RATRO Operations Research
RAIRO Oper. Res. 35 (2001) 165-187

MINIMIZING THE EARLINESS AND TARDINESS COST
OF A SEQUENCE OF TASKS ON A SINGLE MACHINE

PHILIPPE CHRETIENNE !

Abstract. Assume that n tasks must be processed by one machine
in a fixed sequence. The processing time, the preferred starting time
and the earliness and tardiness costs per time unit are known for each
task. The problem is to allocate each task a starting time such that
the total cost incurred by the early and tardy tasks is minimum. Garey
et al. have proposed a nice O(nlogn) algorithm for the special case of
symmetric and task-independent costs. In this paper we first extend
that algorithm to the case of asymmetric and task-independent cost
without increasing its worst-case complexity. For the general case of
asymmetric and task-dependent costs, we propose an O(n3 logn) al-
gorithm based on a strong dominance property that yields to model
the scheduling problem as a minimum cost path in a valued directed
acyclic graph.

Résumé. Supposons que n taches doivent étre exécutées par une ma-
chine dans un ordre fixé a priori. On connait pour chaque tache sa
durée, la date souhaitée de son exécution et les cofits unitaires associés
d’avance et de retard. On cherche a allouer a chaque tache une date
d’exécution de sorte que le cout total des avances et des retards soit
minimum. Un algorithme de complexité O(nlogn) a été proposé par
Garey et al. pour le cas particulier de cotts unitaires. Nous proposons
d’abord un algorithme de complexité O(n? logn) qui étend I'algorithme
Garey et al. au cas de colts asymétriques indépendants des taches.
Pour le cas général de coiits asymétriques dépendants des taches, nous
proposons un algorithme de complexité O(n® logn) fondé sur une pro-
priété de dominance permettant de ramener le probleme a la recherche
d’un chemin de colit minimum dans un graphe valué sans circuit.

Keywords: Scheduling, algorithm, complexity.

Received May, 1999.

1 LIP6, Péle IA, UPMC, 8 rue du Capitaine Scott, 75015 Paris, France;
e-mail: Philippe.Chretienne@lip6.fr
© EDP Sciences 2001

166 PH. CHRETIENNE
1. INTRODUCTION

Due to their numerous applications, scheduling problems where the tasks
incurred a cost both if they are early or tardy have received much attention. As
an example, in a just-in-time production, a piece that is finished before its delivery
time incurs an inventory cost while it incurs a backlog cost if it is finished after
its delivery time. Moreover, there are many production systems where there is a
priori no evidence for the inventory and backlog per time unit costs to be equal or
not to depend on the individual tasks. Many variants of that problem have been
studied [1,5-9] and quite good surveys such as [2-4] show the amount and the
diversity of the research in this field.

In this paper, we revisit the basic problem where a finite set of tasks must be
processed on a single machine in a given order. Each task has a given preferred
starting time and its earliness or tardiness in a schedule is the deviation about
that preferred starting time. We assume that an early or tardy task incurs a cost
which is proportional to the corresponding earliness or tardiness value. However,
the corresponding per-time-unit earliness and tardiness costs need neither be equal
nor be independent of the individual tasks.

The main reference for this problem concerns the special case of symmetric and
task-independent costs: Garey et al. [1] have developed a nice O(nlogn) algorithm
that iterates a transformation that allows to compute an optimal schedule for the
problem restricted to its ¢ + 1 first tasks from the problem restricted its first ¢
tasks.

We propose here an algorithm with the same complexity that extends the algo-
rithm in [1] to asymmetric costs. For the general problem with asymmetric and
task-dependent costs, we use a convexity property of the cost function of an allo-
cated block and a strong necessary condition on the starting times of the allocated
blocks in an strongly left-adjusted optimal schedule to first model the problem as
the search of a minimum-cost path in a directed acyclic graph called the indivisible
blocks graph and then derive an O(n?logn) algorithm.

Section 1 defines the scheduling problem and its main notations. Section 2
briefly recalls the algorithm in [1] for symmetric and task-independent costs.
Section 3 presents the extension of that algorithm to asymmetric and task-indepen-
dent costs. Section 5 gives an algorithm for asymmetric and task-dependent costs.

2. DEFINITIONS AND NOTATIONS

n non-preemptive tasks 71, --- , T, must be processed by a single machine in a
given order, for example the order (1,--- ,n). For each task T;, we denote by p;
its processing time, by w; its preferred starting time, and respectively by a; and
r; its per time-unit earliness and tardiness costs. It is assumed that the unitary
costs a; and r; are strictly positive. The task T; started at time ¢; incurs a cost

SCHEDULING A SEQUENCE OF TASKS 167

¢i(t;) defined by:
A;\W; — ti) if ti S ws
ci(ti) - { ’I“iéti — wi) if ti > Wi .
The problem is to allocate a starting time to each task so as to minimize the total
cost Yoi ¢i(ts).

