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THE ANALYSIS OF DISCRETE TIME GEOM/GEOM/1 QUEUE

WITH SINGLE WORKING VACATION AND MULTIPLE

VACATIONS (GEOM/GEOM/1/SWV+MV)

Qingqing Ye1,* and Liwei Liu2

Abstract. In this article, we consider a discrete-time Geom/Geom/1 queue with two phase
vacation policy that comprises single working vacation and multiple vacations, denoted by
Geom/Geom/1/SWV+MV. For this model, we first derive the explicit expression for the stationary
system size by the matrix-geometric solution method. Next, we obtain the stochastic decomposition
structures of system size and the sojourn time of an arbitrary customer in steady state. Moreover, the
regular busy period and busy cycle are analyzed by limiting theorem of alternative renewal process.
Besides, some special cases are presented and the relationship between the Geom/Geom/1/SWV+MV
queue and its continuous time counterpart is investigated. Finally, we perform several experiments to
illustrate the effect of model parameters on some performance measures.
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1. Introduction

The discrete-time queueing system, which was first presented by Meisling [17], have been well studied in
various forms by numerous researchers and have wide applications in digital communication and telecommuni-
cation networks, such as broad integrated services digital networks (B-ISDN) based on asynchronous transfer
mode (ATM) technology, since information in B-ISDN is transported by means of discrete units. Moreover, one
advantage of analyzing the discrete-time is that we can derive the results of the continuous-time counterparts
in a limiting case. For more details and applications on the topic of the discrete-time queue, we can refer to the
survey paper of Kobayashi et al. [8], the monographs of Hunter [7] and Takagi [21].

Since 1970, the vacation queueing systems has been attracted considerable attentions because it is more
flexible to find the optimal service policy in queueing systems if the servers are allowed to take vacations.
In the real life world, the vacation queueing system has a wide range of applications in many fields such as
telecommunication networks, production managing systems, inventory systems, etc. For the details on vacation
queues and their applications, the readers may refer to the survey paper by Doshi [5], the monographs of
Takagi [20] and Tian and Zhang [22]. In the vacation queues, there is an underlying assumption that the server

Keywords and phrases: Discrete time queue, vacation, working vacation, matrix-geometric solution, stochastic decomposition.

1 School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing, Jiangsu,
P.R. China.
2 School of Science, Nanjing University of Science and Technology, Nanjing, P.R. China.

* Corresponding author: yeqingzero@gmail.com

Article published by EDP Sciences c© EDP Sciences, ROADEF, SMAI 2018

https://doi.org/10.1051/ro/2017079
https://www.rairo-ro.org/
mailto:yeqingzero@gmail.com
http://www.edpsciences.org


96 Q. YE AND L. LIU

completely stops its service during the vacation period. In 2002, motivated by the performance analysis of the
wavelength division multiplexing (WDM) optical access network, a class of semi-vacation policy, called working
vacation (WV), was presented by Servi and Finn, such a vacation policy has the feature that server can still
provide the service for the customers presenting in the system during the vacation period, but at a lower service
rate. Servi and Finn [19] first analyzed the M/M/1 type queue with multiple working vacations, denoted by
M/M/1/MWV, and derived transform formulaes for the distribution of stationary system size and sojourn time
of an arbitrary customer. Later on, using matrix-geometric solution method, Liu et al. [15] demonstrated the
stochastic decomposition properties of the stationary system size and the sojourn time of the M/M/1/MWV
queue. The M/M/1 queue with single working vacation, denoted by M/M/1/SWV, was investigated by Tian
and Zhao [23]. Subsequently, Wu and Takagi [25] generalized the work in [19] to an M/G/1 queue with general
working vacations. Using the matrix analytic method, Li et al. [12] studied the M/G/1 queue with exponential
working vacations. Extension to GI/M/1 type queue with working vacations was analyzed by Baba [1] by the
matrix analysis method. Banik et al. [3] analyzed the GI/M/1/N queue with working vacations. Parallel to the
results of the continuous time queue with working vacations, the discrete time Geom/Geom/1 queue with single
working vacation (Geom/Geom/1/SWV) was studied by Li and Tian [10]. Further, Tian et al. [24] discussed the
discrete time Geom/Geom/1 queue with multiple working vacations (Geom/Geom/1/MWV). Li et al. [11] and
Li et al. [9], respectively, analyzed the discrete-time GI/Geo/1 type queue with multiple working vacations and
the discrete-time GI/Geo/1 type queue with multiple working vacations and vacation interruption. Extension
to the batch arrival discrete-time Geo/GI/1 queue with working vacations was studied by Li et al. [13].Recently,
Baba [2], Gao et al. [6], Li et al. [14], Luo et al. [16], Yang and Wu [26] and and others considered the working
vacation queueing systems with various features. More details and recent work related to working vacation, the
readers can refer to the survey of Chandrasekaran et al. [4].

Although there are various literatures concentrated on vacation queues and working vacation queues, there
has been a very few works on the queues related to the combination of vacation and working vacation. The
recent work of Ye and Liu [27] presents a new class of vacation policy which comprises single working vacation
and multiple vacations. During the regular busy period, if the server finds the queue empty after completing the
service of a customer, the server takes a working vacation during which the server can still provide the service
but at a lower rate. After the working vacation, if there are customers staying in the system, the service rate
will resume to the normal service rate immediately and a regular busy period starts. Otherwise, one vacation
will be taken during which the server stops its service completely. Upon return from the vacation, if it finds
one or more customers waiting in the system, it takes them for service at normal service rate immediately,
on the other hand, if there are no customers yet in the system, it immediately proceeds for another vacation
and continues in this manner until it finds at least one customer queued for the service upon returning from
a vacation. In order to describe this queue model with two phase vacation policy more clearly, we represent
this system schematically in Figure 1. In the real life situation situations, the two phase vacation policy has
practical cases and application, for example. (1) In several banks or service centers, the service windows can be
divided into corporation business windows and personal service windows. When the customers with corporation
business are relatively few, the service center/bank usually just keeps one window for corporation business in
operation waiting for the possible customers, this Min Speed period can be viewed as working vacation, after
this period, if there are still no customers with corporation business and the number of customers with personal
service grows too large, the window for corporation business may temporarily stop its service and begin to
provide service to customers with personal service, which can be seen as a vacation. In above case, we can
regard that the corporation business windows take two phase vacation policy we study. (2) The escalators in
some large supermarkets and metros are designed to operate at a lower service rate for a certain length when
the escalators just have no passenger, we can see this low service rate period as a working vacation, after the
low service period, if there are passengers coming, the escalators will switch to regular service rate. If there is
still no passenger, the escalators will temporarily stop the running until the new arrival of passengers which can
be seen as a vacation. In above case, we can regard that escalators take two phase vacation policy we study.
(3) This type of two phase vacation policy can also be utilized to model building of server maintenance model.
When the workload in the system is relatively few, the server may first enter a buffer period (working vacation)



