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ANALYSIS OF A QUEUEING SYSTEM IN RANDOM

ENVIRONMENT WITH AN UNRELIABLE SERVER AND

GEOMETRIC ABANDONMENTS

Tao Jiang1,*, Baogui Xin1, Baoxian Chang2 and Liwei Liu3

Abstract. This paper studies a single server queueing model in a multi-phase random environment
with server breakdowns and geometric abandonments, where server breakdowns only occur while the
server is in operation. At a server breakdown instant (i.e., an abandonment opportunity epoch), all
present customers adopt the so-called geometric abandonments, that is, the customers decide sequen-
tially whether they will leave the system or not. In the meantime, the server abandons the service
and a repair process starts immediately. After the server is repaired, the server resumes its service,
and the system enters into the operative phase i with probability qi, i = 1, 2, . . . , d. Using probability
generating functions and matrix geometric approach, we obtain the steady state distribution and vari-
ous performance measures. In addition, some numerical examples are presented to show the impact of
parameters on the performance measures.
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1. Introduction

Queues with service interruptions or queues with unreliable servers have been widely and successfully used
as mathematical models of several computer systems and manufacturing systems. In these queueing systems,
the servers may well be subject to unpredictable breakdowns while serving a customer. One example is that
in computer systems, the machine may be subject to scheduled backups and unpredictable failures; another
example is that in manufacturing systems, the machine may breakdown because of machine or job related
problems. Since the introduction of breakdowns and their characteristics, there has been considerable attention
to this topic. Among some classical papers on repairable servers, we refer the readers to see the papers by Cao
and Cheng [2], Li et al. [17], Gray et al. [10] Kalidass and Kasturi [13], and Ke [14, 15]. Several authors also
have considered queueing models with two phases of service and server breakdowns. For instance, Wang [25]
considered an M/G/1 queue with a second optional service and server breakdowns. Choudhury and Deka [3]
investigated an M/G/1 retrial queueing system with two phases of service subject to the server breakdown and
repair, and carried out an extensive analysis of this model. Furthermore, Choudhury and Deka [4] studied a
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single server queueing system with two phases of service subject to server breakdown and Bernoulli vacation. In
[4], the authors derived the joint distribution of the state of the server and queue size, Laplace-Stieltjes transform
(LST) of the busy period distribution and the waiting time distribution. Recently, Cordeiro and Kharoufeh [5]
studied an unreliable M/M/1 retrial queue in a random environment and presented the orbit size distribution by
matrix analytic approach. Liu et al. [20] studied an M/G/1 retrial G-queue with preemptive resume and feedback
under N-policy subject to the server breakdowns and repairs, in which the server breakdowns caused by negative
customers. By using the supplementary variables method, the authors derived the steady-state solutions for both
queueing measures and reliability quantities. Economou and Kanta [9] considered the Markovian single-server
queue with breakdowns and repairs. In [9], the authors studied the queueing system from an economic viewpoint
with the assumption that the customers can observe the queue length and will decide whether to join or balk
the system according to the information about the server’s state based on a linear reward-cost structure. Later,
Li et al. [18] investigated the corresponding unobservable cases (the customers have no information on the queue
length when they make their decision to join or balk) of the same model studied in [9]. Moreover, customers
abandonment due to a slowdown in the service rate also has been studied, see e.g., Perel and Yechiali [23]. In
[23], the authors examined the case where customers become impatient and abandon the queue while the system
resides in the slow phase.

There are also plenty of references on queueing systems with disasters (catastrophes). For these queueing
models, while the server is breakdown, all present customers in the system may be forced to leave the system
simultaneously. Since the introduction of catastrophes, there has been considerable attention to this theme. The
interested readers are referred to Yechiali [26], Kim and Lee [16], Jiang et al. [12], Jiang and Liu [11], etc.

The study of the number of customers in system reduced according to a geometric distribution is a recent
endeavor. For more detailed and excellent studies on this policy, the readers may refer to Artalejo et al. [1],
Economou and Gomez-Corral [8], Dimou et al. [6, 7]. For instance, in [8], the authors dealt with a population of
individuals that grows stochastically according to a batch Markovian arrival process and is subject to renewal
generated geometric catastrophes. In [7], the authors considered a single server vacation queueing model, where
the customers become impatient during the absence of the server, and abandon the system according to a
geometric distribution. Then, in [6], the authors studied the single server queue with catastrophes and geometric
reneging, where the customers become impatient and leave the system according to a geometric distribution while
the server is in repair. In fact, the mechanism for the geometric abandonment is well-motivated by applications
in various fields, especially in manufacturing systems and perishable inventory systems. For example, in a
production system, we can think of a secondary facility (auxiliary facility) that inspects the system, where
the inspector has a capacity of exponential time units in the auxiliary facility. When the system suffers from
some external factors (external attacks or shocks), the inspector starts to detect the system by considering
the present customers sequentially, looking at their service times and removes the customers from the system
to the auxiliary facility as many as his capacity. Then, the customers begin sequentially to be transferred for
processing to the auxiliary facility, and the reduction of the number of customers ceases at the first individual
who determines to stay in the system, or when all present customers are transferred to the auxiliary facility.

Inspired by applications of this queueing model, in this paper, we aim to complement the studies of [22] for
the abandoning issue in the unreliable server with multi-phase random environment. The difference between [22]
and the present paper is that we assume the customers leave the system according to a geometric distribution
while the server is breakdown. Further, we also assume that server breakdowns only occur while the server is
in operation, i.e., server breakdowns do not occur while the server is idle or in repair. Not only do we obtain
the stationary queue length distribution, but also we derive various performance measures including the LST
of the sojourn time of an arbitrary customer and the length time of a cycle.