A block of the schedule S is a left and right maximal list B = (T}, Ti+1,- -, Tj)
of tasks performed without any intermediate delay in S. Thus a schedule S is
also a list ((B1,s1), -, (Bp, sp)) of (block, date) pairs called allocated blocks such
that:

1. By - By=(T1,--- ,T});

2. for any k € {2,---,b}, sk > Sk—1 + p(Br-1);
where p(By) = ZTiEBk p; and where s, is the starting time of the first task of By.

Let S = ((B1,51),- -, (Bsp,sp)) be a schedule. We denote respectively by b(S),
5x(S), fr(S) and ny(S) the number of blocks, the starting time of the k** block,
the completion time of the k" block and the index of the last task of the k" block.
When there is no ambiguity to which schedule they refer, the reference to S will
be omitted in these notations.

If (B, s) is an allocated block, the subsets of the early tasks, on-time tasks and
tardy tasks in (B, s) are respectively denoted by A(B, s), H(B,s) and R(B, s).

The cost of (B, s) is denoted by cp(s) whereas the cost of S is denoted by ¢(S).
The following property concerns the shape of the time function cp(t).

Property 1. cp(t) is a convex and piecewise linear time function.

Proof. Let B = (Th, -+ ,Tk) and for any k € {1,---,K} let m; be equal to
Zi:ll p; with by convention 7 = 0. For any k € {1,---, K}, the starting time of
task T} within the allocated block (B, t) is thus 7 + ¢. Let X be a subset of the
tasks in B, we denote by 7(X) the value) ;.. 7; and we define h(X) and a(X)
in the same way. Let A(t), H(t), R(t) be respectively the subsets of early, on-time
and tardy tasks in (B,t).

Since the individual cost of the task T; within (B, t) is a continuous time function
on [0, +o0[(see Fig. 1), ¢p(t) is also a continuous time function on [0, +oo.

Let 6y = 0, we define 0y as the smallest time t > 05 _1 such that at least one
task in A(fx_1) is on-time at t. Let Ay, Hy, Ry be the subsets of the early, on-time
and tardy tasks in (B, 6) and let ¢, = cp(6x). We have for any t € [f;_1, 0

cp(t) = k1 + (t — Op—1)r(Ro U (USZ) Hy) — a(Ap \ USZ{ Hy)).
Let up = r(Ro U (U?;éHj) —a(4p \ Uf;llHj); we get for any t € [fi_1, 0k
CB(t) =Ck—1 + uk(t — 916,1). (1)

Let r be the number of terms of the sequence 0. Every task is tardy from time
0, on. So for any t € [0,.,+o0, we have:

cp(t) = ¢ + (¢ = 0-)r(B). (2)

168 PH. CHRETIENNE

costof Tj in(B.t) costof Tj in(B,t)
i A
slope: r
t t
Case Wj—T§ <0

FIGURE 1. Cost functions.

From (1, 2) and since cp(t) is a continuous time function on [0, +00o[, we get that
cp(t) is piecewise linear. Moreover the slopes ug, k € {1,--- ,r} of the successive
pieces are strictly increasing since we have:

Up — Uk—1 = T(Hk_l) + a(Hk_l) > 0.
So cp(t) is a piecewise linear and convex time function. O

We derive from Property 1 that there is a unique time instant apg, called the
optimal starting time of block B, such that:

Ve >0, cplap —e€)>cp(ap) and cg(ap +¢€) > cp(ap).

In what follows, we denote by g the value cp(ap). Figure 1 shows a pair of
values (ap,vB)-
The following three operations on a schedule S = ((By,s1), -, (Bp, sp)) will
appear to be quite useful (see Fig. 2):
o LEFTSHIFT(S, By, sk,t), where B, is a prefix of B, and fr—1 <t < sz,
is the schedule we get by left shifting (Bj,, sx) until it becomes (B, t);

SCHEDULING A SEQUENCE OF TASKS 169

e RIGHTSHIFT(S, By, sk + p(Br) — p(By),t), where B} is a suffix of By,
and si + p(Bx) < t+ p(By) < siy1 — p(By), is the schedule we get by
right-shifting (By/, sy + p(Bx) — p(B})) until it becomes (B}, t);

o LEFTSHIFT&MERGE(S, By, si), where By, is a prefix of B, and k > 1,
is the schedule we get by left shifting (Bj,, sx) until it becomes (after merging)
a suffix of rearranged By_1, which starts at fr_1.

