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ON THE HIERARCHY OF FUNCTIONING
RULES IN D1STRIBUTED COMPUTING (*)

by A. Bui C1'4), M. BUI (2>4) and C. LAVAULT (3)

Communicated by Catherine ROUCAIROL

Abstract. - In previous papers, we used a Markovian model to détermine the optimal functioning
rules of a distributed system in various settings. Searching optimal functioning rules amounts
to solve an optimization problem under constraints. The hierarchy of solutions arising from the
above problem is called the "ftrst order hierarchy", and may possibly yield equivalent solutions.
The present paper emphasizes a spécifie technique for deciding between two equivalent solutions,
which establishes the "second order hierarchy".

Keywords: Distributed Systems, Performance évaluation, Markov Chains, Optimization.

Résumé. - Dans des travaux précédents, nous avons déterminé grâce à un modèle Markovien,
les règles de fonctionnement optimal d'un système distribué pour divers problèmes. La recherche
des règles de fonctionnement optimal revient en fait à résoudre un problème d'optimisation sous
contrainte. La hiérarchie des solutions obtenues, que nous appelons 'Ha hiérarchisation du premier
odre'\ peut générer des solutions équivalentes. Dans le présent article, nous développons une
technique spéciale pour départager deux solutions équivalentes : "la hiérarchisation du second
ordre".

Mots clés : Systèmes Distribués, Évaluation de performance, Chaînes de Markov, Optimisation.

1. INTRODUCTION

In our previous papers [2-5], we presented a stochastic model which allows
a behavioral study of distributed Computing, and we showed its usefulness.
For example, thanks to our model, we solved the dining philosophera problem
(cf. [9, 11]) without taking left-handing and right-handing into considération
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1 6 A. BUI, M. BUI, C. LAVAULT

(cf. [4]). Similarly, we settled in [5], the Multiway^Rendez Vous problem
raised in [10]. Thanks to it, we also pfoposed in [2], an "identikit" of the
configurations of sites to which corresponds a degree of efficiency for the
functioriing of some fault-tolerant distributed routing algorithms (e.g. [12,
13]).

On the other hand, our model is based ön the interconnection of N finite
Markov chains (each one representing a distributed process having only one
acyclic ergodic class of states and possibly transient states), and it differs
from the other models (see [1, 6, 8]) since it handles a formai spécification
of distributed Systems through local considération. It makes it possible to
détermine the optimal functioning rules of a distributed System. Searching
optimal functioning rules amounts to optimize a "guide function" F under
constraints: we use a function F in vol ving the mean récurrence times of
ergodic states and the mean sojourn times within transient states starting
from another transient state. The hierarchy of solutions arising from the
above problem is called the "first order hierarchy (abbreviation for "first
order conditional moment hierarchy"), which may possibly yield equivalent
solutions. The aim of our present paper is tó emphasize a special technique
for deciding between two equivalent solutions, which establishes the "second
order hierarchy (abbreviation for "second order central conditional moment
hierarchy").

Consider N processors, represented by N random function (kX-t)teN
evolving as JV finite homogeneous Markov Chains* with r similar states;
their transition matrices are denotedfcP — (kPij): (k G { 1 , . . . ,7V}-, i,j G
{ l , . . . , r } ) , respectively. These Markov Chains are assumed to have one
acyclic ergodic class (the same class, whatever k G { 1 , . . . , N}), and possibly
transient states (even in the form of several transient classes). The above
notation kP actually expresses the f act that each transition matrix dépends
on a multi-dimensional parameter p^, which characterizes the matrix, e.g.
pk — ( f epn, . . . kpiji... kPrr) - The distributed s.ystem is made up of a
network of processes logically represented by the interconnection of the N
Markov chains. This interconnection defines a set of relations between the
parameters p i , . . . ,/?JV, which characterizes the network,

7£j(pi,...,pjv) > 0, j G 2,

where 1 is a set of indices. When there exists a p = (p i , . . . ,/?jv) which
vérifies the previous relations, we will write p G TZ for short; we will also
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ON THE HIERARCHY OF FUNCTIONING RULES IN DISTRIBUTED COMPUTING 17

call it a functioning rule or solution to the choice problem of functioning
rules for the network.