The paper is organized as follows: In Section 2 we give the model description. In Section 3 we obtain the
sufficient and necessary stability condition and derive the steady state distribution by probability generating
functions (PGFs). In Section 4 we use the matrix geometric approach to derive the steady state distribution.
Sections 5 and 6 are devoted to giving various performance measures analysis including the sojourn time of an
arbitrary customer and the length of a cycle. Numerical results are presented in Section 7. Section 8 concludes
the paper.
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2. Model description

In this paper, we consider a single server queueing model where the service may be interrupted while the
server is in operation, i.e., the server experiences failure when it is in operation, but can not fail if it is idle or
under repair. Under environment i, i = 1, 2, . . . , d, the Poisson arrival rate is λi. Customers are served under the
first-come-first-served (FCFS) discipline, and the service times follow an exponential distribution with parameter
µi. Interruptions occur in accordance with a Poisson process at rate ηi. When the system resides in operative
phase i, i = 1, 2, . . . , d, it occasionally suffers a breakdown and moves to phase 0 (repair phase), immediately.
Meanwhile, customers in the system adopt the so-called geometric abandonments, that is, the customers decide
sequentially whether they will leave the system or not. Each customer abandons the system with probability
p or remains in the system with probability p̄ = 1 − p. Then, all present customers start sequentially to leave
the system and the reduction of the number of customers ceases at the first individual who determines to stay
in the system, or when all present customers abandon it. For more details, we may refer interested readers to
[6, 7]. This abandonment policy can be interpreted as a strategy that at a server breakdown epoch the number
of customers in the system is decreased according to a geometric distribution. We further assume that the repair
times are exponentially distributed with rate ξ. In phase 0, the Poisson arrival rate is λ0, and the server stops
working completely. After the system is repaired, the server resumes its service, and the system enters into the

operative phase i with probability qi, i = 1, 2, . . . , d, where
d∑
i=1

qi = 1.

3. Stability condition and stationary queue length distribution

In this section, we give a necessary and sufficient condition for the stability of the system and derive the
stationary queue length distribution by PGFs. At time t, the system can be described by X(t) = {L(t), J(t),
t ≥ 0}, where L(t) denotes the number of customers in the system at time t, and J(t) denotes the phase
that the system operates at time t. Then, X(t) = {L(t), J(t), t ≥ 0} is a continuous-time Markov chain with
state space Ω = {(n, i), n ≥ 0, i = 0, 1, 2 · · · , d}. Next, we consider the continuous-time Markov chain, whose
state-transition-rate matrix is given by

Q =



B0 A0

B1 A1 A0

B2 A2 A1 A0

B3 A3 A2 A1
. . .

...
...

...
. . .

. . .

 ,

where all partitioned matrices are square ones with (d+ 1)× (d+ 1) orders and

B0 =


−(λ0 + ξ) ξq1 · · · ξqd

0 −λ1 · · · 0
...

...
. . .

...
0 0 · · · −λd

 , B1 =


0 0 · · · 0
η1p µ1 · · · 0

...
...

. . .
...

ηdp 0 · · · µd

 ,

A0 = diag(λ0, λ1, . . . , λd),

A1 =


−(λ0 + ξ) ξq1 · · · ξqd

η1p̄ −(λ1 + µ1 + η1) · · · 0
...

...
. . .

...
ηdp̄ 0 · · · −(λd + µd + ηd)

 ,
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A2 =


0 0 · · · 0

η1pp̄ µ1 · · · 0
...

...
. . .

...
ηdpp̄ 0 · · · µd

 , Ak =


0 0 · · · 0

η1p
k−1p̄ 0 · · · 0
...

...
. . .

...
ηdp

k−1p̄ 0 · · · 0

 , k ≥ 3,

Bk =


0 0 · · · 0

η1p
k 0 · · · 0

...
...

. . .
...

ηdp
k 0 · · · 0

 , k ≥ 2.

At first, we investigate the sufficient and necessary stability condition of our model. We will finish its proof
based on Theorem 1.7.1 in [21].

Theorem 3.1. The system under consideration is stable if and only if

λ0 +

d∑
k=1

ξqkλk
ηk

<

d∑
k=1

ξqk
ηk

µkp̄+ ηkp

p̄
.

Proof. Based on the mean drift result in [21], the system would be stable and the stationary distribution exists
if and only if

xA0e < x

∞∑
k=2

(k − 1)Ake,

where e is a column vector with (d+ 1) dimensions and all its elements equal to one,

∞∑
k=2

(k − 1)Ak =


0 0 · · · 0

pη1/p̄ µ1 · · · 0
...

...
. . .

...
pηd/p̄ 0 0 µd

 ,

x = (x0, x1, ..., xd) is the invariant probability vector of

A =

∞∑
k=0

Ak =


−ξ ξq1 · · · ξqd
η1 −η1 · · · 0
...

...
. . .

...
ηd 0 · · · −ηd

 ,

which satisfies xA = 0,xe = 1. Then an immediate result is that

x0 =
1

1 +
d∑
i=1

ξqi
ηi

, xk =
ξqk
ηk

1

1 +
d∑
i=1

ξqi
ηi

, k = 1, 2, . . . , d,
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and the stability condition xA0e <
∞∑
k=2

(k − 1)xAke translates into

d∑
k=0

xkλk <

d∑
k=1

xk

(
µk + ηk

p

p̄

)
.

Simplifying the above inequality, we have

λ0 +

d∑
k=1

ξqkλk
ηk

<

d∑
k=1

ξqk
ηk

µkp̄+ ηkp

p̄
,

which is the sufficient and necessary condition for the system to be stable.
The proof is finished.

Remark 3.2. According to [12, 22], the probability that the system resides in phase k can be obtained by

π·,k =

qk
ηk

1
ξ +

d∑
i=1

qi
ηi

=
qk
ηkα

, 1 ≤ k ≤ d, π·,0 =

1
ξ

1
ξ +

d∑
i=1

qi
ηi

=
1

ξα
,

where

α =
1

ξ
+

d∑
i=1

qi
ηi
.

For the stability condition λ0 +
d∑
k=1

ξqkλk

ηk
<

d∑
k=1

ξqk
ηk

µkp̄+ηkp
p̄ , multiplying the inequality by 1

ξα , then we have

λ0π·,0 +

d∑
k=1

λkπ·,k <

d∑
k=1

(µk +
ηkp

p̄
)π·,k.

