
RAIRO Operations Research
RAIRO Oper. Res. 35 (2001) 1-20

BOTTLENECK CAPACITY EXPANSION PROBLEMS
WITH GENERAL BUDGET CONSTRAINTS ∗

Rainer E. Burkard
1
, Bettina Klinz

1
and

Jianzhong Zhang
2

Abstract. This paper presents a unified approach for bottleneck
capacity expansion problems. In the bottleneck capacity expansion
problem, BCEP, we are given a finite ground set E, a family F of fea-
sible subsets of E and a nonnegative real capacity bce for all e ∈ E.
Moreover, we are given monotone increasing cost functions fe for in-
creasing the capacity of the elements e ∈ E as well as a budget B. The
task is to determine new capacities ce ≥ bce such that the objective func-
tion given by maxF∈F mine∈F ce is maximized under the side constraint
that the overall expansion cost does not exceed the budget B. We in-
troduce an algebraic model for defining the overall expansion cost and
for formulating the budget constraint. This models allows to capture
various types of budget constraints in one general model. Moreover, we
discuss solution approaches for the general bottleneck capacity expan-
sion problem. For an important subclass of bottleneck capacity expan-
sion problems we propose algorithms which perform a strongly poly-
nomial number of steps. In this manner we generalize and improve a
recent result of Zhang et al. [15].

Keywords: Capacity expansion, bottleneck problem, strongly
polynomial algorithm, algebraic optimization.

Mathematics Subject Classification. 90C57, 90C31, 90C32.

Received May, 2000. Accepted February, 2001.

∗ The first and the second author acknowledge financial support by the Spezialforschungs-
bereich F 003 “Optimierung und Kontrolle”, Projektbereich Diskrete Optimierung. The third
author acknowledges partial support of Hong Kong University Grant Council under the grant
CITYU-9040465.
1 Institut für Mathematik B, TU Graz, Steyrergasse 30, 8010 Graz, Austria;
e-mail: burkard@opt.math.tu-graz.ac.at, klinz@opt.math.tu-graz.ac.at
2 Department of Mathematics, City University of Hong Kong, Hong Kong;
e-mail: mazhang@cityu.hk.edu

c© EDP Sciences 2001

2 R.E. BURKARD, B. KLINZ AND J. ZHANG

1. Introduction

In many practical applications we are faced with the situation that we wish
to expand the performance of a system while keeping the necessary investments
within a prespecified budget limit. A typical example of this type arises if we
wish to adjust a road network to increasing traffic demands by increasing the
capacities of the roads. Similar expansion problems occur in connection with
enlarging the capacity in telecommunication networks and with expanding the
capacity of production processes.

Common to a large class of these capacity expansion problems is that there is
an underlying combinatorial structure, composed of a ground set E and a set F
of feasible subsets of E. The elements of the ground set may represent roads,
communication links, production steps, etc. Each element e ∈ E is associated
with a capacity ĉe which may be increased to meet increasing needs. For the class
of bottleneck capacity expansion problems investigated in this paper the capacity
of a feasible set F ∈ F is given by the smallest capacity of an element in F , and
the capacity of the combinatorial structure (E,F) is defined to be the maximal
capacity of a feasible set F ∈ F .

To expand (increase) the capacity of the structure (E,F), we need to increase
the capacities ĉe, e ∈ E. We assume that increasing the capacity of element e
to the value t > ĉe incurs a cost of fe(t) where fe is a monotone increasing
function. This cost may, for example, measure the monetary investments required
for increasing the capacity of element e, or the time which is needed for performing
the expansion, or a combination of both. Moreover, we are given a budget B. The
task in the bottleneck capacity expansion problem consists in determining new
increased capacities ce ≥ ĉe so as to increase the capacity of the structure (E,F)
as much as possible while keeping the overall expansion cost within the budget
limit B. Depending on the actual application, the overall expansion cost may be
defined in various different ways. For example, if the costs fe represent monetary
investments, then a natural measure for the overall expansion cost will be the
sum of the individual expansion costs fe(ce). If the function fe measures the time
needed for performing a capacity expansion for element e and if we assume that
the capacity expansions on different elements can be done in parallel, a natural
measure for the overall expansion cost will be the maximum of the individual
expansion costs fe(ce). By this type of budget constraint we bound the longest
time needed for a capacity expansion.

Outline of the paper. In Section 2, we first propose a model for the bottleneck
capacity expansion problem in the framework of algebraic optimization. This
model offers great flexibility for choosing the cost functions fe and for modelling
the total expansion cost. We then derive a parametric reformulation of the bot-
tleneck capacity expansion problem. In Sections 3, 4 and 5, we propose efficient
solution approaches for a large class of bottleneck capacity expansion problems. In
Section 3, we propose a parametric search algorithm which is based on techniques
of Megiddo [11, 12]. We show that this algorithm solves the bottleneck capacity
expansion problem within a strongly polynomial number of steps under rather

BOTTLENECK CAPACITY EXPANSION PROBLEMS 3

mild assumptions on the structure of the budget constraint provided a strongly
polynomial time algorithm is available for the underlying algebraic combinatorial
optimization problem. In Section 4, we deal with the special case of the bottleneck
capacity expansion problem which results if the overall expansion cost is obtained
as sum of monotone increasing, continuous piecewise affine-linear functions fe,
e ∈ E. We show that the Newton-type approach of Radzik [14] yields a strongly
polynomial time algorithm for this class of bottleneck capacity expansion problems
provided that the underlying combinatorial optimization problem can be solved
in strongly polynomial time. For many combinatorial optimization problems, this
second approach turns out to be faster than the general Megiddo-type approach.
In Section 5, we deal with two special cases of the bottleneck capacity expansion
problem which can be solved within a strongly polynomial number of steps by a
binary search approach. In Section 6 we close the paper with some concluding
remarks.