Now, the problem of choosing functioning rules inevitably raises the
following question: which criterion can we décide on to provide a functioning
rule préférence over any other? We propose the following answer: according
to the context, we define a "guide fonction" F mapping the real TV-tuple
p = (p i , . . . ,pjv) into R; the rôle of F is to "guide" the working of the
System. Searching optimal functioning rules amounts to an optimization
process (maximization or minimization) of the guide function F under
constraints.

A functioning rule is said to be optimal if and only if the corresponding p
maximizes (resp. minimizes) F when the optimality criterion is maximization
(resp. minimization). In such a case, a functioning rule p is said to be
better than a functioning rule p' if and only if F{p) > F{p') (resp.
—F{p) > .—F(pf)). Subsequently, an optimal functioning rule (if any) is
obviously better than a functioning rule which is not optimal.

Two solutions p and p' are said to be equivalent if and only if
F(p) = F(p').

Any functioning rule such that p maximizes (resp. minimizes) F when
the optimality criterion is minimization (resp. maximization) is a bad rule.
Obviously, every functioning rule which is not bad (it is then said advisable)
is better than a bad functioning rule.

2. FIRST ORDER HIERARCHY

In order to be more concrete in the choice of the guide function, we
consider the following mathematical objects (where the lèft upper index k
still indicates the &-th process):

• On the assumption that we deal with ergodic states, letfcTn', dénote the
mean time to reach the state i', starting from the state i. This mean time
may be regarded as the conditional expectation of the random number
kfi', of transitions before entering i1 for the first when starting from
the initial state i, viz.

In the particular case when i — if, kTu (denoted by kT{ is the mean
récurrence time of the state i.
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18 A. BUI, M. BUI, C. LAVAULT

• On the assumption that there are transient states, let kSjj* dénote the
mean sojourn time within the transient state ƒ starting from the transient
state j . This mean sojourn time may be regarded as the conditional
expectation, starting from the state j , of the random number kuj* of
times that the process is in state f, viz

Since we assumed that there is only one acyclic ergodic class (with or
without transient state), we know that lim^-^oof^)7* = kQ exists and that it
is a matrix with identical rows f^ i , . . . kqr)- Let us consider two particular
cases.

If there is no transient state, the matrix*T with components Ef^fi' \^KQ = i)
is given by

hT=(I-kZ + J.kZdg)
kAi (2)

where
kZ = (/ -kP

wherekZdg results from^Z by setting off-diagonal entries equal to 0, where*A
is the diagonal matrix with i-th entry ^ - , and where J is the matrix will all

entries 1. The diagonal of the matrix *T provides t h e ^ . If there are transient
states and if we assume the absorbing case, then dénote kA the matrix with
components kSjjt, j and ƒ being the transient states, fcA is such that

1, (3)

where kW is the restriction of kP to the transient states.
Thus, the *Tjj/'s and the kSjj> are depending on the parameter p& =

(^pii,... ,*pi/,... kPrr)* According to the context, the guide function F is
defined either through t h e ^ y ' s , or through the ^Tu''s.

Since it involves conditional first order moments (namely the conditional
expectations of the kfi's and the ̂ n/s), we call first order hierarchy, the
hierarchy which arises from the ordering induced by the above function F,

3. SECOND ORDER HIERARCHY

Consider the function

F : p= (pi , . . . ,P*, . . . ,pjv) ^ F{p).

Recherche opérationnelle/Opérations Research



ON THE HIERARCHY OF FUNCTIONING RULES IN DISTRIBUTED COMPUTING 19

How can we décide between two equivalent solutions p and pll
The above question has already been answered in [3] by studying a

particular problem (performance évaluation of distributed routing algorithms
and construction of a fuzzy set of solutions). Therefore, following the work
in [3], we use conditional variances, Le. second order central conditional
moments.

The idea is as follows: the variance expresses the dispersion of values
around the mean, thus, between two equivalent solutions p and p1 according
to the first order hierarchy, we décide and prefer the solution with "globally"
smaller conditional variances. The meaning of the world "global" is highly
dependable on the context. Yet, we usually deal with sums of conditional
variances; thus, the criterion of préférence establishes a second hierarchy,
which will be called the second order hierarchy, because it arises from
conditional variances, Le. from second order central conditional moments.
The computation of variances is différent according to whether states are
transient or ergodic. According to the two cases:

1. When the computations deal with ergodic states, the conditional
variances a2^fi*\kX{) — ï) are given by the matrix kV
kV=kT^ [(2 -kZdg .*A) - /] + 2 • [kZ .*T - J * fZ .*T)dff] - % (4)

where *T is given by (2), ̂ T^ results from *T by squaring each entry,
and where fZ -hT)dg results fxomkZ -^T by setting off-diagonal entries
equal to 0.