So the intuitive interpretation of the theorem is straightforward: λ̄ = λ0π·,0 +
d∑
k=1

λkπ·,k is the average arrival

rate, µ̄ =
d∑
k=1

(µk + ηkp
p̄ )π·,k is the exit rate from the system, either by service completion or abandonment. For

stationary condition, the exit rate from the system, either by service completion or abandonment must exceed
the average arrival rate.

Next, we focus on the computation of the stationary distribution for X(t) = {L(t), J(t), t ≥ 0}. Assume that

πn,i = lim
t→∞

P{L(t) = n, J(t) = i}, n ≥ 0, i = 0, 1, 2, . . . , d.

To this end we consider the following partial PGFs

Π0(z) =

∞∑
n=0

πn,0z
n, Πi(z) =

∞∑
n=1

πn,iz
n, i = 1, 2, . . . , d,
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then, the set of balance equations can be obtained as follows:

(λ0 + ξ)π0,0 =

d∑
i=1

ηi

∞∑
k=1

πk,ip
k, (3.1)

(λ0 + ξ)πk,0 = λ0πk−1,0 +

d∑
i=1

ηi

∞∑
n=k

πn,ip
n−kp̄, k ≥ 1, (3.2)

λiπ0,i = µiπ1,i + ξqiπ0,0, i = 1, 2, . . . , d, (3.3)

(λi + µi + ηi)πk,i = λiπk−1,i + µiπk+1,i + ξqiπk,0, k ≥ 1, i = 1, 2, . . . , d. (3.4)

Multiplying both sides of equation (3.2) by zk and summing for all k ≥ 1, we obtain

(λ0 + ξ)(Π0(z)− π0,0) = λ0zΠ0(z) +

d∑
i=1

ηip̄

∞∑
n=1

pnπn,i

n∑
k=1

(
z

p

)k
. (3.5)

We now need to distinguish two cases. If z 6= p, then we have

(λ0 + ξ − λ0z)Π0(z) = (λ0 + ξ)π0,0 +

d∑
i=1

ηip̄
z

p− z
(Πi(p)−Πi(z)). (3.6)

From (3.1), we have

(λ0 + ξ)π0,0 =

d∑
i=1

ηiΠi(p).

Substituting the above equation into (3.6), and after some manipulations, we obtain the following relation
between Π0(z) and Πi(z):

(λ0 + ξ − λ0z)(z − p)Π0(z) = p̄z

d∑
i=1

ηiΠi(z) + (λ0 + ξ)p(z − 1)π0,0. (3.7)

If z = p, equation (3.5) has the form

(λ0 + ξ − λ0p)Π0(p) = (λ0 + ξ)π0,0 + p̄p

d∑
i=1

ηiΠ
′

i (p). (3.8)

It is easy to see that (3.8) can be alternatively derived from (3.6), by differentiating and taking z → p.
Multiplying (3.3) and (3.4) by appropriate powers of z and summing over k ≥ 0, we obtain

[λiz(1− z) + (µi + ηi)z − µi]Πi(z) = ξqizΠ0(z) + λizπ0,i(z − 1). (3.9)

Define

f0(z) = (λ0 + ξ − λ0z)(z − p), fi(z) = λiz(1− z) + (µi + ηi)z − µi, i = 1, 2 · · · , d.
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The set of equations (3.7) and (3.9) can be written in a matrix form as

M(z)Π(z) = (z − 1)b(z), (3.10)

where

M(z) =


f0(z) −p̄η1z −p̄η2z · · · −p̄ηdz
−ξq1z f1(z) 0 · · · 0
−ξq2z 0 f2(z) · · · 0

...
...

...
. . .

...
−ξqdz 0 0 · · · fd(z)

 ,

Π(z) =


Π0(z)
Π1(z)
Π2(z)

...
Πd(z)

 , b(z) =


b0(z)
b1(z)
b2(z)

...
bd(z)

 =


(λ0 + ξ)pπ0,0

λ1zπ0,1

λ2zπ0,2

...
λdzπ0,d

 .

Since |M(z)| is a polynomial of degree 2d + 2 and |M(1)| = 0, we define N(z) of degree 2d + 1 by |M(z)| =
(z − 1)N(z). For all values of z at which M(z) is nonsingular, we use Cramer’s rule to obtain Πi(z), and write

Πi(z) =
|Mi+1(z)|
N(z)

, i = 0, 1, 2, . . . , d, (3.11)

where |M | is the determinant of matrix M and Mi(z) is the matrix obtained from M(z) by replacing its
ith column by b(z). The functions Πi(z) are expressed in terms of d + 1 unknown boundary probabilities,
π0,0, π0,1, · · · , π0,d, appearing in b(z). In order to derive these boundary probabilities, we utilize the roots of
N(z) lie in (0, 1). Similarly to the proof of Theorem 2 in [19] and Theorem 2.1 in [24], we have the following
theorem:

Theorem 3.3. If the stability condition λ0 +
d∑
k=1

ξqkλk

ηk
<

d∑
k=1

ξqk
ηk

µkp̄+ηkp
p̄ holds, then the polynomial N(z)

possesses exactly d distinct roots in the open interval (0, 1). Else, N(z) has an additional root in (0, 1).

Proof. First, we introduce a series of polynomials as follows:

N0(z) = 1, N1(z) = |M1(z)| = f0(z), N2(z) = |M2(z)| =
∣∣∣∣ f0(z) −η1p̄z
−ξq1z f1(z)

∣∣∣∣ ,
Nk(z) = |Mk(z)| =

∣∣∣∣∣∣∣∣∣
f0(z) −η1p̄z · · · −ηk−1p̄z
−ξq1z f1(z) · · · 0

...
...

. . .
...

−ξqk−1z 0 · · · fk−1(z)

∣∣∣∣∣∣∣∣∣ , 1 ≤ k ≤ d,

N(z) =
|M(z)|
z − 1

.