2. Bottleneck capacity expansion problems

2.1. A general model for bottleneck capacity expansion problems

The bottleneck capacity expansion problem BCEP considered in this paper con-
sists of three ingredients, namely (i) the underlying combinatorial structure, (ii)
the cost arising by expanding the capacity of a single element and (iii) the form
of the budget constraint.

To model the underlying combinatorial structure, we assume that we are given
a finite ground set E = {e1, e2, . . . , en} and a family F of subsets of E, called
feasible solutions. Every element e ∈ E is associated with a nonnegative real
capacity ĉe. The capacity ĉ(F) of a feasible solution F ∈ F with respect to the
capacities ĉe is defined to be the smallest capacity of an element in F , i.e.,

ĉ(F) = min
e∈F

ĉe. (1)

The capacity of the combinatorial structure (E,F) is given by the capacity of a
feasible set with maximum capacity, i.e., by

max
F∈F

ĉ(F) = max
F∈F

min
e∈F

ĉe. (2)

As outlined in the introduction, there are many practical situations where it is
possible to expand (increase) the capacities ĉe at a given cost. This paper deals
with the problem of increasing the capacities ĉe in order to increase the capacity of
the structure (E,F) as much as possible while keeping the overall costs resulting
from capacity expansions within a given budget. The cost incurred by increasing
the capacity ĉe of an element e ∈ E may for example measure the money or the
time needed for the expansion, or a combination of both. In order to arrive at
a general and flexible model, we are going to model the cost functions and the

4 R.E. BURKARD, B. KLINZ AND J. ZHANG

associated budget constraint in an algebraic way. To this end, let (H,⊕,�) be a
totally ordered commutative semigroup such that the composition ⊕ is compatible
with the linear order �, i.e.,

a1 � a2 =⇒ a1 ⊕ b � a2 ⊕ b for all a1, a2, b ∈ H.

We use the notation a ≺ b to denote the situation that a � b, but a 6= b. We
assume that H contains a neutral element denoted by 0, i.e., we have a ⊕ 0 = a
for all a ∈ H. For examples of algebraic structures (H,⊕,�) which are relevant
in practical bottleneck capacity expansion problems see Section 2.2. In analogy
to the summation sign

∑
we introduce the notation

⊕
k=1,... ,r ak to denote the

composition a1 ⊕ a2 ⊕ . . .⊕ ar−1 ⊕ ar for ak ∈ H, k = 1, . . . , r.
To model the costs incurred by capacity expansions, we associate each element

e ∈ E with a monotone increasing function fe : R+
0 → H. For t > ĉe, the

value fe(t) represents the cost incurred by increasing the capacity of element e
from ĉe to t. For the sake of convenience, we assume that the functions fe, e ∈ E,
are normalized, i.e.,

fe(t) = 0 for t ≤ ĉe, (3)

where the 0 on the right hand side of (3) denotes the neutral element in (H,⊕,�).
For examples of cost functions fe which we have in mind and which typically
arise in applications, we refer to Section 2.2. Note that we do not require the
functions fe to be continuous. In fact, in most cases the functions fe will have
jumps. In some of the following sections we will require that the functions fe fulfill
further properties, like continuity from the left or right or piecewise linearity. These
properties will be stated explicitly in the respective sections. We are now ready to
formulate the budget constraint. Let B ∈ H with 0 � B be the budget which is
available for increasing the capacities ĉe. The general budget constraint for F ∈ F
has the following form: ⊕

e∈F
fe(ce) � B (4)

where ce ≥ ĉe denotes the new capacity of element e ∈ E.
Summarizing, we can formulate the bottleneck capacity expansion problem, BCEP

for short, as follows:

max
F∈F

min
e∈F

ce

s.t.
⊕
e∈F

fe(ce) � B.

Note that due to the assumption (3), the constraints ce ≥ ĉe for e ∈ E can be
omitted.

BOTTLENECK CAPACITY EXPANSION PROBLEMS 5

2.2. Some examples of bottleneck capacity expansion problems

relevant in practice

Let us start with some examples of algebraic structures (H,⊕,�) which lead to
bottleneck capacity expansion problems which are of practical relevance.
(H1) Let H = R, choose the addition in R as composition ⊕ and the usual order ≤

as order relation�. The neutral element is the real number 0. For this model,
the budget constraint (4) turns into the constraint∑

e∈F
fe(ce) ≤ B

which requires that the sum of all expansion costs stays within the budget
B ∈ R.

(H2) Let H be the set of reals extended by−∞, i.e., H = R = R∪{−∞} and let �
be the natural order ≤. The composition ⊕ is defined by a⊕ b := max{a, b}.
The neutral element is −∞. For this case, the budget constraint (4) turns
into the constraint

max
e∈F

fe(ce) ≤ B.

This model can be applied when we want to minimize the maximum individ-
ual expansion cost. Such a situation arises, for example, if fe(ce) represents
the time needed to increase the capacity of element e to the value ce, and
the capacity expansion has to be finished by time B.

(H3) Let H = R× R and let � be the lexicographical order on H. The composi-
tion ⊕ is defined by

(a1, b1)⊕ (a2, b2) :=

{
(a1, b1) if a1 > a2

(a1, b1 + b2) if a1 = a2.

The neutral element is (−∞, 0).
A possible application for this model is the following situation: let fe(t)

= (ge(t), he(t)) and assume that ge(t) represents the time to increase the
capacity of e ∈ E to a value t > ĉe and that he(t) represents the cost to
increase the capacity of e ∈ E to a value t > ĉe. Let B = (B1, B2). The
budget constraint (4) asks for a capacity expansion which can be performed
within the prescribed time bound B1 and whose sum of expansion costs stays
within the cost bound B2 in case that the expansion needs exactly B1 units
of time.

(H4) In a similar spirit as in the example above, we can define cost functions
with k ≥ 2 components and use the lexicographic order as order �. The
compositions which are within each component have to be chosen such that
the resulting composition ⊕ is compatible with the order �.

