ I(x)};
G0
I(x) := {x ∈ Rn : gi(x) < 0, ∀i ∈ I(x)};
H := {x ∈ Rn : h(x) = 0};
F0 := {x ∈ Rn : Fx(x) /∈ −Rm++}.

In this section, we shall derive Fritz John necessary conditions for a local weak efficient solution of (CVEP) in
terms of contingent derivatives. To do this, we introduce the following assumptions.

Assumption 3.1. Fx(x) = 0; the functions Fx, g are continuous in a neighbourhood of x; the functions
h1, . . . , h` are Fréchet differentiable at x with Fréchet derivatives ∇h1(x), . . . ,∇h`(x) linearly independent.
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A Fritz John necessary condition for local weak efficient solutions of (CVEP) can be stated as follows.

Theorem 3.2. Let x be a local weak efficient solution of (CVEP). Assume that Assumption 3.1 holds, and the
functions Fx, g are steady at x ∈ K. Suppose, in addition, that for every v ∈ Ker∇h(x)∩ IT (C;x), there exists
z ∈ ∂∗g(x)v such that zi < 0 (∀i ∈ I(x)). Then, for every v ∈ Ker∇h(x) ∩ IT (C;x) and (y, z) ∈ ∂∗(Fx, g)(x)v,
there exists (λ, µ) ∈ Rm × Rr, λ > 0, µ > 0 with (λ, µ) 6= (0, 0) such that

〈λ, y〉+ 〈µ, z〉 > 0,

µigi(x) = 0 (∀i ∈ I).

Proof. By assumption, Fx(x) = 0, and hence, x is a local weak minimizer of the following multiobjective
optimization problem:

minFx(x),

(MP1) s.t. gi(x) 6 0, i ∈ I,
hj(x) = 0, j ∈ J,
x ∈ C.

Hence, x is a local weak minimizer of the multiobjective optimization problem:

minFx(x),

(MP2) s.t. gi(x) 6 0, i ∈ I(x),

hj(x) = 0, j ∈ J,
x ∈ C.

By assumption, for v ∈ Ker∇h(x) ∩ IT (C;x), there exist z ∈ ∂∗g(x)v such that zi < 0 (∀i ∈ I(x)). Hence,

zI(x) = (zi)i∈I(x) ∈ ∂∗gI(x)(x)v with zi < 0 (∀i ∈ I(x)). Moreover, IT (−R|I(x)|+ ; gI(x)(x)) = −R|I(x)|++ , where

|I(x)| is the capacity of I(x). Hence, ∂∗gI(x)(x)v ∩ IT (−R|I(x)|+ ; gI(x)(x)) 6= ∅.
Let us show that for every v ∈ Ker∇h(x) ∩ IT (C;x) and (y, zI(x)) ∈ ∂∗(F, gI(x))(x)v, we have (y, zI(x)) /∈

−Rm++ × −R
|I(x)|
++ . Assume the contrary, that there exist ṽ ∈ Ker∇h(x) ∩ IT (C;x) and (ỹ, z̃I(x)) ∈ (−Rm++ ×

−R|I(x)|++ ) ∩ ∂∗(Fx, gI(x))(x)ṽ. In view of Lemma 6.2 [8], it follows that ṽ ∈ T (F0 ∩G0
I(x) ∩H;x). Moreover,

T (F0 ∩G0
I(x) ∩H;x) ∩ IT (C;x) ⊆ T (F0 ∩G0

I(x) ∩H ∩ C;x).

Therefore, ṽ ∈ T (F0 ∩G0
I(x) ∩H ∩C;x). By an argument analogous to that used for the proof of Lemma 6.3 [8]

to Problem (MP2), it follows that T (F0 ∩G0
I(x) ∩H ∩C;x) = ∅. Thus, we arrive a contradiction. Consequently,

for every v ∈ Ker∇h(x) ∩ IT (C;x) and (y, zI(x)) ∈ ∂∗(Fx, gI(x))(x)v, we have (y, zI(x)) /∈ −Rm++ ×−R
|I(x)|
++ .

Applying a separation theorem for the disjoint convex sets {(y, zI(x))} and −Rm++ × −R
|I(x)|
++ (see, e.g., [4],

Thm. 3.4) yields the existence of λ ∈ Rm+ , µI(x) ∈ N(−R|I(x)|+ , gI(x)(x)) with (λ, µI(x)) 6= (0, 0) such that

〈λ, y〉+ 〈µI(x), zI(x)〉 > 0. (3.2)

Note that
µI(x) ∈ N(−R|I(x)|+ ; gI(x)(x))⇐⇒ µI(x) ∈ R|I(x)|+ ⇐⇒ µi > 0 (∀i ∈ I(x)).

Choosing µi = 0 (∀i /∈ I(x)), we get µ = (µi)i∈I > 0. By (3.2), it results that

〈λ, y〉+ 〈µ, z〉 > 0, µigi(x) = 0 (∀i ∈ I),

which completes the proof. �
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Remark 3.3. Theorem 3.2 is a meaningful extension of Theorem 6.4 [8] for multiobjective optimization prob-
lems without set constraint.