GEOM/GEOM/1/SWV+MV 97

Figure 1. Schematic representation. (Color online.)

waiting for the possible tasks arriving, in which server work in a lower rate operation to economize operation
cost and energy consumption. After the buffer period, the system may resume to the regular service state for
the more benefit if there are tasks staying in the system. Otherwise, the server temporarily stops the running
to make the maintenance.

Ye and Liu [27] first studied the M/M/1 queue with single working vacation and multiple vacations, subse-
quently, Ye and Liu [28] generalized the work in Ye and Liu [27] to the GI/M/1 type queue with single working
vacation and multiple vacations. Inspired by classical discrete-time queues and the works of Ye and Liu [27, 28],
in this paper, we aim to extend the work in Ye and Liu [27] to the discrete-time Geom/Geom/1 queue and
discuss various properties for Geom/Geom/1 queue with single working vacation and multiple vacations and
obtain the various properties for this model.

The rest of this paper is organized as follows. In Section 2, we give a detailed description of the
Geom/Geom/1/SWV+MV queue and obtain the ergodicity condition. Section 3 is denoted to obtain the sta-
tionary distribution of system size. Section 4 demonstrates the stochastic decomposition properties of the system
size and the sojourn time in steady state. In Section 5, we discuss the regular busy period and busy cycle. The
relationship between the discrete-time Geom/Geom/1/SWV+MV queue and its continuous-time counterpart
M/M/1/SWV+MV queue is given in Section 6. Several special cases are presented in Section 7. The effects of
model parameters on the key performance measures are performed in Section 8. The last is some conclusions.

2. Model description and ergodicity condition

We consider the Geom/Geom/1 queue with two phase vacation policy that comprises single working vacation
and vacations, the detailed description for this model is as follows. For mathematical convenience, we denote
x̄ = 1− x, for any real number x ∈ [0, 1].

In the discrete-time queues, the queueing activities (the arrivals, the departures and the end of vacations)
may take place at the same time. For mathematical clarity, we suppose that a potential arrival occurs in the
interval (n−, n) , n = 0, 1, 2, . . ., where n− is the moment immediately before n, and a potential departure occurs
in the interval (n, n+), where n− is the moment immediately before n, that is, the system we consider here is
an early arrival system (EAS). Further, we assume that the beginning and ending of the working vacations or
vacations occur in the interval (n−, n).

Customers arrive at the system according to a geometric arrival process with parameter p, that is, the
inter-arrival time T follows a geometric distribution as follows.

P {T = k} = pp̄k−1, k ≥ 1, 0 < p < 1.
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The service time Sb during the regular busy period and service time Sv during the working vacation period
follow the geometric distribution with parameter µb and µv, respectively. That is

P {Sb = k} = µbµ̄
k−1
b , k ≥ 1, 0 < µb < 1,

P {Sv = k} = µvµ̄
k−1
v , k ≥ 1, 0 < µv < 1,

where µv < µb.
The working vacation Vw and vacation Vv follow the geometric distribution with parameter θw and θv,

respectively. That is

P {Vw = k} = θwθ̄
k−1
w , k ≥ 1, 0 < θw < 1.

P {Vv = k} = θv θ̄
k−1
v , k ≥ 1, 0 < θv < 1.

The two phase vacation policy is described explicitly as follows: During the regular busy period, the customers
are served at rate µb, if the server after completing the service of a customer finds the queue empty, the server
enters into a working vacation during which the server can still provide the service, but at lower rate µv. At the
end of the working vacation, if there are customers staying in the system, the server switches its service rate
from µv to µb immediately, and then the system will enter into the regular busy period. Otherwise the server
will take a vacation during which the server stops its service completely. Upon return from a vacation if it finds
one or more customers waiting, it takes them for service at a rate of µb immediately, on the other hand, if there
are no customers yet in the system, it immediately proceeds for another vacation and continues in this manner
until it finds at least one customer queued for the service upon returning from a vacation.

We assume that inter-arrival times, service times during the regular busy period, services during the working
vacation, working vacation times and vacation times are mutually independent. Further, the service order is
assumed to be first in first out (FIFO).

Let Qn be the number of customers in the system at t = n+ and Jn be the state of server at t = n+ with

Jn =


0, the server is in working vacation period at time n+,

1, the server is in vacation period at time n+,

2, the server is in regular busy period at time n+,

then {Qn, Jn} is a Markov process with the state space

Ω = {(0, 0) , (0, 1)} ∪ {(k, j) : k = 1, 2, . . . , j = 0, 1, 2} .

Using the lexicographical order for the states, i.e., (0, 0), (0, 1), (1, 0), (1, 1), (1, 2),. . . , the transition probability
matrix can be written as a Block-Jacobi matrix

P̃ =



A00 A01

B10 A1 A0

A2 A1 A0

A2 A1 A0

...
...

...