2. When the computation is concerning the transient states, the conditional
variances a2fn^|fcXo = j) are given by the matrix kY

kY=kA-(2-kAdg-I)-
kAsq (5)

where kA is given by (3), where kAdg results from kA by setting off-
diagonal entries equal to 0, and where kAsq results from*A by squaring
each entry.
In particular, when the sum J^-, krij' is involved, (the sum being taken
for all the transient states), one may use more subtle considérations.
The conditional expectations E(%2j* ^ i ' I ^ o = j)» (namely the mean
sojourn times in the set of ail transient states) are given by the vector
fA£), where all the values of the column vector £ are I's. Hence, the
conditional variances cr2(X^/ knjf\kXo = j) are given by the column
vector *V*,

^ (6)
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2 0 A. BUI, M. BUI, C. LAVAULT

where ^A^)sq dénotes the column vector which results from kAÇ by
squaring each entry.
At this point, an important remark is imperative, so that the issue
should not be confused with regard to the interprétation of F .
In the first order hierarchy, we considered F as a function of the
*3ïi, - E(kMkXQ = i) and of thtkSJjf = E(knr\

kXQ = j), which
are conditional expectations. This is the reason why we advocate the
criterion of the smallest conditional variances of the /^ 's and ny's
in the second order hierarchy. Therefore, the latter F must not be
mistaken for a function with random variableskfi> andknj>: in that case
we should have to compute the expectation E[F(... kfi>knj',...)] and
consider the variance a2[(F(,.. kfi>knj>^...))]; such is not the case
in the present settings.

4. APPLICATIONS

Hère are two examples of applications: the first exemple uses ergodic
states and the second one uses transient states.

4.1. Example 1

In order to propose a kind of "identikit" of the configurations of sites
providing a good functioning of a type of distributed algorithms in [3], we
use our stochastic model as follows. We consider a network of N Markov
processes with five states (where state 2 is the waiting state and state 3 is
the updating state); the transition matrix of the k-\h processor is

where

kF

0 <

0 <

/o
0
0
1

c< 1-

AT

r

r

1
—

4
0
0

= 0

0
bk

1-4
0
0

and

and

0
c
0
0
0

0 <

E

1 -

4
AT

0
c —
0
0
0

< 1

4 -

r

>

-D = 0.

It is easily seen, that each of these Markov processes has only one acyclic
ergodic class {1,2,3,4,5} and has no transient state.
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In the present problem, pk = (bk.dk), k G {1 , . . . , 7V} . We know that
,oofP)n exists and that the above identical rows matrix satisfies the

relation kQ • kP = kQ. Solving this équation, we obtain the expression
of kQ, one row of which is ^ ( ( 1 - r)d&, dk, &&, cdk, adk), where G =
6fe + (3 - 2r)dfc and a = 1 - c - I \ Then we have

( I — 1 )d d b cd

Our criterion of choice (detailed in [2]) is that the updating state should
appear the more frequent possible, and the waiting state, the less frequent
possible. This defines the guide fonction F:

to be minimized under the constraints ]C&=i bk = B and

In order to solve the problem, we can start either with ( 6 1 , . . . , fc^r), or
with (di,..., dj\r). We thus propose a bounding of ( d i , . . . , djy), that is to
perform a closure of (]0, l[) i Y , which is the domain of (d\,..., dj?).

A bounding for d — ( d i , , . . , dAr) is a pair (77, ra) where 77 is a number
of ]0,1[ such that 77 < d& < 1 — 77 for fc e { 1 , . . . , N} and where m is an
integer > 0 such that di = ... = dm = 77, d m + i = . . . = dw~i = 1 - 7̂,
dy\r = yo(r/); p(?7) — D — mr] — (N — m — 1)(1 — 77). Owing to the above
constraints, m necessarly dépends on 77 : ra — m(rj). In [3], we give a
necessary and sufficient condition for the existence of such a bounding, and
we present a catalogue of possible boundings (77,771(77)). We also show that
the iV-tuples (&i , . . . , 6JV) associated with those (d\,..., dyv) which make F
minimum, have the following properties. A number 771(77) among the 6^'s is
equal to b[ \TJ) = 77W, a number TV - 771(77) ~ 1 among the fc^'s is equal to