Now for x ∈ K and v ∈ IT (C;x), we set

D(x; v) :=
⋃{∑

k∈J

λk∂∗Fk,x(x)v +
∑
i∈I(x)

µi∂∗gi(x)v +
∑
j∈L

γj〈∇hj(x), v〉 :

λk > 0 (∀k ∈ J), µi > 0 (∀i ∈ I(x)), γj ∈ R (∀j ∈ L), (λ, µI(x), γ) 6= (0, 0, 0)

}
,

where λ = (λk)k∈J , µI(x) = (µi)i∈I(x), γ = (γj)j∈L.
In the sequel, we establish a Fritz John necessary condition for local weak efficient solution of (CVEP).

Theorem 3.4. Let x be a local weak efficient solution of (CVEP). Assume that Assumption 3.1 holds, and the
functions Fx, g are steady at x. Suppose, furthermore, that for every v ∈ Ker∇h(x) ∩ IT (C;x), there exists
z ∈ ∂∗g(x)v such that zi < 0 (∀i ∈ I(x)). Then,

(i) For every v ∈ IT (C;x), there exist λk > 0 (∀k ∈ J), µi > 0 (∀i ∈ I), and γj ∈ R (∀j ∈ L), not all zero,
such that

0 ∈
∑
k∈J

λk∂∗Fk,x(x)v +
∑
i∈I

µi∂∗gi(x)v +
∑
j∈L

γj〈∇hj(x), v〉, (3.3)

µigi(x) = 0 (∀i ∈ I). (3.4)

(ii) For every v ∈ Ker∇h(x) ∩ IT (C;x), there exist λk > 0 (∀k ∈ J), µi > 0 (∀i ∈ I) with (λ, µ) 6= (0, 0) such
that

0 ∈
∑
k∈J

λk∂∗Fk,x(x)v +
∑
i∈I

µi∂∗gi(x)v, (3.5)

µigi(x) = 0 (∀i ∈ I).

Proof.

(i) Let us show that for every v ∈ IT (C;x),
0 ∈ clD(x; v), (3.6)

where cl indicates the closure. Assume the contrary, that there exists v0 ∈ IT (C;x) such that

0 /∈ clD(x; v0).

For Fk,x(.), gi : Rn → R, we have ∂∗Fk,x(x)v0 and ∂∗gi(x)v0 are nonempty convex sets. Hence, D(x; v0) is
nonempty convex, and so is clD(x; v0). Applying a strong separation theorem for the disjoint closed convex
sets clD(x; v0) and {0} in R (see [20], Cor. 11.4.2) yields the existence of α0 ∈ R \ {0} such that

α0w < 0 (∀w ∈ D(x; v0)). (3.7)

Let us see that
〈∇hj(x), v0〉 = 0 (∀j ∈ L). (3.8)

Indeed, if (3.8) were false, then 〈∇hj0(x), v0〉 6= 0 for some j0 ∈ L. Taking ys ∈ ∂∗Fs,x(x) (s ∈ J), λs =
1, λk = 0 (∀k ∈ J, k 6= s), µi = 0 (∀i ∈ I(x)), γj = 0 (∀j ∈ L, j 6= j0), then the vector (0, . . . , 1, . . . , 0) ∈ Rm+ ,
where the number 1 is its sth component. It follows from (3.7) that

α0ys + γj0α0〈∇hj0(x), v0〉 < 0. (3.9)
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Since Fs,x is steady at (x, 0), it is stable at x. Hence, |ys| < +∞. By letting γj0 being sufficiently large if
α0〈∇hj0(x), v0〉 > 0, while γj0 < 0 with its absolute value being large enough if α0〈∇hj0(x), v0〉 < 0, we
obtain a contradiction with (3.9), and so, (3.8) holds. Hence, v0 ∈ Ker∇h(x) ∩ IT (C;x).
We invoke Theorem 3.2 to deduce that for (y, z) ∈ ∂∗(Fx, g)(x)v0, there exist (λ, µ) ∈ Rm+ × Rr+ with

(λ, µ) 6= (0, 0) such that

〈λ, y〉+ 〈µ, z〉 > 0, (3.10)

µigi(x) = 0 (∀i ∈ I). (3.11)

It can be seen that (3.10) and (3.11) are equivalent to the following

〈λ, y〉+ 〈µI(x), zI(x)〉 > 0, (3.12)

where µI(x) = (µi)i∈I(x), zI(x) = (zi)i∈I(x). It follows from (2.2) and (2.3) that

(y, zI(x)) ∈ ∂∗(Fx, gI(x))(x)v0 ⊆
m∏
k=1

∂∗Fk,x(x)v0 ×
∏
i∈I(x)

gi(x)v0. (3.13)

Thus y = (y1, . . . , ym), z = (zi)i∈I(x) with yk ∈ ∂∗Fk,x(x)v0, zi ∈ ∂∗gi(x)v0 (∀k ∈ J, ∀i ∈ I(x)). Since
v0 ∈ Ker∇h(x), it follows from (3.13) that

〈λ, y〉+ 〈µI(x), zI(x)〉 ∈
∑
k∈J

λk∂∗Fk,x(x)v0 +
∑
i∈I(x)

µi∂∗gi(x)v0 ∈ D(x; v0). (3.14)

Combining (3.7), (3.12) and (3.14) yields that

〈λ, y〉+ 〈µI(x), zI(x)〉 > 0. (3.15)

Taking account of (3.7), (3.14) and (3.15), we get α0 < 0. Therefore,

w > 0 (∀w ∈ D(x; v0)).