That is, Nk(z), k = 1, 2, . . . , d are the determinants of the main-diagonal minors of M(z) starting from the upper
left corner of the matrix.
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Next, we provide several recursive equations, which are crucial for our subsequent analysis. We first introduce
Schur complement. If A and D are square matrices, A is invertible, then∣∣∣∣ A B

C D

∣∣∣∣ = |A|
∣∣D − CA−1B

∣∣ .
In the case that A is singular, the inverse of A in the equation can be replaced by a generalized inverse. According
to Schur complement, when 1 ≤ k ≤ d− 1, we have

Nk+1(z) = (
∣∣fk(z)− Ck+1M

−1
k (z)Bk+1

∣∣+ 1)Nk(z)−Nk(z)

= (
∣∣fk(z)− Ck+1M

−1
k (z)Bk+1

∣∣+ 1)Nk(z)

− (
∣∣fk−1(z)− CkM−1

k−1(z)Bk
∣∣)Nk−1(z)

= ak(z)Nk(z)− bk(z)Nk−1(z), 1 ≤ k ≤ d− 1, (3.12)

(z − 1)N(z) = (
∣∣fd(z)− Cd+1M

−1
d (z)Bd+1

∣∣+ 1)Nd(z)−Nd(z)
= (
∣∣fd(z)− Cd+1M

−1
d (z)Bd+1

∣∣+ 1)Nd(z)

− (
∣∣fd−1(z)− CdM−1

d−1(z)Bd
∣∣)Nd−1(z)

= ad(z)Nd(z)− bd(z)Nd−1(z), (3.13)

where

Ck+1 = (ξqkz,

k−1︷ ︸︸ ︷
0, . . . , 0), Bk+1 = (−ηkp̄z,

k−1︷ ︸︸ ︷
0, . . . , 0)T , 1 ≤ k ≤ d− 1,

Cd+1 = (ξqdz,

d−1︷ ︸︸ ︷
0, . . . , 0), Bd+1 = (−ηdp̄z,

d−1︷ ︸︸ ︷
0, . . . , 0)T .

For these d+2 polynomials, we have the following properties:

(i) By definition, N0(z) = 1 and therefore has no roots in (0,+∞);
(ii) For 1 ≤ k ≤ d− 1, Nk(z) and Nk+1(z) have no common roots in (0,+∞). Because, if they do have such

a common root z0, then we have Nk−1(z0) = 0 from equation (3.12). Iterating, we eventually arrive at
N0(z0) = 0, but N0(z) possesses no roots. In an analogous fashion, N(z) and Nd(z) do not possess any
common roots in (0,+∞).

(iii) Define sign(x) = 1 if x > 0 and sign(x) = −1 if x < 0. For 1 ≤ k ≤ d− 1, from equation (3.12), if z0 is a
root of Nk(z), then sign(Nk−1(z0) ·Nk+1(z0)) = −1. From equation (3.13), if Nd(z0) = 0 and 0 ≤ z0 ≤ 1,
then N(z) and Nd−1(z) are the same in sign. If Nd(z0) = 0 and z0 ≥ 1, then N(z) is opposite in sign to
Nd−1(z).

(iv) Nk(1) > 0, k = 0, 1, 2, . . . , d, and N(1) > 0. Substituting z = 1 into the expressions of Nk(z), k =
1, 2, . . . , d, we directly obtain Nk(1) > 0, k = 0, 1, 2, . . . , d. In order to obtain N(1) > 0, we make use
of the properties of determinant. Using the L’Hospital’s rule, we have

N(1) = lim
z→1

|M(z)|
z − 1

= lim
z→1

d

dz
|M(z)| = (η1η2 · · · ηd)

(
ξp− λ0p̄+

d∑
i=1

p̄ξqi(µi − λi)
ηd

)
.

From the stability condition, we have

ξ
p

p̄
+

d∑
i=1

ξqi(µi − λi)
ηi

− λ0 > 0,



UNRELIABLE SERVER WITH GEOMETRIC ABANDONMENT 911

which leads to

ξp− λ0p̄+

d∑
i=1

p̄ξqi(µi − λi)
ηi

> 0,

i.e., N(1) > 0.
(v) sign(Nk(0)) = (−1)k, k = 1, 2, . . . , d. Note that f0(0) = −p(λ + ξ), fi(0) = −µi, i = 1, 2, . . . , d. When

0 ≤ k ≤ d, Nk(0) = −p(λ + ξ)(−µi)k−1 = (−1)kµi(λ + ξ). Since N(z) = |M(z)|
z−1 and sign(|M(0)|) =

(−1)d+1, we have sign(N(0)) = (−1)d.
(vi) sign(Nk(+∞)) = (−1)k, k = 1, 2, . . . , d. It is because that the highest-power coefficient of the polynomial

Nk(z) is (−1)kλ0λ1 · · ·λk−1.

To give properties (ii) and (iii), equations (3.12) and (3.13) are needed. It must be pointed that when Nk(z0) =
Nk+1(z0) = 0, 1 ≤ k ≤ d − 1, equation (3.12) can be used. Although the inverses of Mk(z0) and Mk+1(z0) do
not exist, when Mk(z0) is singular, the inverse of matrix Mk(z0) can be replaced by a generalized inverse, for
example, the Moore-Penrose pseudoinverse.

Based on (iv), (v) and (vi), the quadratic polynomial N1(z) has a root z1,1 in (0, 1) and a root z1,2 in
(1,+∞). According to the property (iii), we have N2(z1,1) < 0 and N2(z1,2) < 0. Since N2(z) is of degree four,
it has four roots in (0,+∞). From (iv), (v) and (vi), we conclude that the four roots z2,1, z2,2, z2,3 and z2,4

lie in open interval (0, z1,1), (z1,1, 1), (1, z1,2) and (z1,2,+∞). Proceeding further, N3(z) includes distinct roots
in each of the intervals (0, z2,1), (z2,1, z2,2), (z2,2, 1), (1, z2,3), (z2,3, z2,4) and (z2,4,∞), etc.

After repeating this procedure, we conclude that Nd(z) possesses 2d real roots in which d real roots lie in
(0, 1) and d roots lie in (1,+∞). The 2d roots are denoted, in an ascending order, by zd,i, i = 1, 2, . . . , 2d. From
the above properties, we have

sign(Nd−1(zd,i)) = (−1)d+i, i = 1, 2, . . . , d,

sign(Nd−1(zd,i)) = (−1)d+i+1, i = d+ 1, d+ 2, . . . , 2d.