, (2.1)
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where

A00 =

[
θ̄wp̄ θwp̄

0 p̄

]
, A01 =

[
θ̄wp 0 θwp

0 θ̄vp θvp

]
, B10 =

θ̄wp̄µv θwp̄µv

0 0

p̄µb 0

,
and

A0 =

θ̄wpµ̄v 0 θwpµ̄v

θ̄vp θvp

pµ̄b

, A2 =

θ̄wp̄µv 0 θwp̄µv

0 0

p̄µb

,

A1 =

 θ̄w(1− pµ̄v − p̄µv) 0 θw(1− pµ̄v − p̄µv)
θ̄vp̄ θvp̄

1− pµ̄b − p̄µb

.
It is easily seen from the structure of transition probability matrix that {Qn, Jn} is a Quasi-Birth-and-Death

(QBD) process, so we are ready to analyze this model by matrix geometric solution method (the details can
be found in Neuts [18]). To this end, it is necessary to solve the minimal non-negative solution of the matrix
quadratic equation

R = R2A2 +RA1 +A0. (2.2)

In the following lemma, we give the explicit expression for R.

Lemma 2.1. If α = pµ̄b/p̄µb < 1, the matrix equation R = R2A2 + RA1 + A0 has the minimal non-negative
solution

R =

 r 0 θwr
θ̄w p̄µbr̄

0 β p
p̄µb

0 0 α

, (2.3)

where 0 < r < 1, and

r =
1

2p̄µv

(
θwθ̄

−1
w + pµ̄v + p̄µv −

((
θwθ̄

−1
w + pµ̄v + p̄µv

)2 − 4pp̄µvµ̄v

) 1
2

)
, (2.4)

β =
θ̄vp

1− θ̄vp̄
. (2.5)

Proof. Since A0, A1, A2 are all upper triangular matrices, we can assume that R has the same structure as

R =

 r11 r12 r13

r22 r23

r33

. (2.6)
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By substituting (2.6) in (2.2), we will have the following set of equations:

r11 = θ̄wp̄µvr
2
11 + θ̄w(1− p̄µv − pµ̄v)r11 + θ̄wpµ̄v, (2.7)

r12 = θ̄vp̄r12, (2.8)

r13 = θwp̄µvr
2
11 + p̄µb(r11r13 + r12r23 + r13r33) + (1− pµ̄b − p̄µb)r13

+θvp̄r12 + θw(1− pµ̄v − p̄µv)r11 + θwpµ̄v, (2.9)

r22 = θ̄vp̄r22 + θ̄vp, (2.10)

r23 = p̄µb(r22r23 + r23r33) + θvp̄r22 + (1− pµ̄b − p̄µb)r23 + θvp, (2.11)

r33 = p̄µbr
2
33 + (1− pµ̄b − p̄µb)r33 + pµ̄b. (2.12)

Clearly, we can know the quadratic equation (2.7) has two real roots, one is r which is given by (2.4), and the
other is

1

2pµ̄v

(
θwθ̄

−1
w + pµ̄v + p̄µv +

((
θwθ̄

−1
w + pµ̄v + p̄µv

)2 − 4pp̄µvµ̄v

) 1
2

)
. (2.13)

Note that

(
θwθ̄

−1
w + pµ̄v + p̄µv

)
− 2p̄µv = θwθ̄

−1
w + pµ̄v − p̄µv <

((
θwθ̄

−1
w + pµ̄v + p̄µv

)2 − 4pp̄µvµ̄v

) 1
2

,

we can verify that r < 1, and the other root given by (2.13) is larger than 1. Thus, we take r11 as r. Note that
the minimal non-negative root of quadratic equation (2.12) is pµ̄b/p̄µb that is denoted by α, and the other root

is 1, so we take r33 = α. From (2.8) and (2.10), we can directly obtain r12 = 0 and r22 = β = θ̄vp
(
1− θ̄vp̄

)−1
,

Substituting r11 = α, r12 = 0, r22 = β, and r33 = α in the (2.9) and (2.11), and after some mathematical
simplification, we can get

r13 =
θwr

θ̄wp̄µbr̄
, r23 =

p

p̄µb
.

Then the proof is completed.

Based on Lemma 2.1, we can give the ergodicity condition of the queueing system in the following lemma

Lemma 2.2. The process {Qn, Jn} is ergodic if and only if α < 1.
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Proof. According to Theorem 1.5.1 in Neuts [18], we know that {Qn, Jn} is ergodic if and only if the spectral
radius SP (R) of matrix R is less than 1, and set of equations

(π00, π01, π10, π11, π12)B [R] = (π00, π01, π10, π11, π12), (2.14)

has a positive solution, where

B [R] =

[
A00 A01

B10 RA2 +A1

]
. (2.15)

Note that

B [R] =


θ̄wp̄ θwp̄ θ̄wp 0 θwp

0 p̄ 0 θ̄vp θvp

θ̄wp̄µv θwp̄µv θ̄w(1− p̄µv)− θwr
r̄ 0 θw(1− p̄µv) + θwr

r̄
0 0 0 θ̄vp̄ p+ θvp̄
p̄µb 0 0 0 1− p̄µb

, (2.16)

we can verify B [R] is a stochastic matrix which ensures that set of equations with coefficient matrix B [R] has
positive solution. Since r < 1 and β < 1, we can find that SP (R) = max(r, β, α) < 1 is fulfilled if and only if
α < 1. Then the proof is completed.

3. Stationary distribution of the system size

If the ergodicity condition α < 1 is fulfilled, then its limiting probabilities exist and are positive. Define

πk,j = lim
n→∞

P{Qn = k, Jn = j}, (k, j) ∈ Ω

π0 = (π00, π01) , πk = (πk0, πk1, πk2) , k = 0, 1, 2, . . . .

The stationary distribution of system size is given in the following theorem.