This can not happen, since for λ = 0, µ = 0, γ 6= 0, we have 0 =
∑
k∈J 0.yk +

∑
i∈I(x) 0.zi +∑

j∈L γj〈∇hj(x), v0〉 ∈ D(x; v0) (yk ∈ ∂∗Fk,x(x)v0, zi ∈ ∂∗gi(x)v0). Consequently, (3.6) holds, and so,

for every v ∈ IT (C;x), there exist λ
(n)
k > 0, y

(n)
k ∈ ∂∗Fk,x(x)v (∀k ∈ J), µ

(n)
i > 0, z

(n)
i ∈ ∂∗gi(x) (∀i ∈

I(x)), γ
(n)
j ∈ R (∀j ∈ L) with (λ(n), µ

(n)
I(x), γ

(n)) 6= (0, 0, 0) such that

0 = lim
n→∞

∑
k∈J

λ
(n)
k y

(n)
k +

∑
i∈I(x)

µ
(n)
i z

(n)
i +

∑
j∈L

γ
(n)
j 〈∇hj(x), v〉

, (3.16)

where λ(n) = (λ
(n)
k )k∈J , µ

(n)
I(x) = (µ

(n)
i )i∈I(x), γ

(n) = (γ
(n)
j )j∈L. Since (λ(n), µ

(n)
I(x), γ

(n)) 6= (0, 0, 0), it can

be taken them so that ‖ (λ(n), µ
(n)
I(x), γ

(n)) ‖= 1 (∀n). Without loss of generality, it can be assumed that

(λ(n), µ
(n)
I(x), γ

(n))→ (λ, µI(x), γ) with λ > 0, µI(x) > 0, γ ∈ R` and ‖ (λ, µI(x), γ) ‖= 1. Since ∂∗Fk,x(x)v (k ∈
J) and ∂∗gi(x) (i ∈ I(x)) are closed, it follows from (3.16) that

0 ∈
∑
k∈J

λkcl (∂∗Fk,x(x)v) +
∑
i∈I(x)

µicl (∂∗gi(x)v) +
∑
j∈L

γj〈∇hj(x), v〉

=
∑
k∈J

λk∂∗Fk,x(x)v +
∑
i∈I(x)

µi∂∗gi(x)v +
∑
j∈L

γj〈∇hj(x), v〉. (3.17)

Note that (3.3) along with (3.4) is equivalent to (3.17).
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(ii) To prove the part (ii), for v ∈ Ker∇h(x) ∩ IT (C;x), we consider the following set:

D1(x; v) :=
⋃{∑

k∈J

λk∂∗Fk,x(x)v +
∑
i∈I(x)

µi∂∗gi(x)v :

λk > 0 (∀k ∈ J), µi > 0 (∀i ∈ I(x)), (λ, µI(x)) 6= (0, 0)

}
.

By an argument to that used for the proof of the part (i), we arrive that

w > 0 (∀w ∈ D1(x; v0)).

This also can not happen. In fact, taking λk = 0 (∀k ∈ J), µi0 = 1 for some i0 ∈ I(x), µi = 0 (∀i ∈
I(x), i 6= i0), we obtain that w0 = zi0 ∈ D1(x; v0). By assumption, there exists z ∈ ∂∗g(x)v0 such that
zi < 0 (∀i ∈ I(x)). Hence, w0 = zi0 < 0. It is absurd.
In the same way as in the proof of the part (i), we deduce that there exist λk > 0 (∀k ∈ J), µi > 0 (∀i ∈ I)
with (λ, µ) 6= (0, 0) such that

0 ∈
∑
k∈J

λk∂∗Fk,x(x)v +
∑
i∈I

µi∂∗gi(x)v,

µigi(x) = 0 (∀i ∈ I).

The proof is complete. �

In case C = Rn, Theorem 3.4 yields the following consequence.

Corollary 3.5. Let C = Rn, and let x be a local weak efficient solution of (CVEP). Assume that Assumption 3.1
holds, and the functions Fx, g are steady at x ∈ K. Suppose, furthermore, that for every v ∈ Ker∇h(x), there
exists z ∈ ∂∗g(x)v such that zi < 0 (∀i ∈ I(x)). Then,

(i) For every v ∈ Rn, there exist λk > 0 (∀k ∈ J), µi > 0 (∀i ∈ I), and γj ∈ R (∀j ∈ L), not all zero, such that

0 ∈
∑
k∈J

λk∂∗Fk,x(x)v +
∑
i∈I

µi∂∗gi(x)v +
∑
j∈L

γj〈∇hj(x), v〉, (3.18)

µigi(x) = 0 (∀i ∈ I). (3.19)

(ii) For every v ∈ Ker∇h(x), there exist λk > 0 (∀k ∈ J), µi > 0 (∀i ∈ I) with (λ, µ) 6= (0, 0) such that

0 ∈
∑
k∈J

λk∂∗Fk,x(x)v +
∑
i∈I

µi∂∗gi(x)v,

µigi(x) = 0 (∀i ∈ I).

Proof. For C = Rn, we have IT (C;x) = Rn. Thus all the hypotheses of Theorem 3.4 are fulfilled. We invoke
this Theorem to deduce the conclusion. �

In case the functions Fk,x(.) (k ∈ J) and gi (i ∈ I) are Hadamard differentiable at x, we get the following
direct consequence of Theorem 3.4.