According to the property (iii), which gives the relation of the sign between N(z) and Nd−1(z), we have

sign(N(zd,i)) = (−1)d+i, i = 1, 2, . . . , 2d.

Obviously, there is at least one real root of N(z) between any consecutive roots of Nd(z). Note that sign(N(0)) =
(−1)d and sign(N(zd,1)) = (−1)d+1, N(z) has a root in (0, zd,1). Moreover, sign(N(zd,d)) = (−1)2d > 0 and
N(1) > 0, so N(z) has no root in (zd,d, 1). Analogously, sign(N(zd,d+1)) = (−1)2d+1 < 0, N(z) has a root in
(1, zd,d+1). Since N(z) is a polynomial of degree 2d+ 1, we have that N(z) has exactly d real roots in the open
interval (0, 1).

If the stability condition does not hold, i.e., if

λ0 +

d∑
k=1

ξqkλk
ηk

>

d∑
k=1

ξqk
ηk

µkp̄+ ηkp

p̄
,

then N(1) < 0. Since sign(N(zd,d)) = (−1)2d > 0 and sign(N(zd,d+1)) = (−1)2d+1 < 0, so N(z) has an addi-
tional root in (zd,d, 1) and has no root in (1, zd,d+1). Therefore, N(z) has d+ 1 real roots in the open interval
(0, 1).

The proof is completed.
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According to the result of Theorem 3.3, we respectively denote the d distinct roots of N(z) in the open
interval (0, 1) by z1, z2, . . . , zd. Because Πi(z) ≥ 0, from the expressions of Πi(z), i = 0, 1, 2, . . . , d, we have

|Mi(zk)| = 0, k = 1, 2, . . . , d, i = 1, 2, . . . , d+ 1.

In fact, the above equations provide d linear equations for the d+ 1 unknown boundary probabilities π0,i, i =
0, 1, . . . , d. From the d equations, we can express π0,i, i = 1, . . . , d in term of π0,0, and then,Πi(z), i = 0, 1, 2, . . . , d
can be expressed by π0,0. Using the normalization condition

d∑
i=0

Πi(1) +

d∑
i=1

π0,i = 1,

we can obtain the unique unknown probability π0,0 and the expressions Πi(z), i = 0, 1, 2, . . . , d. Further, the
PGF of the number of customers in the system can be obtained by

Π(z) =

d∑
i=0

Πi(z) +

d∑
i=1

π0,i, (3.14)

and the expected number of customers in the system is

E[L] =
d

dz
Π(z)|z=1.

4. Matrix geometric approach

In this section, we apply an alternative method, the matrix geometric approach, in order to analyze the
current queueing model. It is easy to verify that the state-transition-rate matrix Q is a GI/M/1-type. In order
to analyze the system effectively via the matrix geometric approach, we utilize the rate matrix R, which is the

minimal non-negative solution of
∞∑
k=0

RkAk = 0.

Due to the structure of A1, it is not trivial to get a closed-form expression for the rate matrix R. However, R
can be obtained numerically using well-known algorithms [21]. Next, we solve the matrix equation numerically
with the following iteration procedure to obtain R. Consider a sequence of matrices {R(n), n ≥ 0}, obtained

by successive substitutions, starting with R(0) = 0, and then R(n) = −(A0 +
∞∑
k=2

R(n− 1)kAk)A−1
1 for n ≥ 1.

If for some ε > 0, such that ‖R(n + 1) − R(n)‖∞ < ε, we stop the iterative procedure. Once R is obtained,
by using the matrix geometric approach, the steady-state probability vector Π = (Π0,Π1, · · · ) of Q with
Πk = (πk,0, πk,1, . . . , πk,d) has a matrix geometric form:

Πk = Π0R
k, k ≥ 1.

The boundary vector Π0 can be obtained by

Π0B0 +Π1B1 +Π2B2 + · · · = Π0

∞∑
k=0

RkBk = 0,

(Π0 +Π1 +Π2 + · · · )e = Π0(I −R)−1e = 1.
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The expected number of customers in the system is

E[L] =

∞∑
k=0

kΠke = Π0R(I −R)−2e.

5. Stationary sojourn time analysis

In this section, considering a tagged customer, we derive the LST of the stationary sojourn time distribution
of an arbitrary customer, where the sojourn time is defined to be the overall time from the arrival till the
departure from the system, due to either a service completion or the occurrence of a service interruption. Let
W and W ∗(s) respectively denote the stationary sojourn time of an arbitrary customer and its corresponding
LST.

In order to calculate W ∗(s), we consider the following possible two cases:

Case 1: the tagged customer arrives in the state (n, i), n ≥ 0, i = 1, 2, . . . , d;
Case 2: the tagged customer arrives in the state (n, 0), n ≥ 0.

In Case 1, let Wn,i and W ∗n,i(s) denote the sojourn time and its LST in this case. Define Di as the interarrival
time of a service interruption, Sk,i as the total service times of k customers in phase i. Then, we have

W ∗n,i(s)=

n∑
k=0

P (Sk,i<Di<Sk+1,i)E[e−sDi |Sk,i<D<Sk+1,i] ·

n−k∑
m=0

pmp̄R∗(s)

d∑
j=1

qjW
∗
n−k−m,j(s)+pn−k+1


+P (Sn+1,i < Di)E[e−sSn+1,i |Sn+1,i < Di], (5.1)

where

P (Sk,i < Di < Sk+1,i)E[e−sDi |Sk,i < Di < Sk+1,i]

=
ηi

ηi + s
[S∗k,i(ηi + s)− S∗k+1,i(ηi + s)] =

ηi
ηi + s

(
1− µi

µi + ηi + s

)(
µi

µi + ηi + s

)k
=

ηi
µi + ηi + s

(
µi

µi + ηi + s

)k
, P (Sn+1,i < Di)E[e−sSn+1,i |Sn+1,i < Di] =

(
µi

µi + ηi + s

)n+1

and R∗(s) = ξ
ξ+s . Simplifying equation (5.1), we have

W ∗n,i(s) =

n∑
k=0

ηi
µi + ηi + s

(
µi

µi + ηi + s

)k
·

n−k∑
m=0

pmp̄
ξ

s+ ξ

d∑
j=1

qjW
∗
n−k−m,j(s) + pn−k+1

+

(
µi

µi + ηi + s

)n+1

=

n∑
k=0

ηi
µi + ηi + s

(
µi

µi + ηi + s

)kn−k∑
m=0

pmp̄
ξ

s+ ξ

d∑
j=1

qjW
∗
n−k−m,j(s)