Theorem 3.1. Under the condition that α < 1, the stationary probability distribution is

π00 = Kp
(
θw + θ̄wp̄µv r̄

)
,

πk0 = Kp2θ̄w r̄r
k−1, k ≥ 1,

πk1 = Kp̄θw
(
θw + θ̄wµv r̄

)
βk, k ≥ 0,

πk2 = Kp

[
pθw
p̄µb

k−1∑
j=0

rjαk−1−j +
θw(θw+θ̄wµv r̄)

µb

k−1∑
j=0

βjαk−1−j

]
, k ≥ 1,

(3.1)

where

K =
p̄ µbr̄ᾱ β̄

pp̄µb
(
θw + θ̄wp̄µv r̄

)
r̄ᾱβ̄ + p2β̄

(
θw + p̄θ̄w r̄µbᾱ

)
+ p̄θw r̄

(
θw + θ̄wµv r̄

)
(p+ p̄µbᾱ)

. (3.2)
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Proof. Applying the method of matrix-geometric solution (see Neuts [18]), we have

πk = (πk0, πk1, πk2) = (π10, π11, π12)Rk−1, k ≥ 1, (3.3)

(π00, π01, π10, π11, π12)B [R] = (π00, π01, π10, π11, π12). (3.4)

Expanding the equation (3.4) yields the following equations

π00 = θ̄wp̄π00 + θ̄wp̄µvπ10 + p̄µbπ12, (3.5)

π01 = θwp̄π00 + p̄π01 + θwp̄µvπ10, (3.6)

π10 = θ̄wpπ00 +

[
θ̄w(1− p̄µv)−

θwr

r̄

]
π10, (3.7)

π11 = θ̄vpπ01 + θ̄vp̄π11, (3.8)

π12 = θwpπ00 + θvpπ01 +

[
θw(1− p̄µv) +

θwr

r̄

]
π10 + (p+ θvp̄)π11 + (1− p̄µb)π12. (3.9)

Solving equations (3.5)–(3.9) in form of π00 yields:

π01 =
p̄θw

(
θw + θ̄wµv r̄

)
p
(
θw + θ̄wp̄µv r̄

) π00, (3.10)

π10 =
pθ̄w r̄

θw + θ̄wp̄µv r̄
π00, (3.11)

π11 =
p̄θw

(
θw + θ̄wµv r̄

)
β

p
(
θw + θ̄wp̄µv r̄

) π00, (3.12)

π12 =
pθw + p̄θw

(
θw + θ̄wµv r̄

)
p̄µb

(
θw + θ̄wp̄µv r̄

) π00. (3.13)
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From (2.6), we can directly obtain that

Rk =



rk 0
θwr

θ̄wp̄µbr̄

k−1∑
j=0

rjαk−1−j

βk
p

p̄µb

k−1∑
j=0

βjαk−1−j

αk


, k = 1, 2, . . . . (3.14)

Substituting (π10, π11, π12) and Rk−1 in (3.3), we can have

πk0 = π00
pθ̄w r̄

θw + θ̄wp̄µv r̄
rk−1, k = 1, 2, . . . , (3.15)

πk1 = π00

p̄θw
(
θw + θ̄wµv r̄

)
p
(
θw + θ̄wp̄µv r̄

) βk, k = 1, 2, . . . , (3.16)

πk2 = π00

 pθw

p̄µb
(
θw + θ̄wp̄µv r̄

) k−1∑
j=0

rjαk−1−j +
θw
(
θw + θ̄wµv r̄

)
µb
(
θw + θ̄wp̄µv r̄

) k−1∑
j=0

βjαk−1−j

, k = 1, 2, . . . (3.17)

By utilizing normalization condition π00 + π01 +
∞∑
k=1

(πk0 + πk1 + πk2) = 1, we can determine the π00 after some

manipulation:

π00 =
pp̄µbr̄ᾱβ̄

(
θw + θ̄wp̄µv r̄

)
pp̄µbr̄ᾱβ̄

(
θw + θ̄wp̄µv r̄

)
+ p2β̄

(
θw + p̄θ̄w r̄µbᾱ

)
+ p̄θw r̄

(
θw + θ̄wµv r̄

)
(p+ p̄µbᾱ)

. (3.18)

Hence, we can arrive at the results in Theorem 3.1. Then the proof is completed.

Let P (W ), P (V ) and P (B) be the probabilities that the server is in working vacation, vacation and regular
busy period, respectively, then, according to the results in Theorem 3.1, we can easily obtain that

P (W ) =

∞∑
k=0

πk0 = Kp
(
pθ̄w + θw + p̄θ̄wµv r̄

)
, (3.19)

P (V ) =

∞∑
k=0

πk1 =
Kp̄θw

(
θw + θ̄wµv r̄

)
β̄

, (3.20)

P (B) =

∞∑
k=1

πk2 = Kp

[
pθw
p̄µbr̄ᾱ

+
θw
(
θw + θ̄wµv r̄

)
µbᾱβ̄

]
. (3.21)
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4. Stochastic decomposition structures

In this section, we focus on the analysis of the stochastic decomposition properties of the queueing system
under consideration. At first, we consider the stochastic decomposition structure of system size Q in the steady
state, before that, we give the following useful relationships:

zr̄ (1− αz)
1− rz

=
zr̄

1− rz
− zr̄α

r

rz − 1 + 1

1− rz
= α

r̄

r
z +

(
1− α

r

) zr̄

1− rz
, (4.1)

similarly,

zβ̄ (1− αz)
1− βz

=
zβ̄

1− βz
− zβ̄ α

β

βz − 1 + 1

1− βz
= α

β̄

β
z +

(
1− α

β

)
zβ̄

1− βz
. (4.2)

From (2.7), it is easily obtained that

θwr

θ̄w
= p̄µvr

2 − (p̄µv + pµ̄v)r + pµ̄v = r̄ (pµ̄v − p̄µvr) . (4.3)

Further, from the above relationship, we can have

θw + p̄θ̄wµv r̄ = pθ̄wµ̄v
r̄

r
. (4.4)

Theorem 4.1. If the conditions α < 1 and µb > µv are fulfilled, the stationary system size Q can be decomposed
into the sum of two independent random variables: Q = Q0 +Qd, where Q0 is the stationary system size in the
classic Geom/Geom/1 queue and follows a geometric distribution with parameter ᾱ, and the additional system
size Qd is a mixture of four random variables

Qd = δ0X0 + δ1X1 + δ2X2 + δ3X3, (4.5)

where X0 ≡ 0, X1 ≡ 1, X2 and X3 follow the geometric distribution with parameter r̄ and β̄, respectively, and