B B"
s [] 1 -
t
B' B"
s | 1 | C T — .
s u

B' B
s [| C1 I -
S u \
B' B"
s [1 | I E— 1,

‘ LEFTSHIFT&MERGE(S,B',s)
B' B"
s I — — —

FIGURE 2. 3 basic operations on a schedule.

Let S = ((B1,51), -+, (Bp, $p)) be a schedule. The allocated block (By, sg) is said
to be left-adjusted if for any time ¢ € [fy—_1, sg[, the inequality cp, (t) > cp, (k)
(where by convention f; = 0) is satisfied. By extension, the schedule S itself is
said to be left-adjusted if all its allocated blocks are left-adjusted. The following
property shows that there is an optimal schedule which is left-adjusted.

Property 2. Left-adjusted schedules make a dominant subset.

Proof. Let S = ((B1,$1), -+, (Bp, sp)) be a non left-adjusted optimal schedule.
Since S is optimal, for any k € {1,--- ,b}, we have for any time ¢ € [fr—1, k[, ¢B,
(t) > cp, (sk). Since S is not left-adjusted, let kg be the first non left-adjusted
allocated block and let v be the smallest time in [fx,—1, sk, [such that cp, (t) =
By, (Sky)- We then define the schedule S’ as follows.

If v > fry—1 then 8" = LEFTSHIFT(S, By, Sk, v). From the definition of v,
we know that the allocated block (By,,v) of S’ is left-adjusted.

170 PH. CHRETIENNE

If v = fro—1 and ko > 1 then S’ = LEFTSHIFT&MERGE(S, By, Sk)-
Since (Bj,—1,8k,—1) i left-adjusted in S and cp, (sk,) = cB,, (v) we get from
Property 1 that the allocated block (B, —1Bk,, Sko—1) is left-adjusted in S’

If v= fx,—1 and kg = 1 then S’ = LEFTSHIFT(S, By, s1,0).

Let us denote respectively by b and &k the number of allocated blocks and the
index of the first non left-adjusted allocated block in S’. Whatever the case, we
have b’ — k{, < b — kq. So, after iterating the process at most b — kg times we get
an optimal and left-adjusted schedule. O

3. SYMMETRIC AND TASK-INDEPENDENT COSTS

Garey et al. have proposed in [1] an O(nlogn) algorithm for the special case
when for any task T;, a; = r; = 1. This algorithm, that will be called GTW in the
rest of the paper computes an optimal left-adjusted schedule 52 of the restriction
of the problem to its first ¢ + 1 tasks from an optimal left-adjusted schedule S' of
the restriction of the problem to its first ¢ tasks as follows:

Loif wepr > fiesy)(S') then S? is got by creating the allocated block
((Ty+1),wq+1) and adding it to S*;
2. if wert < fiysy) (S') then let S be the schedule we g by adding the task 7,41
as the last task of the last allocated block of S*.
If the last allocated block of S has less tardy tasks than on-time or early
tasks then S% = S.
Otherwise the last allocated block of S' is left-shifted until its starting time ¢
matches one of the three following events:
El: t=0;
E2: the number of tardy tasks of the shifted block strictly decreases at
time ¢;
E3: t is the completion time of the one-but-last block of S!.
In case of event E1 or E2, S? = LEFTSHIFT(S, By(s) sp(s)- t); in case of
event E3, S2 = LEFTSHIFT&MERGE(S, By(s), 5p(5))-

The above GTW algorithm is illustrated in Figure 3 that shows the 6 first iterations
associated with the following input data.

1 (1123|4567 |89 1011|1213 14|15
pil2|3|1(2|1|2|2 |1 (12|18]|1]2]|2
wi 4117853131416 (18|19 |15 16| 17|18

The correctness of GTW mainly results from the following property whose proof
is in [1].

Property 3. The schedule provided by iteration k of GTW is a left-adjusted op-
timal schedule for the restriction of the problem to its k first tasks.

In [1], the authors also note that their algorithm may be simply extended to
the case when the execution cost of task T; is w;c;(¢;).

SCHEDULING A SEQUENCE OF TASKS 171

iteration 1

| T1 | T | iteration 2

T3 iteration 3

—
-
—
N

—
[aiy
-
N

T3 iteration 4

[| 1 | | 73] 14 | 15| iterations
| T | T2 | T3 | T4 | T5 | T6 | iteration 6
0 2 5 6 8 9 1 timf

F1GURE 3. The GTW algorithm.