+

n∑
k=0

ηip
n+1

µi + ηi + s

(
µi

p(µi + ηi + s)

)k
+

(
µi

µi + ηi + s

)n+1

. (5.2)
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In order to obtain W ∗n,i(s), we introduce the mixed transforms Qi(s, z) =
∞∑
n=0

W ∗n,i(s)z
n, |z| < 1, s ≥ 0, i =

1, 2, . . . , d. Multiplying (5.2) by zn and summing over n, we have

Qi(s, z) =

ηiξp̄
d∑
j=1

qjQj(s, z)

(s+ ξ)(µi + ηi + s− µiz)(1− pz)
+

pηi
(µi + ηi + s− µiz)(1− pz)

+
µi

µi + ηi + s− µiz
. (5.3)

Define

Xi(s, z) =
ηiξp̄

(s+ ξ)(µi + ηi + s− µiz)(1− pz)
,

Yi(s, z) =
pηi

(µi + ηi + s− µiz)(1− pz)
+

µi
µi + ηi + s− µiz

,

then, we have

Qi(s, z) = Xi(s, z)

d∑
j=1

qjQj(s, z) + Yi(s, z),

which can be written in matrix form as

E(s, z)Q(s, z) = Y (s, z), (5.4)

where

E(s, z) =


1− q1X1(s, z) −q2X1(s, z) · · · −qdX1(s, z)
−q1X2(s, z) 1− q2X2(s, z) · · · −qdX2(s, z)

...
...

. . .
...

−q1Xd(s, z) −q2Xd(s, z) · · · 1− qdXd(s, z)

 ,

Q(s, z) =


Q1(s, z)
Q2(s, z)

...
Qd(s, z)

 , Y (s, z) =


Y1(s, z)
Y2(s, z)

...
Yd(s, z)

 .

Hence, we have

Qi(s, z) =
|Ei(s, z)|
|E(s, z)|

, i = 1, 2, . . . , d,

where Ei(s, z) is derived through replacing the ith column of E(s, z) with Y (s, z). Once Qi(s, z) is obtained,
W ∗n,i(s) can be uniquely determined. In Case 2, let Wn,0 and W ∗n,0(s) denote the sojourn time and its LST in
this case. Then, we can easily have

W ∗n,0(s) = R∗(s)

d∑
j=1

qjW
∗
n,j(s) =

ξ

ξ + s

d∑
j=1

qjW
∗
n,j(s).
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Combining the two cases, the LST of the stationary sojourn time distribution of an arbitrary customer can be
obtained as

W ∗(s) =

∞∑
n=0

πn,0W
∗
n,0(s) +

∞∑
n=0

d∑
j=1

πn,jW
∗
n,j(s), (5.5)

and the mean stationary sojourn time of an arbitrary customer is obtained by

E[W ] = −dW ∗(s)

ds
|s=0.

In fact, for a general value of d ≥ 2, it is difficult to obtain the explicit expressions of W ∗(s). To conclude
this section, we give the following analysis on how the explicit solution of W ∗(s) and E[W ] can be obtained for
d = 1.

Special case for d = 1. In this case, equation (5.4) can be written as

Q1(s, z) =
(s+ ξ)pη1 + (s+ ξ)µ1(1− pz)

(s+ ξ)(µ1 + η1 + s− µ1z)(1− pz)− η1ξp̄
.

Let r1(z) = (s+ ξ)(µ1 + η1 + s− µ1z)(1− pz)− η1ξp̄, we will prove the polynomial has two roots in (1,+∞)
in following part. Since

r1(0) = (s+ ξ)(µ1 + η1 + s)− η1ξp̄ > 0,

r1(1) = (s+ ξ)(η1 + s)(1− p)− η1ξp̄ > 0,

r(1/p) = −η1ξp̄ < 0, r1((µ1 + η1 + s)/µ1) = −η1ξp̄ < 0, r1(+∞) > 0,

then, the polynomial has two roots in (1,+∞), denoted by y1 ≤ y2, where y1 lies in
(

1,min
(

1
p ,

µ1+η1+s
µ1

))
, and

y2 lies in
(

max
(

1
p ,

µ1+η1+s
µ1

)
,+∞

)
. r1(z) can be rewritten as

r1(z) = µ1p(s+ ξ)(z − y1)(z − y2).

The partial fraction expansion of Q1(s, z) with respect to z implies that

Q1(s, z) =
pη1 + µ1(1− pz)
µ1p(z − y1)(z − y2)

=
1

µ1p

(
M1(s)

(z − y1)
+

M2(s)

(z − y2)

)
,

where the coefficients M1(s) and M2(s) can be obtained by

M1(s) = lim
z→y1

pη1 + µ1(1− pz)
(z − y2)

=
pη1 + µ1(1− py1)

y1 − y2
,

M2(s) = lim
z→y2

pη1 + µ1(1− pz)
(z − y1)

=
pη1 + µ1(1− py2)

y2 − y1
.

Using partial fraction decomposition for Q1(s, z) and expanding in powers of z, we have

Q1(s, z) =
1

µ1p

(
M1(s)

(z − y1)
+

M2(s)

(z − y2)

)
= −M1(s)

µ1py1

∞∑
n=0

(
z

y1

)n
− M2(s)

µ1py2

∞∑
n=0

(
z

y2

)n
, (5.6)
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and the closed-form expression for W ∗n,1(s)

W ∗n,1(s) = −M1(s)

µ1py1

(
1

y1

)n
− M2(s)

µ1py2

(
1

y2

)n
.

For W ∗n,0(s), we can easily have

W ∗n,0(s) = R∗(s)W ∗n,1(s) =
ξ

ξ + s
W ∗n,1(s).