δ0 = K∗
[
pp̄ µbr̄β̄

(
θw + θ̄wp̄µv r̄

)
+ p̄2 µbθw r̄β̄

(
θw + θ̄wµv r̄

)]
,

δ1 = K∗
p3 µ̄bθ̄w r̄

2β̄µv
r

,

δ2 =
K∗p2θ̄wβ̄r̄ (p+ rp̄) (µb − µv)

r
,

δ3 = K∗p̄θw r̄
(
θw + θ̄wµv r̄

)
(p̄µbβ + pµb) ,

K∗ =
[
pp̄µb

(
θw + θ̄wp̄µv r̄

)
r̄ᾱβ̄ + p2β̄

(
θw + p̄θ̄w r̄µbᾱ

)
+ p̄θw r̄

(
θw + θ̄wµv r̄

)
(p+ p̄µbᾱ)

]−1
.
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Proof. From equation (3.1), we can have the probability generating function (PGF) of the system size Q :

Q (z) =

∞∑
k=0

πk0z
k+

∞∑
k=0

πk1z
k+

∞∑
k=1

πk2z
k

= K∗pp̄ µbr̄ᾱβ̄
(
θw + θ̄wp̄µv r̄

)
+K∗p2p̄ µbθ̄w r̄ᾱβ̄

r̄z

1− rz
+K∗p̄2 µbθw r̄ᾱβ̄

(
θw + θ̄wµv r̄

)
+K∗p̄2 µbθw r̄ᾱβ

(
θw + θ̄wµv r̄

) β̄z

1− βz
+K∗p2θwβ̄

r̄z

1− rz
ᾱz

1− αz

+K∗pp̄θw r̄
(
θw + θ̄wµvr

) β̄z

1− βz
ᾱz

1− αz
, (4.6)

where

K∗ =
[
pp̄µb

(
θw + θ̄wp̄µv r̄

)
r̄ᾱβ̄ + p2β̄

(
θw + p̄θ̄w r̄µbᾱ

)
+ p̄θw r̄

(
θw + θ̄wµv r̄

)
(p+ p̄µbᾱ)

]−1
. (4.7)

Further, we can rewrite Q (z) as follows:

Q (z) =
ᾱz

1− αz
Qd (z) , (4.8)

where

Qd (z) = K∗pp̄ µbr̄β̄
(
θw + θ̄wp̄µv r̄

)
(1− αz) +K∗p2p̄ µbθ̄w r̄β̄

r̄z (1− αz)
1− rz

+K∗p̄2 µbθw r̄β̄
(
θw + θ̄wµv r̄

)
(1− αz)

+K∗p̄2 µbθw r̄β
(
θw + θ̄wµv r̄

) β̄z (1− αz)
1− βz

+K∗p2θwβ̄
r̄z

1− rz

+K∗pp̄θw r̄
(
θw + θ̄wµvr

) β̄z

1− βz
. (4.9)

By utilizing (4.1), (4.2) and (4.4), we can rewrite Qd (z) as follows:

Qd (z) = K∗pp̄ µbr̄β̄
(
θw + θ̄wp̄µv r̄

)
(1− αz) +K∗p2p̄ µbθ̄w r̄β̄

[
α
r̄

r
z +

(
1− α

r

) zr̄

1− rz

]
+K∗p̄2 µbθw r̄β̄

(
θw + θ̄wµv r̄

)
(1− αz) +K∗p̄2 µbθw r̄β

(
θw + θ̄wµv r̄

) [
α
β̄

β
z +

(
1− α

β

)
zβ̄

1− βz

]
+K∗p2θwβ̄

zr̄

1− rz
+K∗pp̄θw r̄

(
θw + θ̄wµvr

) zβ̄

1− βz
= K∗

[
pp̄ µbr̄β̄

(
θw + θ̄wp̄µv r̄

)
+ p̄2 µbθw r̄β̄

(
θw + θ̄wµv r̄

)]
+K∗

[
−αpp̄ µbr̄β̄

(
θw + θ̄wp̄µv r̄

)
− αp̄2 µbθw r̄β̄

(
θw + θ̄wµv r̄

)
+p2p̄ µbθ̄w r̄β̄α

r̄

r
+ p̄2 µbθw r̄β

(
θw + θ̄wµv r̄

)
α
β̄

β

]
z

+K∗
[
p2p̄ µbθ̄w r̄β̄

(
1− α

r

)
+ p2θwβ̄

] zr̄

1− rz

+K∗
[
p̄2 µbθw r̄β

(
θw + θ̄wµv r̄

)(
1− α

β

)
+ θw r̄

(
θw + θ̄wµvr

)] zβ̄

1− βz
. (4.10)
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We now make some simplification for the expression of Qd (z), first of all, we denote the constant coefficient of
right-hand-side of (4.10) by δ0, that is,

δ0 = K∗
[
pp̄ µbr̄β̄

(
θw + θ̄wp̄µv r̄

)
+ p̄2 µbθw r̄β̄

(
θw + θ̄wµv r̄

)]
. (4.11)

Secondly, using the relationship p̄µbα = pµ̄b and (4.4), the coefficient of z in the right-hand side of (4.10),
denoted by δ1, can be written as

δ1 = K∗
[
−αpp̄ µbr̄β̄

(
θw + θ̄wp̄µv r̄

)
− αp̄2 µbθw r̄β̄

(
θw + θ̄wµv r̄

)
+ p2p̄ µbθ̄w r̄β̄α

r̄

r

+p̄2 µbθw r̄β
(
θw + θ̄wµv r̄

)
α
β̄

β

]
= K∗

[
−p3µ̄br̄

2β̄θ̄wµ̄v
r

− pp̄µ̄bθw r̄β̄
(
θw + θ̄wµv r̄

)
+ p2p̄ µbθ̄w r̄β̄α

r̄

r
+ pp̄ µ̄bθw r̄β̄

(
θw + θ̄wµv r̄

)]
= K∗

p3 µ̄bθ̄w r̄
2β̄µv

r
. (4.12)

Meanwhile, using the relationship p̄µbα = pµ̄b and (4.3), the coefficient of zr̄
1−rz in the right-hand side of (2.14),

denoted by δ2, can be written as

δ2 = K∗
[
p2p̄µbθ̄wβ̄r̄

(
1− α

r

)
+ p2θwβ̄

]
= K∗p2θ̄w

r̄

r
β̄

(
rp̄µb − pµ̄b +

θwr

θ̄w r̄

)
=
K∗p2θ̄wβ̄r̄ (p+ rp̄) (µb − µv)

r
. (4.13)

Finally, the coefficient of zβ̄
1−βz in the right-hand side of (2.14) is denoted by δ3, that is

δ3 = K∗
[
p̄2 µbθw r̄β

(
θw + θ̄wµv r̄

)(
1− α

β

)
+ pp̄θw r̄

(
θw + θ̄wµvr

)]
= K∗p̄θw r̄

(
θw + θ̄wµv r̄

)
(p̄µbβ + pµb) .