2, and one of the bk's is equal to b^\r]) = ^ p P , where

5(77) = m(ri)y/rj + (N - 771(77) -

vol. 33, n° 1, 1999



2 2 A. BUI, M. BUI, C. LAVAULT

Since 6* (rç), i ~ 1,2,3, must belong to i
necessary and sufficient conditions for that:

Since 6* (77), i ~ 1,2,3, must belong to the range ]0,T[, we give in [2]

*<l1 + <"- l>iton5jr. « ^<V
, if — < D < N - 1.

Note that if £> = ^> ^ e existence of such a bounding is always
insured. Such a bounding is called "a bounding for ( d i , . . . ,d7v) valid
for (&i , . . . , 6JV) G (JOjFf)^", and the following result is proved in [2],

PROPOSITION 1: Let (77,771(77)) be a bounding for ( d i , . . . , d jv ) valid for

The best solution (&i, d\,..., 6j\r,djv) £ (]0, r[x[r/, 1 - r?])Ar m the sense
of the first order hierarchy is the solution p (modulo a permutation of pairs
(h,dk), k e {l,...,N}) with

(61, di ) = . . . = (bm{v), dm{ri) ) = (èi1} (ri), 7?),

••• = (&JV_l,diV-l) = (bï (î7), 1 — 77),

Sketch of proof: Let (d i , . . . , d jv ) be fixed. The Lagrange multipliers
method applied to the fonction h : ( 6 1 , . . . , bpj) —»- X)i=i ^ leads to the

solution ( 6 1 , . . . , bN), where bk = ^ v ^ fc G { 1 , . . . ,
2 v ^

Since /i is convex, (61, . . . ,6iv) gives the minimal value of /i, that
^ ^ o w consider the fonction H : (d i , , . . . ,djv) —>

minimize under the constraint Y^^=i^k = D. The
fonction H being concave, minimal solutions are to be found among the
solutions lying at the border of the bounding, viz. among the solutions
such that d\ - . . . = dm(7/) = 7?, dm^+1 = . . . = djv-i = 1 - 77, djv =
D - 771(77)77 - (JV - 771(77) - 1)(1 - ^)- Hence the above statement.

Other solutions are less efficient. Some of them may be equivalent in the
sense of the first order hierarchy, viz. they may give the same value to the
fonction F, •

In order to décide between two solutions p = (61, d i , . . . ,6AT, d^r) and
pl — (b\, d[ y..., b'N,df

N), which are equivalent in the sense of the first order
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hierarchy, we then use the second order hierarchy. In such a case, we have
to compare the "global" dispersion of values around the^2 's and the^3's
for solution p to the "global" dispersion of values around the ^2 ' s and the
*T3's for solution pf. More precisely, p = (&i, d i , . . . , b^.djsi) is said to be
better than pf — (b[,d[,..., 6^, d'N) if and only if

(7)
fc=l k-l

where V'̂  dénotes the term (i,i) in the diagonal of the matrix ^F given
by (4). In other words, p is said to be better than p' iff (globally) the sum
of the conditional variances corresponding to p is strictly smaller than the
one which corresponds to pf.

Hère are the analytic expression of ^22 and ̂ 33:

PROPOSITION 2

- -i~[2bk + bkdk - 8T) - (bk + 4 ( 3 - 2F))2],

kvw = ^"[4(18 - 24r + 8r2) + bk, + bkdk(9 - 8T)

- (bk + 4 (3 - 2F))2].

Note that the analytic study of \>22 and ^33 is not easy, and hence, it is
not possible to give directly the analytic expression of an optimal solution
in the second order hierarchy. By contrast, a simple programming software
easily computes a numerical comparison through inequality (7) for deciding
between two equivalent solutions p and p1 (equivalent in the sensé of the
first order hierarchy).