Let us now mention four classes of cost functions that are important from the prac-
tical point of view. Recall that in the general model we only require that the cost

6 R.E. BURKARD, B. KLINZ AND J. ZHANG

functions fe are monotone increasing and fulfill the normalization property (3).
The functions within the classes (F1–F4) are all real-valued functions.

(F1) The first class consists of the class of real-valued functions fe : R+
0 → R

which are affine-linear for t ≥ ĉe, i.e., there is some nonnegative number αe
such that

fe(t) :=

{
0 if t ≤ ĉe

αe(t− ĉe) if t > ĉe.

In this model, there is a cost of αe per unit of increase of the capacity ĉe.
Note that the functions fe in this class are continuous.

(F2) The second class of functions consists of real-valued functions with one step.
They are of the form

fe(t) :=

{
0 if t ≤ τe

βe if t > τe

where τe ≥ ĉe and βe are given nonnegative real numbers. The functions in
this class have a jump at the point τe and are thus not continuous. In this
model we pay a fixed cost of βe units to increase the capacity of element e
beyond the limit τe.

(F3) The third class of functions are fixed-charge functions of the following type:

fe(t) :=

{
0 if t ≤ τe

βe + αe(t− τe) if t > τe

where αe, βe and τe ≥ ĉe are given nonnegative real numbers. This third
class comprises the first two classes.

(F4) The fourth and so far most general class consists of functions which are mono-
tone increasing and piecewise affine-linear. Let ĉe ≤ τ

(1)
e < τ

(2)
e

< . . . < τ (re) be the points where the cost function fe changes its slope
(is not differentiable) and/or has a jump. These points are referred to as
breakpoints of fe. Between two breakpoints fe is assumed to be affine-linear.
We thus obtain the following shape

fe(t) :=



0 if t ≤ τ (1)
e

β
(1)
e + α

(1)
e t if τ

(1)
e < t ≤ τ (2)

e

β
(2)
e + α

(2)
e t if τ

(2)
e < t ≤ τ (3)

e

...
...

β
(re)
e + α

(re)
e t if t > τ

(re)
e

(5)

BOTTLENECK CAPACITY EXPANSION PROBLEMS 7

where α(q)
e ≥ 0 and β(q)

e , q = 1, . . . , re, are given real numbers. (Note: these
constants have to be chosen such that fe is monotone increasing.)
If all α(q)

e , q = 1, . . . , re, are zero, fe is called a step function with re steps.
In this case the monotonicity implies 0 < β

(1)
e < . . . < β

(re)
e . Step functions

have the following shape:

fe(t) :=



0 if t ≤ τ (1)
e

β
(1)
e if τ

(1)
e < t ≤ τ (2)

e

β
(2)
e if τ

(2)
e < t ≤ τ (3)

e

...
...

β
(re)
e if t > τ

(re)
e .

(6)

2.3. Previous and related results

Zhang et al. [15] have investigated the following special bottleneck capacity
expansion problem:

max
F∈F

min
e∈F

ce

s.t.
∑
e∈F αe(ce − ĉe) ≤ B

ce ≥ ĉe for all e ∈ E.

This version of the bottleneck capacity expansion problem BCEP arises by choos-
ing (H1) as algebraic system and using cost functions fe of type (F1). Zhang
et al. proposed a polynomial time algorithm for this special case of the BCEP and
a strongly polynomial time algorithm for the special case where the underlying
combinatorial optimization problem given by the structure (E,F) is the minimum
spanning tree problem.

Several authors have investigated expansion problems where the capacity (weight)
of a structure (E,F) is defined as

min
F∈F

∑
e∈F

ĉe (7)

and where the task is to find new capacities ce ≥ ĉe so as to increase the capac-
ity of (E,F) as much as possible while keeping the expansion costs

∑
e∈E fe(ce)

within a given budget B. Most of the results are for affine-linear costs fe, but
some other cost models have been investigated as well. The known results include
results for the maximum flow/minimum cut problem by Ahuja and Orlin [1], for
the shortest path problem by Fulkerson and Harding [8], for the minimum span-
ning tree problem and certain matroid optimization problems by Frederickson and
Solis-Oba [6, 7]), and for submodular flow problems by Jüttner [9].

8 R.E. BURKARD, B. KLINZ AND J. ZHANG

Another class of related problems arises if the capacities (weights) can be
decreased in order to decrease the capacity (weight) of the structure (E,F).
Typically, these problems involve lower bounds on the new capacities (weights)
which turns most of them into NP-hard problems. See e.g. Philipps [13] for the
maximum flow/minimum cut case and Drangmeister et al. [5] for the minimum
spanning tree case. The paper by Krumke et al. [10] is worth to be mentioned
here since it considers multi-criteria budget constraints (such constraints can be
formulated within the framework of our algebraic model).

2.4. Parametric reformulation of the bottleneck capacity expansion

problem

Let F ∗ be an optimal solution of the bottleneck capacity expansion
problem BCEP and let t∗ denote the corresponding objective function value,
i.e., mine∈F∗ ce = t∗. Since the functions fe are monotone increasing, it makes no
sense to increase the capacity of an element e ∈ E if this increase is not necessary
to achieve the objective function value t∗. Hence we can assume that the increased
capacities ce are chosen such that

ce =
{
t∗ if ĉe < t∗ and e ∈ F ∗
ĉe otherwise.

This means that we can assume that the capacities ce of elements whose capacity
is increased, i.e., those for which ce > ĉe holds, all have the same value. Making
use of the normalization property (3), the BCEP can be reformulated and attacked
by a parametric approach.

Let t ∈ R. Consider the algebraic optimization problem

min
F∈F

⊕
e∈F

fe(t) (8)

and define the function z by

z(t) := min
F∈F

⊕
e∈F

fe(t). (9)

Since the functions fe are monotone increasing, it follows that the function z
is monotone increasing as well. Thus the BCEP is equivalent to the following
problem:

find the largest parameter t∗ such that z(t∗) � B. (10)

t∗ corresponds to the optimal objective function value in the BCEP. If the func-
tions fe are continuous, then z is continuous as well and the above problem can
be simplified to

find the largest parameter t∗ such that z(t∗) = B. (11)

BOTTLENECK CAPACITY EXPANSION PROBLEMS 9

Similar parametric search problems as in (10) and (11) arise in connection with com-
binatorial fractional programming problems (see Megiddo [11,12] and Radzik [14])
and with inverse parametric optimization problems (see e.g. Burkard et al. [2]).