Then Qd (z) becomes to

Qd (z) = δ0 + δ1z + δ2
zr̄

1− rz
+ δ3

zβ̄

1− βz
. (4.14)

We can verify that δ0 + δ1z+ δ2 + δ3 = 1, which indicate that Qd (z) is a PGF. Based on (4.14), we can directly
arrive at the results in Theorem 4.1.

Based on above stochastic decomposition properties, we can easily get the means

E(Qd) = δ1 +
δ2
r̄

+
δ3
β̄
, E(Q) =

α

1− α
+ δ1 +

δ2
r̄

+
δ3
β̄
. (4.15)

Next, we are interesting in investigating the stochastic decomposition of the sojourn time W of an arbitrary
customer in the steady state. To this end, we denote W (s) be the PGF of W and utilize the classical relationship
(see Kobayashi and Konheim [8])

Q(z) = W (p̄+ ps). (4.16)
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Theorem 4.2. If the conditions α < 1 and µb > µv are fulfilled, the sojourn time W of a arbitrary customer
can be decomposed into sum of two independent random variables, that is, W = W0 + Wd, in which W0 is
the sojourn time in the corresponding classic Geom/Geom/1 queue, and Wd is the additional delay which is a
mixture of three random variables:

Wd = δ1
p Y0 + δ2(1−p̄σ)

p Y1 + δ3(1−p̄τ)
p Y2,

where Y0 ≡ 0, Y1 and Y2 follow the geometric distribution with parameter σ̄ and τ̄ , respectively, andσ = r
p+rp̄ ,

τ = θ̄v.

Proof. By (4.8) and (4.14), we can have

Q(z) =
ᾱ

1− αz

(
δ0 + δ1z + δ2

zr̄

1− rz
+ δ3

zβ̄

1− βz

)
. (4.17)

Taking s = p̄+ pz leads to

z =
(s− p̄)
p

. (4.18)

Thus we have

r̄

1− rz

∣∣∣∣
z=p−1(s−p̄)

=
σ̄

1− σs
, σ =

r

p+ rp̄
, (4.19)

ᾱ

1− αz

∣∣∣∣
z=p−1(s−p̄)

=
λ̄

1− λs
, λ =

µ̄b
p̄
, (4.20)

β̄

1− βz

∣∣∣∣
z=p−1(s−p̄)

=
τ̄

1− τs
, τ = θ̄v. (4.21)

Substituting (4.19)–(4.21) in (4.17) yields

W (s) =
λ̄

1− λs

(
δ0 + δ1

s− p̄
p

+ δ2
s− p̄
p

σ̄

1− σs
+ δ3

s− p̄
p

τ̄

1− τs

)
=

λ̄

1− λs

(
δ0 + δ1

s− p̄
p

+ δ2
s− p̄σs+ p̄σs− p̄

p

σ̄

1− σs
+ δ3

s− p̄τs+ p̄τs− p̄
p

τ̄

1− τs

)
=

λ̄

1− λs

(
δ0 − δ1

p̄

p
− δ2

p̄σ̄

p
− δ3

p̄τ̄

p
+ δ1

s

p
+ δ2

1− p̄σ
p

sσ̄

1− σs
+ δ3

1− p̄τ
p

sτ̄

1− τs

)
. (4.22)

We can verify that

δ0 − δ1
p̄

p
− δ2

p̄σ̄

p
− δ3

p̄τ̄

p
= 0, (4.23)



108 Q. YE AND L. LIU

Then, (4.22) can be rewritten as

W (s) = W0 (s)Wd (s) , (4.24)

where

W0 (s) =
λ̄

1− λs
, (4.25)

that is PGF of sojourn time of classical Geom/Geom/1 queue and

Wd (s) = δ1
s

p
+ δ2

(1− p̄σ)

p

sσ̄

1− σs
+ δ3

(1− p̄τ)

p

sτ̄

1− τs
. (4.26)

From the structure of the Wd (s), we can directly arrive at the results in Theorem 4.2.

Based on Theorem 4.2, it is readily obtained that

E(Wd) = δ2
(1− p̄σ)

p

σ

σ̄
+ δ3

(1− p̄τ)

p

τ

τ̄
, (4.27)

E(W ) =
1

µbᾱ
+ δ2

(1− p̄σ)

p

σ

σ̄
+ δ3

(1− p̄τ)

p

τ

τ̄
. (4.28)

5. The analysis of regular busy period and busy cycle

In this section, we mainly focus on the analysis of regular busy period and busy cycle. To avoid confusion,
the regular busy period B considered here is the continuous duration in which the server works at the service
rate of µb and a busy cycle C is defined as the period between two consecutive instants at which a regular busy
period commences. In our queue model, a regular busy period can start at working vacation completion epoch
or a vacation completion epoch. Thus, a busy cycle C can comprise a regular busy period B, the subsequent
working vacation Vw and the vacation period Vv (if exists).