Corollary 3.6. Let x be a local weak efficient solution of (CVEP). Assume that Assumption 3.1 holds, and
the functions Fx(.), g are Hadamard differentiable and steady at x. Suppose, furthermore, that for every v ∈
Ker∇h(x) ∩ IT (C;x), dgi(x; v) < 0 (∀i ∈ I(x)). Then,
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(i) For every v ∈ IT (C;x), there exist λk > 0 (∀k ∈ J), µi > 0 (∀i ∈ I), and γj ∈ R (∀j ∈ L), not all zero,
such that ∑

k∈J

λkdFk,x(x; v) +
∑
i∈I

µidgi(x; v) +
∑
j∈L

γj〈∇hj(x), v〉 = 0, (3.20)

µigi(x) = 0 (∀i ∈ I). (3.21)

(ii) For every v ∈ Ker∇h(x) ∩ IT (C;x), there exist λk > 0 (∀k ∈ J), µi > 0 (∀i ∈ I) with (λ, µ) 6= (0, 0) such
that ∑

k∈J

λkdFk,x(x; v) +
∑
i∈I

µidgi(x; v) = 0,

µigi(x) = 0 (∀i ∈ I).

Proof. Since the functions Fx, g are Hadamard differentiable at x, we have ∂∗Fk,x(x)v = {dFk,x(x; v)} (∀k ∈
J), ∂∗gi(x)v = {dgi(x; v)} (∀i ∈ I). Then all the hypotheses of Theorem 3.4 are fulfilled. We can invoke
Theorem 3.4 to deduce the conclusion. �

Theorem 3.4 is illustrated by the following examples.

Example 3.7. Let X = R2, Y = R2, C = [0, 1]× [0, 1], x = (0, 0). Let F : R× R→ R2 be defined as

F (x, y) =

{
(| y1 | (1− x2), y1 sin π

y1
− y22 + x2y1), if y1 6= 0,

(0,−y22), if y1 = 0,

g(y) = y21− | y1 |,
h(y) = y1 − 2y2,

where (x1, x2), (y1, y2) ∈ R2. Then

Fx(y) =

{
(| y1 |, y1 sin π

y1
− y22), if y1 6= 0,

(0,−y22), if y1 = 0.

We have K = {y ∈ C : g(y) 6 0, h(y) = 0} = {(y1, y2) ∈ R2 : y1 = 2y2, 0 6 y2 6 1
2}. The point x = (0, 0) is a

weakly efficient solution of the vector equilibrium problem:

F (x, y) /∈ −R2
++ (∀y ∈ K).

It is obvious that the functions Fx, g are steady at x. It can be seen that IT (C;x) = R2
++. For v1 > 0, we have

that

∂∗Fx(x)v = [−v1, v1]× [−v1, v1],

∂∗g(x)v = [−v1, v1] (v = (v1, v2) ∈ R2).

Since the function h is differentiable at x = (0, 0) and ∇h(x) = (1,−2), it holds that Ker∇h(x) ∩ IT (C;x) =
{(v1, v2) ∈ R2

++ : v1 = 2v2}. It is easily seen that all the hypotheses of Theorem 3.2 are fulfilled. Then for

(v1, v2) ∈ Ker∇h(x) ∩ IT (C;x), the necessary conditions (3.5) and (3.4) hold for λ = (1, 1), µ = 1.

Example 3.8. Let us consider the transportion – production problem. There is a kind of production which is
producted at stations A1, . . . , Am. It is known that the station Ai spends an expenditure fi(xi) to product xi
production units. Productions need to transport to n consume places B1, . . . , Bn with requirements b1, . . . , bn,
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respectively. The transportion expenditure of a production unit from Ai to Bj is cij . The problem of concern is
that of finding a plan of production - transportion with total of expenditures of production and transportion is
minimal, which ensures that requirements of consume places are satisfied. Let xij be production bloc transporting
from Ai to Bj . Then the mathematical model of this problem is as

m∑
i=1

fi(xi) +

m∑
i=1

n∑
j=1

cijxij −→ min,

subject to

n∑
j=1

xij = xi, i = 1, . . . ,m,

m∑
i=1

xij = bj , j = 1, . . . , n,

xij > 0, i = 1, . . . ,m; j = 1, . . . , n,

0 6 xi 6 S :=

n∑
j=1

bj .

We set

f(x) :=

m∑
i=1

fi(xi) +

m∑
i=1

n∑
j=1

cijxij ,

where x = (x11, . . . , x1n, x21, . . . , x2n, . . . , xm1, . . . , xmn) ∈ Rmn, and

hj(x) :=

m∑
i=1

xij − bj , j = 1, . . . , n,

F (x, y) := f(y)− f(x),

C := Rmn+ ,K := {x ∈ C : hj(x) = 0, j = 1, . . . , n}.

Then the problem can be formulated as an equilibrium problem: Finding x ∈ K such that

F (x, y) > 0 (∀y ∈ K).

Suppose that fi is continuously differetiable at xi (i = 1, . . . ,m). Then the function F (x, .) is continuously
differentiable at x. Putting Fx(.) := F (x, .), we have that Fx(.) is steady at x, and ∂∗Fx(x)v = {∇Fx(x)v} (∀v ∈
Rmn). Hence, for every v = (v11, . . . , v1n, v21, . . . , v2n, . . . , vm1, . . . , vmn) ∈ Rmn,

∇F (x)v =

m∑
i=1

∇fi(xi)
n∑
j=1

vij +

m∑
i=1

n∑
j=1

cijvij .