4. ASYMMETRIC AND TASK-INDEPENDENT COSTS

4.1. THE EXT-GTW ALGORITHM

This section proposes an extension of GTW called EXT-GTW for the case when
for any task T;, we have a; = a and r; = r where it is only assumed that a and r
are non negative. Let (B, s) be an allocated block. The inequalities LEFT(B, s)
and RIGHT (B, s) are defined by:

LEFT(B,s): a(A(B,s)+ H(B,s)) —rR(B,s) > 0;
RIGHT(B,s): r(R(B,s)+ H(B,s)) — aA(B,s) > 0;

where A(B,s), H(B,s) and R(B, s) are respectively the number of early, on-time
and tardy tasks in (B, s).

The algorithm EXT-GTW differs from GTW by the block invariant satisfied by
all the allocated blocks at each iteration and by the fact that within each iteration
EXT-GTW may repeat the merging process as long as the last allocated block of
the running schedule does not satisfy the invariant. As for GTW, we describe the
generic step of EXT-GTW that provides an optimal schedule S? of the restriction

172 PH. CHRETIENNE

of the problem to its first ¢+ 1 tasks from an optimal schedule S' of the restriction
of the problem to its first ¢ tasks

Loif wer1 > fogsy) (S1) then S? is got by creating the allocated block
((Ty+1),wq+1) and adding it to S*;
2. if wgq1 < fb(sl)(Sl) then let S be the schedule we get by making task 741
be the last task of the last allocated block of S!.
(a) If sp(5)(S) = ap,, (i.e.: the starting time of the last allocated block of
S is its optimal starting time), then S? = S.
(b) Otherwise, the last allocated block of S is shifted to the left as long as
its starting time ¢ matches one of the three following events:
Fl1: t =0;
F2: t = ap,);
F3: t is the completion time of the one-but-last allocated block of S.
If F1 or F2 occurs, then S? = LEFTSHIFT(S, By(s),t). If F3 occurs then
S:=LEFTSHIFT&MERGE(S, Bys), $p(5)) and return to 2(a).

An allocated block (B, s) is said to be left-optimal if for any (B’, s) where B’ is a
prefix of B, the inequality LEFT(B’, s) is true. An allocated block (B, s) is said
to be right-optimal if for any (B”, s+ p(B) — p(B")) where B” is a suffix of B, the
inequality RIGHT (B”, s+p(B) —p(B")) is true. An allocated block (B, s) is said
to be quasi left-optimal if LEFT (B, s) is false and if for any (B’,s) where B’ is
a proper prefix of B, the inequality LEFT(B’,s) is true. The following property
gives a strong structural condition met by the optimal and left-adjusted schedules.

Property 4. Let S = ((B1,51), -, (Bb,5)) be an optimal schedule. Any allo-
cated block (By, si) such that s > 0 is left and right optimal. Moreover if s; =0
then the allocated block (B1,s1) is right-optimal.

Proof. Assume that si > 0 and that (By, sg) is not left-optimal. There is a prefix
By of By such that LEFT (B, si) is false. There also exists a sufficiently small
€ > 0 such that:

1. R(By, sk —€) = R(By, sk);

2. the schedule 8" = LEFTSHIFT(S, By, sk, sk — €) meets the resource con-

straint.

From the definition of € we have:
c(S") = ¢(S) + e(a(A(By,, sk) + H(By, sx)) — rR(By,, s))

since the tardy tasks of (B, s —€) are the tardy tasks of (By, si), the early tasks
of (By,, sy —€) are the early or on-time tasks in (By,, sx) and there is no on-time task
in (By,, sy —¢€). As LEFT(By,, si) is false, we have ¢(S") < ¢(S), what contradicts
the optimality of S.

Assume that si > 0 and that (B, sk) is not right-optimal. Let uy = si +
p(Br) — p(By)). There is a suffix B}/ of By such that RIGHT(By,uz) is false.

SCHEDULING A SEQUENCE OF TASKS 173

There also exists a sufficiently small € > 0 such that:
1. A(BY,ur +€) = A(BY, ur);
2. the schedule S” = RIGHTSHIFT(By, ug, u, + ¢€) is feasible.

From the definition of € we have:
c(8") = ¢(S) + e(r(R(By,ux) + H(By,ug)) — aA(By},u))

since the early tasks of (B}, u + ¢) are the early tasks of (By/, ux), the tardy tasks
of (B}, u + €) are the tardy or on-time tasks of (B}, ux) and there is no on-time
task in (By,ur +€). As RIGHT (By,uz) is false, we have ¢(S”) < ¢(S), what
contradicts the optimality of S.