Since there is just a working vacation Vw in a busy cycle C, and the expected length of working vacation
period E(Vw) = θ−1

w . Denote the expected length of a busy cycle by E (C ), and use the limiting theorem of the
alternating renewal process and (3.19), we obtain

P (W ) =
E (Vw)

E (C)
= Kp

(
pθ̄w + θw + p̄θ̄wµv r̄

)
, (5.1)

which leads to

E(C) =
1

θw
+

p̄
(
θw + θ̄wµv r̄

)
pβ̄
(
θw + p̄θ̄wµv r̄ + pθ̄w

) +
p̄
(
θw + θ̄wµv r̄

)
r̄ + pβ̄

p̄µbᾱβ̄r̄
(
θw + p̄θ̄wµv r̄ + pθ̄w

) . (5.2)

Similarly, by (3.20), we know

P (V ) =
E(Vv)

E(C)
=
Kp̄θw

(
θw + θ̄wµv r̄

)
β̄

, (5.3)
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and the expected length of vacation period in a busy cycle C is given by

E(Vv) =
p̄
(
θw + θ̄wµv r̄

)
pβ̄
(
θw + p̄θ̄wµv r̄ + pθ̄w

) . (5.4)

By (3.21), we have

P (B) =
E(B)

E(C)
= Kp

[
pθw
p̄µbr̄ᾱ

+
θw
(
θw + θ̄wµv r̄

)
µbᾱβ̄

]
. (5.5)

Hence, we get the expected length of regular busy period E (B) in a busy cycle

E (B) =
p̄
(
θw + p̄θ̄wµv r̄

)
r̄ + pβ̄

p̄µbᾱβ̄r̄
(
θw + p̄θ̄wµv r̄ + pθ̄w

) . (5.6)

Clearly, it is easily seen that

E (C) = E (B) + E (Vw) + E (Vv) . (5.7)

6. Relationship to the continuous-time counterpart

As we all know, one of the advantages of analyzing the discrete-time queues is that we can derive the
continuous-time counterpart in a limiting case. Therefore, in this section, we are denoted to find the rela-
tionship between our discrete-time system and its continuous counterpart M/M/1/SWV+MV queue that was
studied by Ye and Liu [27]. To this end, we first assume that the M/M/1/SWV+MV queue has the following
parameter assumption: Customers arrive at the system according to a Poisson process with rate λ . The service
times in a regular service period and working vacation are exponential distribution with parameter µ′b and µ′v,
respectively. The durations of the working vacations and vacations are exponential distributions with parame-
ters θ′w, θ′v, respectively. Suppose that time axis is slotted into sufficient small intervals of equal length ∆, then
the M/M/1/SWV+MV queue can be approximated as follows.

p = λ∆, µb = µ′b∆, µv = µ′v∆, θw = θ′w∆, θv = θ′v∆. (6.1)

By taking advantages of the Lvesque integral, we can know when ∆→ 0,

r → 1

2µ′v

(
λ+ θ′w + µ′v −

√
(λ+ θ′w + µ′v)

2 − 4λµ′v

)
, (6.2)

α→ λ

µ′b
, β → λ

λ+ θ′v
. (6.3)

Substituting above expression in (3.1), we can know that when ∆→ 0,
πk0 → Krk, k ≥ 0,

πk1 → K θw
λ β

k, k ≥ 0,

πk2 → K

(
θwr

µb(1−r)

k−1∑
j=0

rjαk−1−j + θw
µb

k−1∑
j=0

βjαk−1−j

)
, k ≥ 1,

(6.4)
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where

K = (1− r)(1− β)(1− α)

[
(1− β)(1− α) +

θ′w
λ

(1− r)(1− α) +
θ′w
µ′b

(1− r) +
θ′wr(1− β)

µ′b(1− r)

]−1

. (6.5)

We can find that the approximated probabilities obtained by (6.4) are consistent with that in Ye and Liu [27].

7. Special cases

Case 1: If θv = 1, it indicates that there is no vacation period, then the vacation period reduces to the idle
period. So our model becomes the standard Geom/Geom/1 queue with single working vacation. To verify that,
we find that when θv = 1, then β = 0, and steady state probabilities becomes

π00 = Kp
(
θw + θ̄wp̄µv r̄

)
,

π01 = Kp̄θw
(
θw + θ̄wµv r̄

)
,

πk0 = Kp2θ̄w r̄r
k−1, k ≥ 1,

πk2 = Kp

[
pθw
p̄µb

k−1∑
j=0

rjαk−1−j +
θw(θw+θ̄wµv r̄)

µb
αk−1

]
, k ≥ 1,

(7.1)

where

K =
p̄ µbr̄ᾱ

pp̄µb
(
θw + θ̄wp̄µv r̄

)
r̄ᾱ+ p2

(
θw + p̄θ̄w r̄µbᾱ

)
+ p̄θw r̄

(
θw + θ̄wµv r̄

)
(p+ p̄µbᾱ)

. (7.2)

which is consistent with the result in Li and Tian [10].

Case 2: If θv = 1 and µv = 0, then the vacation period reduces to the idle period, further, since the service
rate during the working vacation degenerate to zero, the working vacation becomes the classical vacation, thus
our model becomes Geom/Geom/1 queue with single vacation, and the steady state probabilities is

π00 = Kp
(
θw + θ̄wp̄µv r̄

)
,

π01 = Kp̄θw
(
θw + θ̄wµv r̄

)
,

πk0 = Kp2θ̄w r̄r
k−1, k ≥ 1,

πk2 = Kp

[
pθw
p̄µb

k−1∑
j=0

rjαk−1−j +
θw(θw+θ̄wµv r̄)

µb
αk−1

]
, k ≥ 1,

(7.3)

here,

r =
θ̄wp

1− θ̄wp̄
, (7.4)

and

K =
p̄ µbr̄ᾱ

pp̄µb
(
θw + θ̄wp̄µv r̄

)
r̄ᾱ+ p2

(
θw + p̄θ̄w r̄µbᾱ

)
+ p̄θw r̄

(
θw + θ̄wµv r̄

)
(p+ p̄µbᾱ)

.