It can be seen that IT (C;x) = Rmn++. Moreover, the functions h1, . . . , hn are differetiable at x, and
∇h1(x), . . . ,∇hn(x) are linearly independent. Applying Theorem 3.4 yields that for every v ∈ IT (C;x) = Rmn++,

there exist λ > 0, γj ∈ R (j = 1, . . . , n), not all zero, such that

λ

 m∑
i=1

∇fi(xi)
n∑
j=1

vij +

m∑
i=1

n∑
j=1

cijvij

+

n∑
j=1

γj

m∑
i=1

vij = 0.
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4. Karush–Kuhn–Tucker necessary conditions

In order to derive Karush–Kuhn–Tucker necessary conditions, we introduce the following constraint qualifi-
cations:

(CQ1) There exist s ∈ J, v0 ∈ IT (C;x) such that
(i) yk < 0(∀yk ∈ ∂∗Fk,x(x)v0,∀k ∈ J, k 6= s); zi < 0(∀zi ∈ ∂∗gi(x)v0,∀i ∈ I(x));
(ii) 〈∇hj(x), v0〉 = 0 (∀j ∈ L).

(CQ2) There exists s ∈ J, v0 ∈ IT (C;x) such that for every λk > 0 (k ∈ J, k 6= s);µi > 0 (∀i ∈ I(x)), not all
zero, and γj ∈ R (∀j ∈ L), we have

0 /∈
∑

k∈J,k 6=s

λk∂∗Fk,x(x)v0 +
∑
i∈I(x)

µi∂∗gi(x)v0 +
∑
j∈L

γj〈∇hj(x), v0〉.

Hereafter, we give a relationship between (CQ1) and (CQ2).

Proposition 4.1. (CQ1) implies (CQ2).

Proof. Contrary to the conclusion, suppose that (CQ1) holds, but (CQ2) is false. Hence, there exist s ∈ J, v0 ∈
IT (C;x) such that (i), (ii) hold, and there exist λk > 0 (∀k ∈ J, k 6= s), µi > 0 (∀i ∈ I(x)) with (λ(s), µ) 6= (0, 0),
where λ(s) = (λk)k∈J,k 6=s, µI(x) = (µi)i∈I(x), yk ∈ ∂∗Fk,x(x)v0 (∀k ∈ J, k 6= s), zi ∈ ∂∗gi(x)v0 (∀i ∈ I(x)),
γj ∈ R (∀j ∈ L), such that

0 =
∑

k∈J,k 6=s

λkyk +
∑
i∈I(x)

µizi +
∑
j∈L

γj〈∇hj(x), v0〉

=
∑

k∈J,k 6=s

λkyk +
∑
i∈I(x)

µizi

< 0,

as (λ(s), µI(x)) 6= (0, 0). It is absurd. Hence, the conclusion follows. �

A Karush–Kuhn–Tucker necessary condition for efficiency can be stated as follows.

Theorem 4.2. Let x be a local weak efficient solution of (CVEP). Assume all hypotheses of Theorem 3.4 are
fulfilled. Suppose also that the constraint qualification (CQ1) or (CQ2) (for some s ∈ J) holds. Then, for every
v ∈ Ker∇h(x) ∩ IT (C;x), there exist there exist λs > 0, λk > 0 (∀k ∈ J, k 6= s), µi > 0 (∀i ∈ I) such that

0 ∈
∑
k∈J

λk∂∗Fk,x(x)v +
∑
i∈I

µi∂∗gi(x)v, (4.1)

µigi(x) = 0 (∀i ∈ I). (4.2)

Proof. We first suppose that (CQ2) holds. Then we invoke Theorem 3.4 (ii) to deduce that there exist λk >
0 (∀k ∈ J), µi > 0 (∀i ∈ I) with (λ, µ) 6= (0, 0) such that (4.1), (4.2) holds. If λs = 0, then it follows from (4.1),
(4.2) that

0 ∈
∑

k∈J,k 6=s

λk∂∗Fk,x(x)v +
∑
i∈I

µi∂∗gi(x)v, (4.3)

which contradicts (CQ2).
If (CQ1) holds, it follows from Proposition 4.1 that (CQ1) implies (CQ2). Hence, we also arrive a contradic-

tion, and so, λs > 0. �

In what follows, we derive a strong Karush–Kuhn–Tucker necessary condition for efficiency in which all the
Lagrange multipliers corresponding to all the components of the objective are positive.
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Theorem 4.3. Let x be a local weak efficient solution of (CVEP). Assume all hypotheses of Theorem 3.4 are
fulfilled. Suppose also that the constraint qualification (CQ1) or (CQ2) (for every s ∈ J) holds. Then, for every
v ∈ Ker∇h(x) ∩ IT (C;x), there exist there exist λk > 0 (∀k ∈ J), µi > 0 (∀i ∈ I) such that

0 ∈
∑
k∈J

λk∂∗Fk,x(x)v +
∑
i∈I

µi∂∗gi(x)v,

µigi(x) = 0 (∀i ∈ I).