Then, equation (5.5) translates into

W ∗(s) =

∞∑
n=0

πn,0W
∗
n,0(s) +

∞∑
n=0

πn,1W
∗
n,1(s),

and the mean stationary sojourn time of an arbitrary customer is obtained by

E[W ] = −dW ∗(s)

ds
|s=0.

6. Cycle analysis

In this section, we mainly focus on the cycle analysis. To avoid confusion, a cycle under consideration is
defined as the period between two consecutive instants at which a repair process commences. Let C represent
the length of a cycle. For i = 1, 2, · · · , d, define Ai as the interarrival times of two consecutive customers in
operative phase i, Di as the interarrival time of a service interruption in phase i, and Hk,i as the busy period
caused by k customers in operative phase i. Then, we consider the following two cases.

Case 1: No customer arrives in repair period;
Case 2: k, k ≥ 1 customers arrive in repair period.

Let Ui and Vk,i denote the time duration of the system is in operative i under the condition of Case 1 and
Case 2, respectively. Then, in Case 1, we have

Ui =

{
U1,i, Di < H1,i,
U2,i + Ui, D > H1,i,

i = 1, 2, . . . , d,

where U1,i = Ai + (Di|Di < H1,i) and U2,i = Ai + (H1,i|Di > H1,i). The LST of U1,i and U2,i are given by

U∗1,i(s) = Ai
∗(s)E[e−sDi |Di < H1,i] =

λi
s+ λi

ηi
s+ ηi

1−H∗1,i(s+ ηi)

P (Di < H1,i)
,

U∗2,i(s) = Ai
∗(s)E[e−sH1,i |Di > H1,i] =

λi
s+ λi

H∗1,i(s+ ηi)

P (Di > H1,i)
.

From the above equations, we have

U∗i (s) = P (Di < H1,i)U
∗
1,i(s) + P (Di > H1,i)U

∗
2,i(s)U

∗
i (s).
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Simplifying the expression of U∗i (s) yields

U∗i (s) =
P (Di < H1,i)U

∗
1,i(s)

1− P (Di > H1,i)U∗2,i(s)
=

λiηi(1−H∗1,i(s+ ηi))

(s+ ηi)(s+ λi − λiH∗1,i(s+ ηi))
,

where H∗1,i(s+ ηi) satisfies λiz
2 − (s+ ηi + λi + µi)z + µi = 0. Similarly to the approach of Case 1, for Case 2,

we have

Vk,i =

{
Vk,i,1, Di < Hk,i,
Vk,i,2 + Ui, Di > Hk,i,

k ≥ 1, i = 1, 2, . . . , d,

where Vk,i,1 = (Di|Di < Hk,i) and Vk,i,2 = (Hk,i|Di > Hk,i). The expressions of V ∗k,i,1(s) and V ∗k,i,2(s) are
derived by

V ∗k,i,1(s) = E[e−sDi |Di < Hk,i] =
ηi

s+ ηi

1−H∗k,i(s+ ηi)

P (Di < Hk,i)
,

V ∗k,i,2(s) = E[e−sHk,i |Di > Hk,i] =
H∗k,i(s+ ηi)

P (Di < Hk,i)
.

Then, substituting V ∗k,i,1(s) and V ∗k,i,2(s) into

V ∗k,i(s) = P (Di < Hk,i)V
∗
k,i,1(s) + P (Di > Hk,i)V

∗
k,i,2(s)U∗i (s),

we have

V ∗k,i(s) =
ηi(1−H∗k,i(s+ ηi))

s+ ηi
+H∗k,i(s+ ηi)U

∗
i (s),

where H∗k,i(s+ ηi) satisfies H∗k,i(s+ ηi) = (H∗1,i(s+ ηi))
k. Define ak as the probability that k, k ≥ 0 customers

arrive in repair period. It is easy to find that

ak = P

 k∑
j=0

Aj,0 < R <

k+1∑
j=0

Aj,0

 =

∞∫
0

ξ
(λ0t)

k

k!
e−(λ0+ξ)tdt,

where {Ak,0, k ≥ 0} is an independent and identically distributed sequence of the interarrival times of customers
in repair period with A0,0 = 0. Combining the results of the two cases, the expression of C∗(s) can be written
as

C∗(s) = π0,0

a0E[e−sR|R < A1,0]

d∑
i=1

qiU
∗
i (s) +

∞∑
k=1

akE[e−sR|
k∑
j=0

Aj,0 < R <

k+1∑
j=0

Aj,0]

d∑
i=1

qiV
∗
k,i(s)


+

∞∑
n=1

πn,0

∞∑
k=0

akE[e−sR|
k∑
j=0

Aj,0 < R <

k+1∑
j=0

Aj,0]

d∑
i=1

qiV
∗
n+k,i(s),

where

a0E[e−sR|R < A1,0] =
ξ

s+ λ0 + ξ
,
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akE[e−sR|
k∑
j=0

Aj,0 < R <

k+1∑
j=0

Aj,0] =
ξ

ξ + s

(
1− λ0

λ0 + ξ + s

)(
λ0

λ0 + ξ + s

)k
=

ξ

λ0 + ξ + s

(
λ0

λ0 + ξ + s

)k
.

7. Numerical results

In this section, we first present some special cases by setting special parameter values to validate above results
with existing models. Without loss of generality, we assume d = 2, i.e., the system has two operative phases

Figure 1. E[L] versus ξ,(p = 0.4).

Figure 2. E[L] versus p,(ξ = 0.8).
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Figure 3. E[L] versus p and ξ, (λ0 = 1).

Figure 4. Pe versus p and ξ, (λ0 = 1).

and a repair phase. From the result obtained by (3.11), we have

N(z) = [ξ − λ0(z − 1)](z − 1)(z − p)(λ1z − µ1)(λ2z − µ2)− [ξ − λ0(z − 1)](z − p)(λ2z − µ2)η1z

− [ξ − λ0(z − 1)](z − p)(λ1z − µ1)η2z + ξq1p̄η1z
2(λ2z − µ2)

+ ξq2p̄η2z
2(λ1z − µ1)− [λ0(z − p)− ξp]η1η2z

2,
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Table 1. The roots of N(z), p = 0.4, q1 = 0.3.

z µ2

µ2 = 1.5 µ2 = 1.8 µ2 = 2.1 µ2 = 2.4 µ2 = 2.7 µ2 = 3

z1 0.3587 0.3658 0.3704 0.3736 0.3760 0.3778
z2 0.6688 0.6890 0.7020 0.7110 0.7174 0.7223

Table 2. The rate matrix R, p = 0.4, q1 = 0.3.