Case 3: If µv = 0 and θw = θv = θ (0 < θ < 1), then there is no service during the working vacation
period and the working vacation and vacation follow the identical distribution, therefore, our model degen-
erates to Geom/Geom/1 queue with multiple vacation. Since µv = 0 and θw = θv = θ, we can find that
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r = β = θ̄p
(
1− θ̄p̄

)−1
, and the stationary probabilities is

π00 = Kpθ,

πk0 = Kp2θ̄r̄rk−1, k ≥ 1,

πk1 = Kp̄θ2rk, k ≥ 0,

πk2 = Kp
(
pθ
p̄µb

+ θ2

µb

) k−1∑
j=0

rjαk−1−j , k ≥ 1,

(7.5)

where

K =
p̄ µbᾱ r̄

2

pp̄µbθᾱr̄2 + p2r̄
(
θ + p̄θ̄r̄µbᾱ

)
+ p̄θr̄

(
θ + θ̄µv r̄

)
(p+ p̄µbᾱ)

. (7.6)

Note here that states (k, 0) and (k, 1), for k ≥ 0, both represent the system is in vacation period. In fact, (k, 0)
means that the system stays in the first vacation after the regular busy period. So the probability that there
are k customers in the system and the server stays in vacation period is πk0 + πk1. If we let πkv represent the
probability that there are k customers in the system given that the server is in vacation period and πkb represent
the probability that there are k customers in the system given that the server is in normal service period. Then
we can obtain the stationary probabilities as follows.

π0v = K
(
pθ + p̄θ2

)
,

πkv = K
(
p2θ̄r̄ + p̄θ2r

)
rk−1, k ≥ 1,

πkb = Kp
(
pθ
p̄µb

+ θ2

µb

) k−1∑
j=0

rjαk−1−j , k ≥ 1,

(7.7)

where K is given by (7.6).

Case 4: If µv = 0 and θw = θv = 1, then there is no working vacation or vacation in the system. Then our queue
model becomes the classical Geom/Geom/1 queue without vacation. To verify that, we can easily observe that
r = β = 0 when µv = 0 and θw = θv = 1, if we let πk (k = 0, 1, 2, . . .) be probability that there are k customers
in the system, then stationary probabilities reduces to{

π0 = p̄ (1− α) ,

πk = p(1−α)
µb

αk−1, k ≥ 1.
(7.8)

Clearly, (7.8) is the stationary distribution of system in the classical Geom/Geom/1 queue.
From Cases 1–4, we can know that the queueing system we study is an extension of classical vacation queueing

system and working vacation queueing system.

8. Numerical examples

In this section, based on the results we obtained previously, we perform several concrete numerical examples
to illustrate the sensitivity of performance measures to changes in the parameters of systems.

Firstly, under the condition that the parameters p = 0.6, θw = 0.3, θv = 0.4 are fixed, in Figures 2 and 3,
we compare the behaviors of mean system size E (Q) and mean waiting time E (W ) with the change of µv
for different values of µb. Obviously, we can observe that µv and µb have the similar effect on the E (Q) and
E (W ), that is, both E (Q) and E (W ) decrease along with the increase of µv or µb. That is because that the
increase of µv or µb indicates the increase of average service rate, then the decrease of E (Q) and E (W ) can
be expected. Secondly, in Figures 4–6, given p = 0.6, µb = 1.6, µv = 0.3, we compare the effects of θw and θv
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Figure 3. E (W ) versus µv. (Color online.)

on the probability that the server is in working vacation P(W ), the probability that the server is in vacation
P(V ) and the probability that the server is in regular busy period P(C ), respectively. We first observe that
an increase in θw results in the decrease of P(W ), which agrees with the intuitive expectations, actually, note
that the expected length of working vacation period E(Vw) = θ−1

w , then as θw increases, the length of working
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vacation decrease, then the decrease of P(W ) can be expected. Contrary to Figure 4, from Figure 5 and 6, we
observe that both P(V ) and P(W ) increase as θw increases. Further, we also find that the larger θv is, the
larger P(W ) becomes, however, the larger θv leads to the smaller P(V ) and P(B), respectively. Thirdly, in
Figures 7–9, given that p = 0.4, µb = 0.9, µv = 0.5, we plot the trends of expected length of vacation period
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E(Vv), the expected length of regular busy period E (B) and the expected length of busy cycle E (C ) with the
change of θw and θv, respectively. Evidently, from Figure 7 and 8, it is observed that E(Vv) and E (B) have the
similar change trend with the change of θw and θv, that is, both decreases as θw increases and increases as θv
increases. In contrary, from Figure 9, we find that E (C ) increases as θw increases and decreases as θv increases.
Further, we find that, E(Vv) and E (B) are more sensitive to θw than θv, however, E (C ) is more sensitive to θv
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than θw. At last, Given that p = 0.4, µv = 0.5, θw = 0.3 and θv = 0.6, Figure 10 presents a comparison of mean
system size in three different vacation queue, that is, the Geom/Geom/1 queue with multiple vacations, the
Geom/Geom/1 queue with single working vacation and the Geom/Geom/1 queue with single working vacation
and multiple vacations that we study in this paper. An intuitive result we can obtain is that the system size



116 Q. YE AND L. LIU

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

b

0.5

1

1.5

2

2.5

3

3.5

E
(Q

)

Geom/Geom/1/MV

Geom/Geom/1/SWV

Geom/Geom/1/SWV+MV

Figure 10. E (Q)versus µb. (Color online.)

of Geom/Geom/1 queue with single working vacation and multiple vacations is between the system size of
Geom/Geom/1 queue with multiple vacations and the Geom/Geom/1 queue with single working vacation.

9. Conclusion

In this paper, we generalize the work in Ye and Liu [27] to the discrete time Geom/Geom/1 queue. We have
done works in several aspects:

(1) Using matrix geometric solution method, we derive the explicit close-form expression for the stationary
system size.

(2) The stochastic decomposition structures of the stationary system size and the sojourn time of an arbitrary
customer.

(3) The regular busy period and busy cycle are analyzed by limiting theorem of the alternating renewal
process.

(4) The relationship between the Geom/Geom/1/SWV+MV queue and the continuous time counterpart
M/M/1/SWV+MV queue is analyzed.

(5) Some special cases are presented.
(6) The effects of various parameters on the performance measures are illustrated numerically and graphically.
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