Proof. For each s ∈ J and v ∈ IT (C;x), we invoke Theorem 4.2 to deduce that there exist λ
(s)
s > 0, λ

(s)
k > 0

(∀k ∈ J, k 6= s), µ
(s)
i > 0 (∀i ∈ I) such that

0 ∈
∑
k∈J

λ
(s)
k ∂∗Fk,x(x)v +

∑
i∈I

µ
(s)
i ∂∗gi(x)v, (4.4)

µ
(s)
i gi(x) = 0 (∀i ∈ I). (4.5)

Taking s = 1, . . . ,m in (4.4), (4.5) and adding up both sides of the obtained inclusions, we obtain the following

0 ∈
∑
s∈J

∑
k∈J

λ
(s)
k ∂∗Fk,x(x)v +

∑
i∈I(x)

µ
(s)
i ∂∗gi(x)v


=
∑
k∈J

λk∂∗Fk,x(x)v +
∑
i∈I(x)

µi∂∗gi(x)v,

µigi(x) = 0 (∀i ∈ I),

where λk = λ
(s)
s +

∑
s∈J,s 6=k λ

(s)
k > 0 (∀k ∈ J), µi =

∑
s∈J µ

(s)
i > 0 (∀i ∈ I). This completes the proof. �

5. Applications to vector variational inequalities and vector optimization

Let L(Rn;Rm) be the space of all continuous linear mappings from Rn to Rm, and let T be a mapping
from Rn to L(Rn;Rm). The vector equilibrium problem (CVEP) includes as a special case the following vector
variational inequality problem (CVVI): Finding a point x ∈ K such that

(Tx)(y − x) /∈ −Rm++ (∀y ∈ K).

A vector x will be called a local weak efficient solution of (CVVI) iff there exists a number δ > 0 such that
there is no y ∈ K ∩B(x; δ) satisfying

T (x)k(y − x) < 0 for all k ∈ J,

where T (x) = (T (x)1, . . . , T (x)m), T (x)k : Rn → R (k ∈ J).
If F (x, y) = f(y) − f(x) (x, y ∈ K), where f : Rn → Rm, the vector equilibrium problem (CVEP) becomes

the following vector optimization problem (CVOP):

min{f(x) : x ∈ K}.

It is said that x is a local weak efficient solution of (CVOP) iff there is no x ∈ K ∩B(x; δ) satisfying

fk(x) < fk(x) (∀k ∈ J).

Making use of the results obtained in the previous section to (CVEP), we can derive optimality conditions
for the vector variational inequality problem (CVVI). We first establish a Fritz John necessary condition for
local weak efficient solution of (CVVI).
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Theorem 5.1. Let x be a local weak efficient solution of (CVVI). Assume that g is steady at x and contin-
uous in a neighbourhood of x; the functions h1, . . . , h` are Fréchet differentiable at x with Fréchet derivatives
∇h1(x), . . . ,∇h`(x) linearly independent. Suppose, furthermore, that for every v ∈ Ker∇h(x) ∩ IT (C;x), there
exists z ∈ ∂∗g(x)v such that zi < 0 (∀i ∈ I(x)). Then,

(i) For every v ∈ IT (C;x), there exist λk > 0 (∀k ∈ J), µi > 0 (∀i ∈ I) and γj ∈ R (∀j ∈ L), not all zero,
such that

0 ∈
∑
k∈J

λk〈T (x)k, v〉+
∑
i∈I

µi∂∗gi(x)v +
∑
j∈L

γj〈∇hj(x), v〉,

µigi(x) = 0 (∀i ∈ I);

(ii) For every v ∈ Ker∇h(x) ∩ IT (C;x), there exist λk > 0 (∀k ∈ J), µi > 0 (∀i ∈ I) with (λ, µ) 6= (0, 0) such
that

0 ∈
∑
k∈J

λk〈T (x)k, v〉+
∑
i∈I

µi∂∗gi(x)v,

µigi(x) = 0 (∀i ∈ I).

Proof. Since the mapping T (x)(.) is linear and continuous, it is strictly differentiable. Hence, the contingent
derivative of T (x)k(.) at x in a direction v is {〈T (x)k, v〉} (∀k ∈ J). For F (x, y) = T (x)(y − x), one gets that
Fx(x) = 0. It can be seen that all the hypotheses of Theorem 3.2 are fulfilled. We invoke this theorem to deduce
the desired conclusion. �

A Karush–Kuhn–Tucker optimality condition for (CVVI) can be stated as follows.

Theorem 5.2. Let x be a local weak efficient solution of (CVVI). Assume that g is continuous in a neigh-
bourhood of x and steady at x; the functions h1, . . . , h` are Fréchet differentiable at x with Fréchet derivatives
∇h1(x), . . . ,∇h`(x) linearly independent. Suppose, furthermore, that for every v ∈ Ker∇h(x) ∩ IT (C;x), there
exists z ∈ ∂∗g(x)v such that zi < 0 (∀i ∈ I(x)), and the constraint qualification (CQ1) or (CQ2) (for some
s ∈ J) holds. Then, for every v ∈ Ker∇h(x) ∩ IT (C;x), there exist there exist λs > 0, λk > 0 (∀k ∈ J, k 6= s),
µi > 0 (∀i ∈ I) such that

0 ∈
∑
k∈J

λk〈T (x)k, v〉+
∑
i∈I

µi∂∗gi(x)v, (5.1)

µigi(x) = 0 (∀i ∈ I). (5.2)

Proof. It can be seen that the function Fx(y) = T (x)(y−x) is strictly differentiable, and ∇Fx(x) = T (x). Hence,
applying Theorem 4.2 yields that for every v ∈ Ker∇h(x)∩ IT (C;x), there exist λs > 0, λk > 0 (∀k ∈ J, k 6= s),
µi > 0 (∀i ∈ I) and γj ∈ R (∀j ∈ L) such that (5.1) and (5.2) hold. �

Theorem 5.2 is illustrated by the following example.