Clearly a basic ingredient of an algorithm for determining t∗ will be a subroutine
for evaluating the function z for a fixed value of t, i.e., for solving the problem (8)
for a fixed value of t. Note that for a fixed parameter value t, the problem (8) is an
algebraic optimization problem. In particular, if ⊕ is the normal addition on the
set of real numbers, we get a classical combinatorial optimization problem with
sum objective function. If ⊕ is the maximum operation, we get a combinatorial
optimization problem with bottleneck objective function.

For solution routines for general algebraic optimization problems consult
Burkard and Zimmermann [4] or Zimmermann [16]. For the purpose of this pa-
per it suffices to mention that efficient algorithms are known for a large class of
algebraic optimization problems including algebraic spanning tree problems, alge-
braic assignment problems and algebraic path problems. For some problems the
known algorithms make, however, use of additional assumptions on the algebraic
system (H,⊕,�). For example, the algorithm of Burkard et al. [3] for algebraic
assignments works for commutative semigroups which are so-called d-monoids.
d-monoids fulfill the following so-called divisor-rule:

if a � b then there exists an element d ∈ H such that a⊕ d = b.

In the next section we will show how a large class of bottleneck capacity expansion
problems can be solved within a strongly polynomial number of steps by taking
advantage of the parametric reformulation obtained above.

3. Megiddo-type approaches for solving bottleneck

capacity expansion problems

In this section we will apply the approach of Megiddo [11,12] to solve the para-
metric reformulation (10) of the bottleneck capacity expansion problem. Recall
that our task is to find the largest value of t∗ such that z(t∗) � B holds where z
is given by (9).

3.1. Technical preliminaries

In order to make sure that the function
⊕

e∈F
fe does not behave too badly,

we will make the following assumptions: let the cost functions fe : R+
0 → H be

members of a classM of monotone increasing functions which fulfills the following
three properties:
(P1) M is closed under the operation ⊕, i.e., for any two functions u, v ∈M the

composition u⊕ v belongs again to M.
(P2) Each function f ∈ M has only finitely many jumps (= points of discontinu-

ity).

10 R.E. BURKARD, B. KLINZ AND J. ZHANG

(P3) For any two functions u, v ∈ M, u 6= v, there are only finitely many proper
intersection points of u and v. By a proper intersection point we mean a
point t fulfilling the following two properties:
• u(t) = v(t);
• there exists a real number ε0 > 0 such that we either have u(t − ε)
6= v(t− ε) for all 0 < ε ≤ ε0 or u(t+ ε) 6= v(t+ ε) for all 0 < ε ≤ ε0.

(This definition is used to exclude inner points of intervals on which u and
v coincide.)

Note that the class of monotone increasing, piecewise affine-linear functions with a
finite number of breakpoints fulfills the above properties (P1–P3) if we take ⊕ = +
or ⊕ = max. Another example is obtained by taking the class of all polynomials
with positive coefficients and using the multiplication as operation ⊕.

3.2. A first Megiddo-type approach

We are now ready to describe the basic version of our Megiddo-type approach.
Throughout the algorithm we will maintain an interval I such that the optimal
parameter value t∗ is contained in I. We may start with the interval I := [0,∞).
This parameter interval can be further reduced by the following considerations:
Let nmax and nmin denote the maximum and the minimum cardinality of a feasible
solution, respectively. Moreover, let bmin ∈ H be defined by

bmin := max

 b ∈ H | bnmax = b⊕ b⊕ · · · ⊕ b︸ ︷︷ ︸
nmax-times

� B

 ·
(Note that by assumption 0 � B. Thus bmin is well-defined.) Similarly, let bmax

∈ H be defined by

bmax := max

 b ∈ H | bnmin = b⊕ b⊕ · · · ⊕ b︸ ︷︷ ︸
nmin-times

� B

 ·
(Note that the max operation that occurs in the computation of bmin and of bmax

is with respect to the order �.) Now let

tmin := sup { t ∈ R | fe(t) � bmin for all e ∈ E } (12)

be the largest value of the parameter t such that all cost functions fe(t) have values
� bmin. Consequently, tmin is a lower bound for the optimal solution value t∗. In
particular, if tmin = ∞ holds, the capacity of the structure (E,F) can be made
arbitrarily large within the given budget which implies that the bottleneck capacity
expansion problem does not have a finite optimal solution. If tmin is finite, we

BOTTLENECK CAPACITY EXPANSION PROBLEMS 11

determine an upper bound tmax for the optimal parameter value t∗ by

tmax := inf { t | bmax ≺ fe(t) for all e ∈ E } · (13)

Obviously, tmax is an upper bound for t∗. Thus we can replace the original interval
I by I := [tmin, tmax]. From the computational point of view, it will, however, often
be preferable to work with the starting interval [0,∞) since the computation of
tmin and of tmax might be time consuming for more complicated algebraic systems
(H,⊕,�).

The basic ingredient for our parametric algorithm to determine t∗ will be an
algorithm A for evaluating the function z for a fixed value of t, i.e., for solving
the algebraic optimization problem (8) for a fixed value of t. The main idea of
a Megiddo-type approach is to apply such an algorithm parametrically, i.e., with
input data that are functions of the parameter t instead of constants. To make
this approach work, we assume that the set of operations of algorithm A is limited
to applying the algebraic operation ⊕ and to performing comparisons with respect
to the order �. (Actually, we could go along with a weaker assumption. Namely,
we could allow operations which can be performed without knowing t∗ and which
do not produce functions /∈ M. For real valued functions and ⊕ = + we can, for
example, allow multiplications of a scalar with a function.)