µ2 = 1.5 µ2 = 1.8

R

(
0.7170 0.1550 0.3306
0.1490 0.5814 0.1054
0.1445 0.0453 0.4906

) (
0.6979 0.1388 0.3063
0.1423 0.5745 0.1001
0.1220 0.0336 0.4368

)

µ2 = 2.1 µ2 = 2.4

R

(
0.6824 0.1280 0.2818
0.1367 0.5697 0.0936
0.1049 0.0263 0.3912

) (
0.6699 0.1204 0.2591
0.1321 0.5663 0.0870
0.0917 0.0214 0.3530

)

µ2 = 2.7 µ2 = 3

R

(
0.6598 0.1149 0.2389
0.1283 0.5638 0.0809
0.0813 0.0179 0.3209

) (
0.6515 0.1108 0.2210
0.1251 0.5620 0.0753
0.0730 0.0154 0.2939

)

Table 3. A comparison of two method in computing the stationary distribution Π0 and E[L],
p = 0.4, q1 = 0.3.

π0,0 π0,1 π0,2 E[L]

PGF µ2 = 1.5 0.0091 0.0293 0.0538 12.6618
µ2 = 1.8 0.0145 0.0427 0.1120 6.5468
µ2 = 2.1 0.0178 0.0512 0.1671 4.4772
µ2 = 2.4 0.0198 0.0521 0.2239 3.4220
µ2 = 2.7 0.0208 0.0525 0.2739 2.7905
µ2 = 3 0.0212 0.0522 0.3185 2.3685

MGM µ2 = 1.5 0.0091 0.0293 0.0539 12.6329
µ2 = 1.8 0.0146 0.0429 0.1118 6.5428
µ2 = 2.1 0.0179 0.0494 0.1697 4.4647
µ2 = 2.4 0.0198 0.0520 0.2241 3.4207
µ2 = 2.7 0.0208 0.0526 0.2738 2.7908
µ2 = 3 0.0212 0.0521 0.3186 2.3674

which possesses exactly two distinct roots z1 and z2 in open interval (0,1). Using the results

|A1(zk)| = 0, k = 1, 2,
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and combining the normalization condition

Π0(1) +Π1(1) +Π2(1) + π0,1 + π0,2 = 0,

we construct three linear equations for the unknown boundary probabilities π0,0, π0,1 and π0,2. Solving the set
of linear equations, the expressions of π0,0, π0,1 and π0,2 and the expected number of customers in the system
E[L] can be obtained, respectively.

Next, based on the theoretical framework given in Sections 3 and 4, we will give some tables to show the roots
of N(z) in the open interval (0, 1) and the rate matrix R. Meanwhile, we show that the stationary distribution
and the mean queue length E[L] are evaluated through matrix geometric method (MGM) exactly match with
the one obtained from probability generating function (PGF). We assume λ0 = 1, λ1 = 1.5, λ2 = 1, µ1 = 2,
ξ = 0.8, η1 = 0.4 and η2 = 0.6 (Tabs. 1–3).

Next, we will provide some figures to illustrate the impact of some parameters on the mean queue length
E[L] in the system and the probability that the system is empty Pe = Π0e. Without loss of generality, we
assume d = 5 and

(λ1, λ2, λ3, λ4, λ5) = (1.5, 1, 0.8, 2, 2.5),

(η1, η2, η3, η4, η5) = (0.4, 0.6, 0.2, 0.5, 0.8)

(µ1, µ2, µ3, µ4, µ5) = (2.5, 2, 1.5, 3, 3.5),

(q1, q2, q3, q4, q5) = (0.1, 0.25, 0.2, 0.4, 0.05).

In Figures 1 and 2, we respectively pay attention to the curves of E[L] with the change of ξ from 0.5 to 1.5
and p from 0.1 to 0.9 for different values of λ0 = 0.6, 0.7, 0.8, 0.9, 1. Obviously, from Figure 1, with the increase
of ξ, E[L] becomes smaller. From Figure 2, we find that E[L] decreases with the increase of p. It is reasonable
that, as ξ increases, the times that the system resides in repair period become smaller, and the system has more
times in operative phase, which leads to more customers leaving the system by either the service completion or
the occurrence of breakdowns. For the curves in Figure 2, it may be because, as p increases, at the instant of
breakdown, customers have a higher probability to leave the system, which contributes to the decrease of the
expected number of customers in the system. It is noteworthy that, for Figures 1 and 2, if ξ and p are fixed,
the smaller λ0 is, the smaller E[L] becomes, which is identical to the intuitive expectations. In fact, smaller λ0

means less arriving customers while the system is in repair phase, which leads to the smaller value of E[L].
In Figures 3 and 4, we assume λ0 = 1 and investigate the values E[L] and Pe regarding the combinations

of the values p and ξ. As expected, from Figure 3, E[L] decreases as p and ξ increase from 0.1 to 0.9 and 0.6
to 1.4. From Figure 4, Pe increases as p and ξ increase, which has an opposite variation trend. It is reasonable
that, with the increase of p and ξ, the system is more likely to be empty, which causes a increase of Pe.

8. Conclusion

In this paper, we studied a queue with unreliable server in a multi-phase random environment with geomet-
ric abandonments and aimed to establish the theoretical foundations for applications and obtain the explicit
computation expressions for the performance measures. By using the mean drift result in [21], we first gave
the sufficient and necessary stability condition for the system. Based on Theorem 3.3, we then derived the sta-
tionary queue length distribution. Further, we provided the elaborate analysis of various performance measures
including the stationary sojourn time of an arbitrary customer and the length of a cycle. Finally, we gave some
numerical examples to show the impact of parameters on the performance measures. We expect that the results
can be applied to more practical queueing systems.
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