If s; = 0, the same argument as before applied to a suffix of B; yields a
contradiction to the optimality of S if the allocated block (Bi,s1) is not right-
optimal. 0

We now prove a dominance property of the left-optimal allocated blocks, a
symmetric property of the right-optimal allocated blocks and a theorem that more
generally applies to the right and left optimal allocated blocks.

Theorem 1. Let (B, s) be a left-optimal allocated block. The cost of any schedule
of B whose last task completes at most at time f = s+ p(B) is not less than the
cost of (B, s).

Proof. Let us assume that B = (11, -+ ,T},). Let o be an arbitrary schedule of B
whose last task completes at most at time f. Let u; be the starting time of T; in
(B, s), v; be the starting time of T; in o and A; = u; — v;. From the assumptions
on o we derive that for any i € {1,--- ,n}, A; > 0 and

Ang e SAl
If T; is early or on-time in (B, s), its cost in o is exactly aA; larger than in (B, s),

otherwise T; is tardy in (B, s) and its cost in o is at most rA; less than in (B, s).
So if ¢ is the cost of (B, s) and ¢z the cost of o, we have:

co>c1+a Z JAVE SN S Z A;
Ti€A(B,s)UH(B,s) Ti€R(B,s)
We thus have to prove that:
Ti€A(B,s)UH(B,s) T;€R(B,s)

For any k € {1, ---,n}, let us denote by Bj the prefix (11, --,Tk), by Ax =
{T3,,---,T;,, } the subset of early or on-time tasks in (By,s) and by Ry =

174 PH. CHRETIENNE

{T},,--- Ty, } the subset of the tardy tasks in (By,s). Without loss of gener-
ality, we assume that
1< <lg, and 1< - <Jr,.

Let ay, = maxje{ly...ﬁk}{g—j} and let k* the smallest index in {1,--- ,k} such that
2—; = ag. Notice that oy is well-defined for any k € {1,--- ,n}: indeed we have

aay —rry > 0 since (B, s) is left-optimal and a; +r; = 1. We thus get that a; =1
and r; = 0 (T} is early in (B,s)), from which we conclude that a; > 0 for any
ke{l,---,n}.

Let us define by 7j the following transportation problem:

e Ay is the set of suppliers and the availability of each supplier is 7« ;

e Ry is the set of demands and the amount of each demand is ag«;

e the demands must be exactly fulfilled;

e a transportation arc (T;,Tj) € Ay X Ry, is feasible if ¢ < j.

Such a transportation program is shown in Figure 4.

T4 T7 T9 TI10 T11 T13 T14 T15 T16 T18 T19 T20 T21

T1]8 5

T2 3 |8 2

T3 6 7

T5 118 |4

T6 4 8 (1

T8 7 |6

T12 2

T17 5 8

Bk=(T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11,T12,T13,T14,T15,T16,T17,T18,T19,T20,T21)
Ak=(T1,T2,T3,T5T6,T8,T12,T17)
Rk=(T4,T7,T9,T10,T11,T13,T14,T15,T16,T18,T19,T20,T21)

availability of each task in Ak: 13;

demand of each task in Bk: 8;

fordidden cellsin grey;

a(k)=13/8; k*=21.

FIGURE 4. A transportation program 7.

The following property shows that the transportation problems 7 are feasible.
Property 5. For any k € {1,--- ,n}, the problem T, is feasible.

Proof. T, is feasible since Ry = 0.
Assume now that Xj is a feasible solution of 7; and let us consider the two

following cases about the feasibility of 7;y; depending on whether T}y is an
early or on-time task or a tardy task in (B, s).

SCHEDULING A SEQUENCE OF TASKS 175

First case: Tyy1 € Agy1-

We then have (k + 1)* = k* and problem 7j4; has one more supplier (line
ay + 1) than 7j. Since the availability of the suppliers are the same in 73 and in
Ti+1, 2 is also feasible solution for 7j41.

Second case: Ti11 € Rjy1.
Let us consider two subcases depending on whether (k+1)* = k* or (k+1)* =
k+1.

First subcase: (k+1)* = k*.
We then have
Tyl _ Tk T 1 < T
Gl+1 Gk Q=
Ti+1 has one more demand (column ry + 1) than 7;. The availability of the
suppliers and the amounts of the demands are the same in 7 and in 7xy1. Since
on one hand all the cells of the last column of 7 are feasible and on the other
hand the difference rg«ar — ag«7r between the total avalailability and the total
demand of 7, is at least ag~ from the above inequality, ¥; may be extended into
a feasible solution ¥yy1 of Tpy1.