We extend algorithm A which works for single cost elements drawn from H
to the case of cost functions fe : R+

0 → H. As long as A does not arrive at a
comparison with respect to �, we can proceed with the functions depending on
the parameter t in the same way as we would do for constant costs. As soon as
a comparison occurs we proceed as follows: Suppose we need to compare the two
functions u and v. First, we compute the proper intersection points of u and v
which lie within the current interval I. Let the candidate set S contain all these
intersection points as well as all points of jump discontinuity of u and v which lie
within the interval I. Let s1 < s2 < . . . < sr be the sorted sequence of the points
in S. If this sequence is empty, u and v are comparable in I, i.e., we will either have
u(t) � v(t) for all t ∈ I or v(t) � u(t) for all t ∈ I. In this case we can immediately
decide the outcome of the comparison and proceed with running the algorithm A.
If S is, however, nonempty, we determine the median sM of the set S and solve
the subproblem (8) for t := sM to evaluate z(sM). If we have z(sM) � B, then
it is clear that t∗ ≥ sM holds. Therefore, we can reduce the current interval I by
replacing its left endpoint by sM . Moreover, we remove all points from S which
are smaller than sM . Similarly, if B ≺ z(sM) holds, we replace the right endpoint
of I by sM and we remove from S all points which are larger than sM . We then
proceed with the new smaller set S in the same way until we get an interval I for
which the two functions u and v are comparable. At that point we can decide the
outcome of the comparison and continue with the algorithm A. At the end of the
algorithm, we are left with an interval I which contains the optimal value t∗ and
with a feasible solution F ∗ ∈ F which is an optimal solution of the problem (8)

12 R.E. BURKARD, B. KLINZ AND J. ZHANG

for all t ∈ I. By determining the largest t such that⊕
e∈F∗

fe(t) � B

the optimal parameter t∗ can be found (in case we get t∗ = ∞, the BCEP is
unbounded and does not have a solution).

Let us now analyse the running time of this algorithm. Suppose that algorithm
A performs O(TA) operations ⊕ and comparisons with respect to the order �
when it is applied to an input with constant costs. Usually the running time of an
algorithm is measured by the number of elementary arithmetic operations it per-
forms. In our case we cannot count this number without making assumptions on�
and ⊕. To overcome this difficulty, we count the number of steps the algorithm
performs, where by step we either mean a comparison between two elements a,
b ∈ H, or an operation a⊕ b for a, b ∈ H, or an elementary arithmetic operation.

For the analysis of the parametric algorithm it is essential how many steps are
needed for carrying out an operation u⊕ v or a comparison between u and v for
functions u, v ∈M. Suppose that it takes O(T⊕) steps to perform an operation of
type ⊕. To bound the number of steps needed per comparison, suppose that O(TS)
steps are needed to compute the candidate set S. To compute S we need to
compute all proper intersection points of two functions u and v from the classM
and add all points where u or v have a jump. Since the cardinality of S is roughly
halved in each iteration, the comparison between u and v can be decided after
O(log |S|) iterations. In each iteration we need to evaluate the function z for a
fixed value of t which can be done in O(TA) steps by applying algorithm A. Since
a single median computation requires time linear in the number of elements of the
set, all median computations can be accomplished in O(|S|) time. (In the first
iteration we need O(|S|) steps, in the second O

(
|S|
2

)
, in the third O

(
|S|
4

)
etc.)

All in all, we get that a comparison of two functions inM can be performed using
O(TA log |S|+ TS + |S|) steps.

Let K1 be an upper bound on the number of proper intersection points of any
two functions from M and let K2 be an upper bound on the number of jumps
of a function in M. Then |S| can be bounded from above by K = K1 + 2K2.
Consequently, our algorithm performs O(TA(TA log(K+ 1)+TS+K+T⊕)) steps.
Since the function class M satisfies the properties (P1–P3) by assumption, our
algorithm will terminate after a finite number of steps if TS and T⊕ are finite. The
number of steps will be polynomial (strongly polynomial) if TS, K, T⊕ and TA
are polynomial (strongly polynomial). More specific results can be obtained for
specific classes of cost functionsM. Summarizing, we have obtained the following
result.

Theorem 3.1. Consider the class of bottleneck capacity expansion problems with
cost functions fe from a class M which fulfills properties (P1–P3). Let K be an
upper bound on the number of all proper intersection points and jumps of two
functions from M. Suppose it takes O(TS) steps to determine all proper intersec-
tion points and jumps of two functions from M, and O(T⊕) steps to apply ⊕ to

BOTTLENECK CAPACITY EXPANSION PROBLEMS 13

two functions in M. Moreover, assume that O(TA) steps are required to solve the
algebraic optimization problem (8) for a fixed value of t. Then the corresponding
bottleneck capacity expansion problem can be solved within O(TA(TA log(K + 1)
+TS +K + T⊕)) steps.

The case where all cost functions fe are monotone increasing, piecewise affine-
linear functions with a finite number of breakpoints is of particular importance in
practical applications and deserves special attention. This class of functions clearly
satisfies properties (P2) and (P3). To make sure that property (P1) is satisfied as
well, we need to restrict our attention to the cases where the composition of two
piecewise affine-linear functions is piecewise affine-linear again. (For real valued
functions this is, for example, true for ⊕ = + and ⊕ = max.)

Let P denote the class of monotone increasing, piecewise-affine linear functions
fromH to R+

0 with a finite number of breakpoints, and let P(L) denote the subclass
of P with at most L breakpoints.

Theorem 3.2. Consider the class of bottleneck capacity expansion problems with
cost functions fe ∈ P where we assume that P is closed with respect to ⊕. Fur-
thermore, assume that all functions which are involved in comparisons throughout
the parametric algorithm belong to the class P(L). This class of bottleneck capacity
expansion problems can be solved within O(TA2 logL+ TAL) steps.