Example 5.3. Let X = R2, Y = R2, C = [0, 1]× [0, 1], x = (0, 0). Let T : R2 → L(R2,R2) be defined as

T (x) =

(
a(x) b(x)

c(x) d(x)

)
,

where a(x), b(x), c(x), d(x) ∈ R (x ∈ R2), with a(x) = 1, b(x) = 1
3 , c(x) = 1, d(x) = −2. Thus, T (x) =

(
1 1/3
1 −2

)
,

and for y = (y1, y2) ∈ R2,

T (x)1(y) = y1 +
1

3
y2,

T (x)2(y) = y1 − 2y2.
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Let g, h be defined as g = (g1, g2), where

g1(y) =

y1
(

sin 1
y1
− 1
)
, if y1 6= 0,

0, if y1 = 0,

g2(y) = y2(y2 − 1),

h(y) =

{
y21 | cos π

y1
| +y1 − y2, if y1 6= 0,

−y2, if y1 = 0,

We have K = {y ∈ C : g(y) 6 0, h(y) = 0} = {(y1, y2) ∈ (0, 1]× (0, 1] : y2 = y1 + y21 | cos π
y1
|} ∪ {(0, 0)}. The

point x = (0, 0) is a weakly efficient solution of the vector variational inequality problem:

T (x)(y − x) /∈ −R2
++ (∀y ∈ K).

It is obvious that the functions g1, g2 are steady at x. It can be seen that IT (C;x) = R2
++. For v = (v1, v2), we

have

∂∗g1(x)v = [−2v1, 0],

∂∗g2(x)v = {−v2}.

Hence, ∂∗g(x)v = [−2v1, 0]×{−v2}. Since the function h is differentiable at x = (0, 0) and ∇h(x) = (1,−1), and
Ker∇h(x) = {(v1, v2) ∈ R2 : v1 = v2}. Hence, Ker∇h(x)∩IT (C;x) = {(v1, v2) ∈ R2

++ : v1 = v2}. For (v1, v2) ∈
Ker∇h(x)∩IT (C;x), one has v1 = v2 = v > 0. It can be seen that (CQ1) holds with s = 2, v0 = (v, v). Moreover,
for v > 0, taking zi = −v ∈ ∂∗gi(x)(v1, v2), we have zi < 0 (i = 1, 2). Thus, all hypotheses of Theorem 5.2 are
satisfied, and the necessary conditions (5.1) and (5.2) hold for λ1 = 4/3, λ2 = 1/3, µ1 = 1, µ2 = 1/2:

0 ∈ 1.

(
v +

1

3
v

)
+

1

3
(v − 2v) + 1.[−2v, 0] +

1

2
(−v).

In case (CQ1) or (CQ2) holds for all s ∈ J , we get strong Karush–Kuhn–Tucker necessary conditions for
local weak efficient solutions of (CVVI).

Theorem 5.4. Let x be a local weak efficient solution of (CVVI). Assume that all hypotheses of Theorem 5.2
are fulfilled in which (CQ1) or (CQ2) holds for all s ∈ J . Then, for every v ∈ Ker∇h(x)∩ IT (C;x), there exist
λk > 0 (∀k ∈ J), µi > 0 (∀i ∈ I) such that (5.1) and (5.2) hold.

Proof. Taking account of Theorem 4.3 to the function Fx(y) = T (x)(y− x), we get the desired conclusion. �

From Theorem 3.4 we can obtain a Fritz John necessary condition for the multiobjective optimization problem
(CVOP).

Theorem 5.5. Let x be a local weak efficient solution of (CVOP). Assume that f, g are continuous in a neigh-
bourhood of x and steady at x; the functions h1, . . . , h` are Fréchet differentiable at x with Fréchet derivatives
∇h1(x), . . . ,∇h`(x) linearly independent. Suppose, furthermore, that for every v ∈ Ker∇h(x) ∩ IT (C;x), there
exists z ∈ ∂∗g(x)v such that zi < 0 (∀i ∈ I(x)), and the constraint qualification (CQ1) or (CQ2) (for some
s ∈ J) holds. Then,

(i) For every v ∈ IT (C;x), there exist there exist λk > 0 (∀k ∈ J), µi > 0 (∀i ∈ I) and γj ∈ R (∀j ∈ L), not
all zero, such that

0 ∈
∑
k∈J

λk∂∗f(x)v +
∑
i∈I

µi∂∗gi(x)v +
∑
j∈L

γj〈∇hj(x), v〉,

µigi(x) = 0 (∀i ∈ I).
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(ii) For every v ∈ Ker∇h(x) ∩ IT (C;x), there exist λk > 0 (∀k ∈ J), µi > 0 (∀i ∈ I) with (λ, µ) 6= (0, 0) such
that

0 ∈
∑
k∈J

λk∂∗fk(x)v +
∑
i∈I

µi∂∗gi(x)v,

µigi(x) = 0 (∀i ∈ I).