Second subcase: (k+1)* =k+ 1.
In 7i41, the availability of each of the aj, suppliers is r; + 1 and the amount of
each of the ry + 1 demands is ag. So, from the definition of k* we get:

T rmetl

VjE{l,"',k}, s ar
J

(4)
Assume that 1 + rip = qrax + pr where 0 < pi < ag. We then build line by line a
solution gy of 7;41 as follows:
e the gi+1 first cells of the first line are respectively ag, - - - , ax, pr whereas the
other cells of that line are null; we then define ¢(1) = g + 1 and p(1) = p;
e assume that the | — 1 first lines of 74, are built.
If p(I—1)+ pr < ay, then the values of the gi + 1 cells whose column numbers
are c¢(l —1),--- ,c(l — 1) + qx are respectively

ak 7/7(17 1)7aka"' aakvp(l* 1)+Pk
whereas the other cells of line [are null; we then define ¢(I) = ¢(l — 1) + qx
and p(l) = p(I — 1) + px.

If p(I—1)+ px > ay, then the values of the gi + 2 cells whose column numbers
are c¢(I —1),---,c(l = 1) 4 g + 1 are respectively

a/k_p(l_l)7aka"' 7a/k:7p(l_1)+pk:_ak

whereas the other cells of line [are null; we then define ¢(l) = c¢(I—1)4qr+1
and p(l) = p(l = 1) + pr. — ax.

176 PH. CHRETIENNE

The lines containing g, — 1 (respectively gi) intermediate cells with value ay are
said to be of type 1 (respectively type 2). The following invariant is easily verified:

Property 6. When linel is built, the demands of columns 1 to c(1)—1 are satisfied
and 0 < p(1) < ay.

On the example of Figure 4, we have rp, +1 =13, a;, =8, (k+1)* = k+1 =21,
Ap41 = %, g = 1 and pr = 5. The solution built for 73; in written in the
transportation array. Lines 1, 3,6, 8 are of type 1, lines 2,4,5,7 are of type 2.

Yk+1 is a feasible solution of 714 if and only if its non-zero valued cells are
feasible cells. We first show that there are exactly r; + 1 columns with at least
one non-zero cell and we prove next that every non-zero valued cell of ¥y is a
feasible cell.

Let C be the number of columns with a non-zero valued cell in ¥41. From
the definition of 341, the demands of the C'— 1 first columns are exactly fulfilled
whereas the last column receives p(ar). Since in Xjy; each of the ay suppliers
sends its whole availability 1 + rx, we have:

(14 7rk)ar = (C — 1)ag + p(ax).

Since 0 < p(ag) < ag, the previous inequality implies p(ar) = ar and C = 1 + 7.
Let us call the line separating the feasible cells from the unfeasible cells of the
transportation array the borderline F of Ty (see Fig. 4). For any line [, let y;
be the greatest column number such that the point with coordinates (I,¥;) in the
transportation array belongs to F'.
The following property shows that the non-zero cells in ¥ are feasible cells
of 77§+1 .

Property 7. For any linel € {1,--- ,ar — 1}, we have y; < ¢(l) — 1.

Proof. Let us consider the first line. We have ¢(1) = ¢x + 1. The point (1,y1) on
F' is associated with a prefix Bj, such that r;, = y; and a;, = 1. We then get
from (4) that:

k
y1<Qk+p— <aq+1
ar
The first line thus satisfies the property.
Assume now that among the [first lines, there are [lines of type 1 and 5 lines

of type 2. We then have p(l) = l1pr + l2(pr — ak).
If

p(1) + pe = (I + V)pi + l2(pr — ar) < ax (5)
then the line [+ 1 is of type 1 and we have ¢(l 4+ 1) = (I 4+ 1)gx + 2 + 1. The

point (I + 1,141) on F corresponds to a prefix Bj,, such that rj_ , = 3,41 and
aj, =1+ 1. Since from (4) we have:

I+1

Yi+1
[+1

<qk+p—k'
ag

SCHEDULING A SEQUENCE OF TASKS 177

We get from (5) that y;11 < ({ + 1)gr + l2 + 1 and thus that y;41 <c(l+1) — 1.
If

p() + pe = (I + 1)pi + l2(pr — ar) > ak (6)
then line [is of type 2 and we have ¢(I+1) = (I+1)gx+12+2. The point (141, y;4+1)

on F' corresponds to a prefix Bj,,, such that r;,,, = y141 and a;, = [+1. From (4)
we get:

1+1

Yi+1 Pk
< —
l+1 W+ ag

Since p(1) + pr. < 2ay, we have (I + 1)p — loay, < 2ay, which rewrites

(+1)2% <y +2
ax

We thus have y;11 < (I+ 1)gx + 12 + 2 and y;41 < ¢(l + 1) — 1. That completes
the proof of Property 7. O

To conclude the proof of Property 5, notice that if X1 is not feasible, there
necessarily exists a line [€ {1,-- ,ax — 1} such that y; > ¢(I). We thus get from 7
that Y41 is a feasible solution. O

Recall that in order to prove Theorem 1, we have to prove the inequality (3):

a Z AL —-T Z AL > 0

T;€A(B,s)UH(B,s) T;€R(B,s)

where B = (T1,---,Ty) and (B, s) is a left-optimal allocated block. Since (B, s)
is left-optimal, we have aa,» — rr,- > 0. A sufficient condition for (3) is:

T (> Ai> — aps (> Ai> > 0. (7)

Ti€Ay, T;€Bn

But from Property 5, we know that 7,, has a feasible solution n;.,l € {1,---,an},
ce{l,---,rn}. Let J(I) (respectively I(c)) the column (respectively line) numbers
associated with a feasible cell of line | (respectively column ¢). We have:

vl e {]-a e 7an} Zcej([) Ny c < Ty
Ve e {L"' ,’I“n} Zle](c) Ni,c = An>
V(l,e),l €{l,---,an},ce J() Ay > A,
V(l,e),le{l, - ,an}t,c & J(1) ny.=0.

For any line [€ {1,--+ ,a,}, we thus have:

rn*Ail > Z nl,cAjC-

ceJ(l)

178 PH. CHRETIENNE

By summing all these inequalities we get:

an Tn
Ty g A > g A, g Ny ¢
=1 c=1

lel(c)

which rewrites:

[o 7% Tn
Tp* E Ail Z QAp E A]‘c.
=1 c=1

Since the inequality (7) is satisfied, the same is true for inequality (3), what com-
pletes the proof of Theorem 1. O

The right-optimal allocated blocks satisfy the following symmetrical property.

Theorem 2. Let (B, s) be a right-optimal allocated block. The cost of any schedule
of B whose first task starts at least at time s is not less than the cost of (B, s).

Proof. Since that proof is quite similar to the proof of Theorem 1, we only give
its global scheme. Let B = (T, ---,T1) and let 7 be an arbitrary schedule of
B whose first task starts at least at time s. Let w; and v; be respectively the
starting times of task T; in (B, s) and in 7. From the assumptions on 7 we get
that A; = v; — u; > 0 and that

Ap<- <A

Let ¢; and ¢z be respectively the costs of (B, s) and 7. If T; is on-time or tardy in
(B, s), its cost in 7 is exactly A, larger, otherwise if it is early in (B, s), its cost
in 7 is at most aA; less. We thus have:

co>c1+r Z Al —a Z A;

T;€R(B,s)UH(B,s) T;€A(B,s)

and we must prove that:

T;€R(B,s)UH(B,s) T;€A(B,s)

For each k € {1,---,n}, let By be the suffix (Ty,---,T1), Rp={T;,, - ,Tirk}
be the set of the on-time and tardy tasks of (By,s 4+ > ", pi) and let also
Ay ={T},,-- T}, } be the set of the early tasks of (B, s+>i, ,, pi). Without
any loss of generality we assume that

1< <irk and j1< s <jak.

Let 8B = maxje{ly...ﬁk}{‘:—j} and k be the smallest index of {1,---,k} such that
2 = B,. We notice that 3 is defined for each k € {1,--- ,n}: indeed we have

T

SCHEDULING A SEQUENCE OF TASKS 179

a1+ 7 =1 and rr1 —aa; > 0 since (B, s) is right-optimal, we thus have r =1
and a1 = 0 (717 is tardy), from which we get that r > 0 for any k € {1,--- ,n}.
Let us define the transportation problem U), where:

Ry, is the set of suppliers and the availability of each supplier is aj;
Ay, is the set of demands and the amount of each demand is ry;
the demands must be exactly fulfilled;

e a transportation arc (T;,Tj) € Ai X Ry is feasible if ¢ < j.

We then have the symmetrical property of Property 5 whose proof, which is analog
to that of Property 5 is omitted:

Property 8. For any k € {1,--- ,n}, Uy has a feasible solution.

Since (B, s) is right-optimal, we have
rrh — aaq > 0.