Proof. This theorem follows immediately from Theorem 3.1. It can easily be
checked that we get K = O(L), TS = O(L) and T⊕ = O(L). �

Observe that in many cases L can be bounded in a nice way. Suppose that
all fe belong to the class P(L1), i.e., they have at most L1 breakpoints. Then in
many cases we will have L = O(nL1) (this holds in particular in cases where the
functions which are compared to each other by the parametric algorithm represent
cost values of feasible solutions or of partial solutions). In other cases, we might
have L = O(TAL1). (Note that we perform at most O(TA) operations of type ⊕
throughout one run of algorithm A. So under mild assumptions on the nature of
algorithm A, we can conclude that we have to deal only with functions with at
most O(TAL1) breakpoints.)

Consequently, most cases of the BCEP restricted to piecewise-affine linear cost
functions fe can be solved within a strongly polynomial number of steps if the
underlying algebraic optimization problem (8) can be solved within a strongly
polynomial number of steps.

3.3. Modifications and improvements of the basic Megiddo approach

In this section we will deal with modifications which in many cases lead to a
speed-up of the basic Megiddo approach proposed in the preceding section.

One disadvantage of the basic approach became evident in the discussion at
the end of the previous section. Even if the given cost functions fe are of simple
structure (e.g. piecewise affine-linear with only one breakpoint), the composed
functions which are built up in the course of the parametric algorithm can become

14 R.E. BURKARD, B. KLINZ AND J. ZHANG

much more complicated. This observation suggests the following approach: we
start by putting all the breakpoints (= points of discontinuity or nondifferentiabil-
ity) of the given n cost functions fe, e ∈ E, into a joint sequence. Let the resulting
sequence (in sorted order) be

t1 < t2 < . . . < tr.

For notational convenience, we set t0 := 0 and tr+1 = ∞. By applying binary
search we can find the interval J := [tj , tj+1) with j ∈ {0, . . . , r} for which we
have z(tj) � B and B ≺ z(tj+1). Clearly this interval J contains the optimal
solution t∗. We then use J as start interval I in the parametric search. The
advantage of this approach is that, by construction, the cost functions fe have no
breakpoints in the interior of J . Observe that we even can neglect possibly existing
breakpoints at the left end of J because the functions fe are monotone increasing
by assumption. Hence, we either find a solution t∗ ∈ (tj , tj+1) or we have t∗ = tj .
The advantage of this approach is that the functions with which we have to work
throughout the parametric algorithm are often of much simpler structure than in
the case of the basic approach described in Section 3.2.

Let us now analyse the running time of this preprocessing step. Let L2 be the
total number of breakpoints of the cost functions fe. Then we need O(TA logL2

+L2) steps to determine the interval J . To see this, note that the binary search
takes O(logL2) iterations, and in each iteration we need to evaluate the function z
which takesO(TA) steps. The termO(L2) accounts for the time which is needed for
computing the test points needed in the binary search. This can either be achieved
by median computations as explained in the previous section, or by sorting the
sequence of the breakpoints of the cost functions fe (where for the latter alternative
we need to assume that the breakpoints of the cost functions fe are given in sorted
order in the input which will normally be the case).

In many cases the number of steps performed by the modified Megiddo ap-
proach with preprocessing will be smaller than the number of steps performed
by the basic approach proposed in Section 3.2. To illustrate this point, let us
consider the special case of real-valued piecewise affine-linear cost functions and
sum-budget constraints, i.e., we have ⊕ = +. After the preprocessing we are left
with cost functions fe which are affine-linear over the interval of interest. Note
that the sum of two affine-linear functions is affine-linear again. It is easy to
check that for this special case we get K = O(1), T⊕ = O(1) and TS = O(1) in
Theorem 3.1. Thus, it follows that the parametric algorithm performs at most
O(TA2) steps. Including the number of steps performed during the preprocessing
we are done within O(TA2 + TA logL2 + L2) steps. This bound is not directly
comparable to the bound in Theorem 3.2, but it is easy to see that in most cases
the modified algorithm performs a smaller number of steps than the basic al-
gorithm. Typically, one can expect to win at least a log-factor. Consider, for
example, the special case where the cost functions fe have at most L1 breakpoints
and where we have L = O(nL1) in Theorem 3.2 (which is a rather favourable
assumption for that case). Clearly we then have L2 ≤ nL1 and hence the modified

BOTTLENECK CAPACITY EXPANSION PROBLEMS 15

approach finishes withinO(TA2+TA log(nL1)+nL1) steps while the basic approach
requires O(TA2 log(nL1) + nTAL1) steps.

Another possibility to reduce the number of steps performed by the basic
Megiddo approach is possible in cases where there exists a parallel algorithm for
solving the algebraic optimization problem (8). Let us assume that the parallel
algorithm uses P processors. Megiddo [12] observed that the number of iterations
in the parametric search approach can be reduced by exploiting the parallelization.
The idea is to simulate the parallel computation on a single serial processor. We
let each of the processors, one after the other, perform its work until it arrives
at the first comparison between two functions. Next we compute the candidate
set for each of these P comparisons and then combine these candidate sets into
a common candidate set. Then we proceed as described in the previous section.
After the P comparisons have been decided, we continue in the same way until
each processor arrives at its next comparison or at the end of its task. This ap-
proach helps in reducing the number of subproblems of type (8) which have to be
solved throughout the course of the algorithm.

4. A Newton approach for bottleneck capacity

expansion problems with a sum budget constraint

and continuous piecewise affine-linear cost functions

In this section we consider the class of bottleneck capacity expansion problems
with a sum budget constraint which results from the algebraic system (H,⊕,�)
= (R,+,≤). Let B > 0 be the given budget. Moreover, we assume that the cost
functions fe are monotone increasing, continuous piecewise affine-linear functions.
In other words, the functions fe are of the shape (5) where we additionally assume
that the functions fe are continuous and that the slopes α(q)

e are positive.
We first perform the same preprocessing as in the modified Megiddo approach

discussed in Section 3.3. Let again

t1 < t2 < . . . < tr

denote the sorted sequence of breakpoints of the cost functions fe. Let tr+1 :=
∞. By applying binary search we can then find out which interval [tj , tj+1),
j ∈ {1, . . . , r}, contains the optimal solution t∗. Let us call this interval J =
[t(l), t(u)).