4.2. Example 2

In the deadlock problem, (studied in [4]), good functioning properties are
given. We use our stochastic model as follows: the model is a network
of N(N > 4) Markov processes with four states (active, idle, terminated,
blocked) where the transition matrix of the kth processor is

0k
1

J V - 1 0 0
1
N
0
0

0
0

J V - 1
JV -0k

0
1

-6k
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24 A. BUI, M. BUI, C. LAVAULT

under the constraints

The ergodic class is the singleton {4} and the transient class is the set
{1,2,3}. In the present problem, pk = (/3fc, flfc), fc e {1,. . . , iV}. The matrix
fc W; which is the restriction of kP to the transient states, is hère

Hence,

Here, the criterion of choice amounts to act on the sum X^=i S j = i ^2J
of the mean sojourn times in the states 1,2,3, respectively, when starting
from the state 2, so as to delay the entering in state 4 as long as possible.
This defines the guide function

N p^ j 2JV-1 a. ,. N-\

to be maximized under the above constraints. As we shown in [4], there
are no best solutions, but there exits a set A of advisable solutions, which
complementary set is the following set B of bad solutions:

PROPOSITION 3: B is the equivalent set (in the sensé of the first order
hierarchy) of solutions p = (/?i, B\,..., 0k, 0k,..., (3N, 0N ), where

K 3 7 V - 2 ^ N(3N-2)'

Fairness (viz. the solution p where (/3k,9k) — (jj,jj)) belongs to B.
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Sketch ofproof: Indeed, let the following change of variables,

{uu = Pk + h

Substituting, the guide fonction of choice can be put in the form

JV 1
fc=i (N - 1) - Nuk '

has thus to be optimized under the constraints

N-l

vie{i n r fe< N

and

-Ï) <t\

The use of Lagrange multipliers, À for C\ and \x for £2, yields

\{N - 1) - Nuk]2

5 „ ,- 1) - Nuk)

This implies

Nt\ _ EfcLi 4 _ (2N + 1)(JV - 1)
(N — 1) — y^lLi Uk N — 3

and hence,

J V - 3 9 i V - 1

Thus,
2iV + 1 5iV - 1

3iV-2^ N(3N-2)'
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Now, let g = J2k=i 9k> where gk - ^N^if_Nuk- The function gk is
convex, since the Hessian

2Ntk

V 2 O / _ (N - 1) - Nuk [(N - 1) - Nuk]*V 9k " I 2

[(TV - 1) - i\T^]2 [(AT - 1)

corresonds to a positive semi-definition quadratic form. Therefore, g is also
convex. Consequently, every p G B minimizes function F , and p is a bad
solution in the sensé of the first order hierarchy. •

Let us examine now the second order hierarchy. When two solutions
p = G0I ,0I , . . . , /?AT,0JV) and p1 = ( # , 0 1 , . . . , / ^ , ^ ) arc found to be
equivalent in the sensé of the first order hierarchy (for example, solutions of
B), one has to turn to the second order hierarchy to décide between them. As
the criterion of choice in the first order hierarchy introduces the mean sojourn
times in ail transient states, (starting from the state 2), formula (6) is used
in the second order hierarchy. More precisely, for the k-th processor, the
conditional variance of the sum of the sojourn random times in the states 1,
2 and 3 (from state 2) is given by the second term of the vector H^* (given)
in (6). Let ̂ 2 dénote this term. We consider the expression Y^k—1^2 a s a n

element of comparison; in other words, the solution p = (/3i, # i , . . . , /3JV, ON)
is preferred to the solution p! — ($[, 0[...., 0f

N, O'N) if and only if

The analytic expression of kv\ is then useful. Hère is the expression
obtained by use of a programrning software:

PROPOSITION 4

4 80k - (3k0k) - Nz{f3k + 120k + (32
k + 0\ + 1)

(1 + N{i3k + 6k- \))\N - 1)2

(3k0k) + N{f3k - 5) + 2

As mentioned above, a simple programming software easily computes
a numerical comparisoü for deciding between two equivalent solutions p
and p1,
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5. CONCLUSION

Generating the first order hierarchy, our models allows a reasoned choice
of solutions for the functioning of some distributed-algorithms. This choice
by first order hierarchy, which possibly leads to equivalent solutions, is
extended by second order hierarchy. Thus, we developped the necessary
theoretical tools to the second order hierarchy, illustrated by the examples
in Section 4.

Note that, the analytical comparison between two solutions in the second
order hierarchy is not always possible. However, it could be easily done
numerically by a programming software (Le, Maple).

Other problems already studied by our model: namely the dining
philosphers problem, the mutual exclusion problem, the multi-way-
Rendezvous problem, could be easily extended by using the same method
(with adaptations to the various context) formalized in the present article.
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