Proof. Observe that all the hypotheses of Theorem 3.4 are fulfilled to (CVOP) in which F (x, y) = f(y)− f(x).
Applying this theorem to (CVOP), we obtain the desired conclusion. �

In the sequel, we give a Karush–Kuhn–Tucker necessary condition for local weakly efficient solutions of
(CVOP).

Theorem 5.6. Let x be a local weak efficient solution of (CVOP). Assume that f, g are continuous in a neigh-
bourhood of x and steady at x; the functions h1, . . . , h` are Fréchet differentiable at x with Fréchet derivatives
∇h1(x), . . . ,∇h`(x) linearly independent. Suppose also that for every v ∈ Ker∇h(x) ∩ IT (C;x), there exists
z ∈ ∂∗g(x)v such that zi < 0 (∀i ∈ I(x)), and the constraint qualification (CQ1) or (CQ2) (for some s ∈ J)holds.
Then, for every v ∈ Ker∇h(x) ∩ IT (C;x), there exist λs > 0, λk > 0 (∀k ∈ J, k 6= s), µi > 0 (∀i ∈ I) such that

0 ∈
∑
k∈J

λk∂∗f(x)v +
∑
i∈I

µi∂∗gi(x)v, (5.3)

µigi(x) = 0 (∀i ∈ I). (5.4)

Proof. Observe that for the function Fx(y) = f(y) − f(x), it holds that ∂∗Fx(x)v = ∂∗f(x)v. Making use of
Theorem 4.2 to the function Fx(y) = f(y)− f(x), we obtain the derised conclusion. �

Theorem 5.6 is illustrated by the following example.

Example 5.7. Let X = R2, Y = R2, C = [0, 1]× [0, 1], x = (0, 0). Let f : R2 → R2 be defined as f = (f1, f2),
where

f1(x) =

{
x1(cos π

x1
− 1) + x22, if x1 6= 0,

x22, if x1 = 0,

f2(x) =

{
x1

1+e
1
x1

+ x32, if x1 6= 0,

x32, if x1 = 0,

where (x1, x2) ∈ R2. Let g, h be defined as g = (g1, g2),

g1(x) =

{
x1(sin π

x1
− 1)− 1

2x
2
2, if x1 6= 0,

− 1
2x

2
2, if x1 6= 0,

g2(x) = − arcsin
2x1

1 + x21
− x2 − 1,

h(x) = 2x1 − x2.

We have K = {x ∈ C : g(x) 6 0, h(x) = 0} = {(x1, x2) ∈ [0, 1] × [0, 1] : x2 = 2x1}. The point x = (0, 0) is a
weakly efficient solution of the vector optimization problem:

min{f(x) : x ∈ K}.
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It is obvious that the functions f1, f2, g1, g2 are steady at x, and IT (C;x) = R2
++. For v = (v1, v2), we have

∂∗f1(x)v = [−2v1, 0],

∂∗f2(x)v = [0, v1],

∂∗g1(x)v = [−2v1, 0],

∂∗g2(x)v = {−2v1 − v2}.

Hence, ∂∗g(x)v = [−2v1, 0]×{−2v1−v2}. Since the function h is differentiable at x = (0, 0) and∇h(x) = (2,−1),
and Ker∇h(x) = {(v1, v2) ∈ R2 : v2 = 2v1}. Hence, Ker∇h(x) ∩ IT (C;x) = {(v1, v2) ∈ R2

++ : v2 = 2v1}. It
can be seen that (CQ1) holds with s = 1, v0 = (v1, 2v1), and I(x) = {1}. Moreover, for v1 > 0, taking
z1 = −v1 ∈ ∂∗g1(x)(v), we have z1 < 0. Thus, all hypotheses of Theorem 5.5 are satisfied, and the necessary
conditions (5.3) and (5.4) hold for λ1 = 1, λ2 = 0, µ1 = 1, µ2 = 0.

A strong Karush–Kuhn–Tucker necessary condition for weakly efficient solutions of (CVOP) can be stated
as follows.

Theorem 5.8. Let x be a local weak efficient solution of (CVOP). Assume that all hypotheses of Theorem 5.6
are fulfilled in which (CQ1) or (CQ2) holds for all s ∈ J . Then, for every v ∈ Ker∇h(x)∩ IT (C;x), there exist
λk > 0 (∀k ∈ J), µi > 0 (∀i ∈ I) such that (5.3) and (5.4) hold.

Proof. It can be seen that all hypotheses of Theorem 4.3 are fulfilled to the function Fx(y) = f(y) − f(x).
Taking account of this theorem, we get the desired conclusion. �

6. Conclusion

Jiménez and Novo [8] obtained a rich calculus for contingent derivatives of stable and steady real-valued
functions. The notion of contingent derivative for real-valued functions is useful to get necessary optimality con-
ditions for efficiency. We develop Fritz John necessary conditions for local weak efficient solutions of constrained
vector equilibrium problems involving inequality, equality and set constraints via contingent derivatives. Karush–
Kuhn–Tucker necessary conditions for local weak efficient solutions are established under suitable constraint
qualifications. These results are applied to vector variational inequalities and vector optimization problems in-
volving inequality, equality and set constraints. Necessary efficiency conditions obtained here are meaningful
extensions of some results obtained in [8] for vector optimization problems with inequality and equality con-
straints, but without set constraint, and some others obtained in [23] for vector equilibrium problems with stable
and steady real-valued functions.
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