Since the cost functions fe are assumed to be continuous, the function z from (8)
is continuous as well. Hence we can use the parametric reformulation (11), i.e.,
we want to find the largest value of t∗ such that z(t∗) = B. The construction of
the interval J implies that the cost functions fe(t) are affine-linear functions in I.

16 R.E. BURKARD, B. KLINZ AND J. ZHANG

More specifically, for t ∈ J we obtain

fe(t) :=


0 if t(l) < τ

(1)
e

β
(q)
e + α

(q)
e t if τ (q)

e ≤ t(l) < τ
(q+1)
e for a q ∈ {1, . . . , re − 1}

β
(re)
e + α

(re)
e t if t(l) ≥ τ (re)

e .
(14)

For notational convenience we define αe and βe such that fe(t) = αet+ βe for t ∈
J . (This can be done since fe is affine-linear in J .) For a feasible set F ∈
F , let α(F) :=

∑
f∈F αf and let β(F) :=

∑
f∈F βf . Using this notation the

computation of z(t) for t ∈ J can be rewritten as follows:

z(t) := min
F∈F
{α(F)t+ β(F) } · (15)

It is easy to see that z is a monotone increasing, concave, piecewise affine-linear
function. Note that evaluating z for a fixed value of t corresponds to solving the
combinatorial optimization problem

min
F∈F

{∑
e∈F

γe

}
(16)

where γe = αet+ βe, e ∈ F , are constants for fixed t.
Our goal is to find the largest parameter value t such that z(t) = B. This is

equivalent to finding the smallest value of t such that z(t) ≥ B, i.e., the smallest
value of t such that

min
F∈F
{α(F)t+ β(F) } ≥ B. (17)

Inequality (17) can be rephrased as

α(F)t+ β(F) ≥ B for all F ∈ F . (18)

Note that all slopes in (14) are nonnegative. Thus, it follows immediately that we
have α(F) ≥ 0 for all F ∈ F . Since the slopes α(q)

e , q = 1, . . . , re, are positive
by assumption, it follows from (14) that α(F ′) = 0 implies β(F ′) = 0. As we are
looking for values of t such that (18) is fulfilled, it thus cannot happen that there
exists a feasible set F ∈ F such that α(F) = 0. Therefore, condition (18) can be
rephrased as

t ≥ B − β(F)
α(F)

for all F ∈ F . (19)

BOTTLENECK CAPACITY EXPANSION PROBLEMS 17

We wish to find the smallest value of t such that (19) holds. It is easy to see that
this task is equivalent to the following problem

max
F∈F

B − β(F)
α(F)

· (20)

The problem (20) is a so-called linear fractional combinatorial optimization prob-
lem (cf. [11, 14]).

The algorithm proposed below is a Newton-type algorithm which has turned out
to be effective for fractional combinatorial optimization problems (see Radzik [14]).

1. Start with τ1 = t(l) and set i = 1.
2. Determine zi := min

F∈F

∑
e∈F

fe(τi).

Let Fi be the corresponding optimal solution.
3. If zi = B, terminate. t∗ = τi is the optimal parameter.

Otherwise continue with the next step.
4. Let ai := α(Fi) and let bi := β(Fi).

5. Set τi+1 :=
B − bi
ai

, i := i+ 1 and go to Step 2.

Note that it cannot happen that we arrive at ai = 0 in Step 4 of the above
algorithm. (ai = 0 would imply bi = 0 and since z is a piecewise affine-linear,
concave function, we would have z(t) = 0 for t ≥ τi, but this contradicts the fact
that the interval I contains the optimal parameter value t∗ which satisfies z(t∗) =
B.)

Radzik [14] obtained a strongly polynomial bound on the number of steps per-
formed by this Newton approach. His analysis applies to our case as well. In this
manner it can be shown that the algorithm above terminates after O(n2 log2 n)
iterations. In each iteration we have to evaluate the function z(t) for a fixed value
of t. Summarizing we obtain the following theorem.

Theorem 4.1. Consider a bottleneck capacity expansion problem over the alge-
braic system (R,+,≤) with continuous, piecewise-affine linear cost functions fe,
e ∈ E. Let L1 be an upper bound on the number of breakpoints of each individual
cost function fe. Moreover, let T denote the time needed to solve the combinatorial
optimization problem (16).

This case of the bottleneck capacity expansion problem is solved by the above
Newton-type algorithm in O(T log(nL1) + nL+ Tn2 log2 n) time.

The O(T log(nL1) + nL1) part of the time bound corresponds to the complexity
of the first phase of the algorithm in which the interval [t(l), t(u)] is determined.

18 R.E. BURKARD, B. KLINZ AND J. ZHANG

5. Strongly polynomial time binary search algorithms

for special cases of the bottleneck capacity

expansion problem

In this section we will deal with two special cases of the bottleneck capacity
expansion problem which can be solved within a strongly polynomial number of
steps by applying a binary search approach. Section 5.1 deals with the case where
the cost functions fe are step functions with finitely many steps, and Section 5.2
deals with bottleneck capacity expansion problems where the budget constraint (4)
is a bottleneck constraint.

5.1. Bottleneck capacity expansion problems with step functions

as cost functions

In this section we will deal with the case of the bottleneck capacity expansion
problem whose cost functions fe, e ∈ E, are step functions which are continuous
from the left and have finitely many steps, i.e., which are of the form (6). (Step
functions which are continuous from the right can be treated in an analogous way.)

Let t1 < t2 < . . . < tL1 be the set of parameter values where at least one of the
functions fe, e ∈ E, has a jump. Let I be an interval which contains the optimal
parameter value t∗. As discussed in Section 3, we can use I := [0,∞) or use the
interval I := [tmin, tmax] determined by (12) and (13), respectively. (It might,
however, be more time consuming to compute tmin and tmax than to work with a
larger interval I.) We can restrict our consideration to those values ti which lie
within the interval I. If I contains tL1 , we first determine

z(tr) := min
⊕
e∈F

fe(tr).

If z(tr) � B, the capacity of the instance can be made arbitrarily large within
the given budget and we are finished. Otherwise, we perform a binary search on
the set of ti values within interval I. By the same argument as used in Section 3
it follows that the optimal value t∗ can be found within O(TA logL1 + L1) steps.
(We need logL1 iterations in the binary search and each iteration requires the
solution of an instance of the algebraic optimization problem (8)). If each of the
step functions fe has at most L2 jumps, the number of steps performed by the
algorithm will be within O(TA log(L2n) + L2n).

5.2. Bottleneck capacity expansion problems with a bottleneck

constraint

In this section we will deal with bottleneck capacity expansion problems for
which the budget constraint (4) is a bottleneck (time) constraint, i.e., is of the

BOTTLENECK CAPACITY EXPANSION PROBLEMS 19

form

max
e∈F

fe(t) ≤ B. (21)

In this case we can use a direct threshold algorithm for finding an optimal expan-
sion which can be performed within the given budget (time) bound B. To avoid
technical difficulties, let us assume that all cost functions fe are continuous from
the left. For every element e ∈ E we determine the parameter value te as

te = sup { t | fe(t) ≤ B } · (22)

Then we sort these values, i.e.,

te1 ≤ te2 ≤ . . . ≤ ten .

Now we consider a sequence of feasibility problems of the form

does there exist a feasible solution F ⊆ {ek, ek+1, . . . , en}? (23)

By applying binary search we can find the largest index k for which a feasible
solution exists. Let k∗ be this largest index and let Fk∗ be a corresponding feasible
solution. Fk∗ yields an optimal solution of the bottleneck capacity expansion
problem with the budget constraint (21). Its objective function value is tek∗ .
Summarizing we get:

Theorem 5.1. Consider the bottleneck capacity expansion problem with a bottle-
neck budget constraint. Let T1 be the time needed to compute the parameter value te
in (22) for a fixed e ∈ E and let T2 be the time needed to solve the feasibility prob-
lem (23) for a fixed value of k. Then the bottleneck capacity expansion problem
can be solved in O(n log n+ nT1 + T2 log n) time.

6. Conclusion

In this paper we presented a unified approach for bottleneck capacity expan-
sion problems. First, we introduced a generic model for the BCEP by defining the
overall expansion cost and the budget constraint in an algebraic way. Then we
derived a parametric reformulation of the BCEP. Based on this parametric formu-
lation we proposed generic solution approaches for the general bottleneck capacity
expansion problem. For an important subclass of bottleneck capacity expansion
problems we obtained algorithms which perform a strongly polynomial number of
steps.

We hope that the approach taken in this paper will contribute to a better un-
derstanding which types of capacity expansion problems are efficiently solvable.
As research question for future work we suggest to extend the work of this paper
to other types of capacity expansion problems where the capacity of the struc-
ture (E,F) is defined in a different manner.

20 R.E. BURKARD, B. KLINZ AND J. ZHANG

References

[1] R.K. Ahuja and J.B. Orlin, A capacity scaling algorithm for the constrained maximum flow
problem. Networks 25 (1995) 89-98.

[2] R.E. Burkard, K. Dlaska and B. Klinz, The quickest flow problem. Z. Oper. Res. (ZOR) 37
(1993) 31-58.

[3] R.E. Burkard, W. Hahn and U. Zimmermann, An algebraic approach to assignment
problems. Math. Programming 12 (1977) 318-327.

[4] R.E. Burkard and U. Zimmermann, Combinatorial optimization in linearly ordered
semimodules: A survey, in Modern Applied Mathematics, edited by B. Korte. North Hol-
land, Amsterdam (1982) 392-436.

[5] K.U. Drangmeister, S.O. Krumke, M.V. Marathe, H. Noltemeier and S.S. Ravi, Modifying
edges of a network to obtain short subgraphs. Theoret. Comput. Sci. 203 (1998) 91-121.

[6] G.N. Frederickson and R. Solis-Oba, Increasing the weight of minimum spanning trees.
J. Algorithms 33 (1999) 244-266.

[7] G.N. Frederickson and R. Solis-Oba, Algorithms for robustness in matroid optimization, in
Proc. of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms (1997) 659-668.

[8] D.R. Fulkerson and G.C. Harding, Maximizing the minimum source-sink path subject to a
budget constraint. Math. Programming 13 (1977) 116-118.

[9] A. Jüttner, On budgeted optimization problems. Private Communication (2000).
[10] S.O. Krumke, M.V. Marathe, H. Noltemeier, R. Ravi and S.S. Ravi, Approximation

algorithms for certain network improvement problems. J. Combin. Optim. 2 (1998) 257-
288.

[11] N. Megiddo, Combinatorial optimization with rational objective functions. Math. Oper. Res.
4 (1979) 414-424.

[12] N. Megiddo, Applying parallel computation algorithms in the design of serial algorithms.
J. ACM 30 (1983) 852-865.

[13] C. Phillips, The network inhibition problem, in Proc. of the 25th Annual Symposium on
the Theory of Computing (1993) 776-785.

[14] T. Radzik, Parametric flows, weighted means of cuts, and fractional combinatorial optimiza-
tion, in Complexity in Numerical Optimization, edited by P.M. Pardalos. World Scientific
Publ. (1993) 351-386.

[15] J. Zhang, C. Yang and Y. Lin, A class of bottleneck expansion problems. Comput. Oper.
Res. 28 (2001) 505-519.

[16] U. Zimmermann, Linear and Combinatorial Optimization in Ordered Algebraic Structures.

North-Holland, Amsterdam, Ann. Discrete Math. 10 (1981).

to access this journal online:
www.edpsciences.org