A sufficient condition for (8) to be satisfied is that:

a;l(Z Ai>m<ZAi>ZO. (9)

But the feasibility of U, implies that (9) is satisfied, what completes the proof
of 2. O

Theorem 1 and Theorem 2 may be generalized to left and right optimal allocated
blocks as follows:

Theorem 3. Let (B,s) be a left and right optimal allocated block. The cost of
(B, s) is at most the cost of an arbitrary schedule of B.

Proof. Let o be an arbitrary schedule of B. If o completes at most at time s+p(B)
(respectively starts at least at time s), Theorem 1 (respectively 2) shows cp(s) <
¢(o). Otherwise, there is a prefix B’ of B such that the last task of B’ is completed
in o at most at time s+ p(B’) and such that the first task of the complementary
suffix B” of B’ in B is started at least at time s + p(B’). Let o’ (respectively
c") be the restriction of ¢ to the tasks of B’ (respectively B”). Since (B’,s) is
left-optimal, we have cp/(s) < ¢(o”) from Theorem 1. Since (B”, s+p(B)—p(B"))
is right-optimal, we get from Theorem 2 that cpr (s + p(B) —p(B")) < ¢(o”). We
thus may conclude that cp(s) < ¢(o). O

4.2. CORRECTNESS OF EXT.GTW

We show in this section that if S! is a left-adjusted optimal schedule for the
restriction of the problem to its first ¢ tasks, then the schedule S? provided by
the generic step of EXT.GTW is also a left-adjusted optimal schedule for the
restriction of the problem to its first ¢ + 1 first tasks.

180 PH. CHRETIENNE

In order to prove the correctness of EXT.GTW, we assume that for any k €
{1,---,b(S")}, the restriction S[1,..,nk(S")] of S* to its k first allocated blocks
is optimal and left-adjusted for the task sequence (7%,---,T,,(s1)) and we show
the same is true for S2.

If weyr < fb(sl)(sl), let S9 be the first schedule built by the generic step
of EXT.GTW by adding task Tj,4+1 to the last allocated block of S*. Then if
EXT.GTW performs K mergings, let S1,---, % the intermediate schedules we
got just after these mergings. Notice that if K > 1, then S2 is either SX or re-
sults from the occurrence of event F1 or event F2 during the left shift of the
last allocated block of S%. Let ¥ be an arbitrary schedule for the tasks se-
quence (T4, -+ ,Ty4+1). Before we examine the different issues of the generic step
of EXT.GTW, we give two properties that will simplify the proof: the first shows
that an allocated block remains right-optimal and quasi left-optimal when it is
left-shifted as long as the initially tardy tasks remain tardy.

Property 9. Let (D,u) be a right optimal and quasi left-optimal allocated block
and let v < u. If R(D,v) = R(D,u) then (D,v) is right optimal and quasi left-
optimal.

Proof. Let Ay, H1, Ry (respectively Aa, Ha, Ry) be the number of early, on-time
and tardy tasks in (D, u) (respectively (D,v)). Since each tardy task of (D, u)
is still tardy in (D,v), we have Ay = A; + Hy, Hy = 0 and Ry = R;. Since
LEFT(D,u) is false, we have a(A4; + H1) < rR; and so we get

a(Ag + Hg) < 1Ry (10)

which implies that LEFT (D, v) is false.

Consider a proper prefix D’ of D and let A}, H{, R| (respectively A}, HS, R})
be the number of early, on-time and tardy tasks in (D', u) (respectively (D’,v)).
Since any tardy task in (D’,w) is still tardy in (D',v), we get: Ay = A} + Hf,
H),=0and R, = R}. As LEFT (D', u) is true, we have a(A4} + H{) > rR} and so
a(ASL + HY) > rRY, which implies that LEFT(D’,v) is true. Thus (D,v) is quasi
left-optimal.

Let D" be a proper suffix of D. We denote by AY, H{ and R} (respectively A},
HY and RY) the number of early, on-time and tardy tasks in (D", u+p(D)—p(D"))
(respectively (D", v+p(D)—p(D"))). Let D be the complementary proper prefix
of D" in D. Since each tardy task in (D,) is still tardy in (D, v), we have: Ay =
Ay Jrﬁl, Hy =0and Ry = Ry. As LEFT(ﬁ, v) is true, we have G(A2+ﬁ2) > 7"]%2,
which rewrites a(—As+AY— Ho+HY) < r(—Re+RY). By summing that inequality
with inequality (10), we get a(A5 + HY) < rRY, which implies r(Ry + HY) > aAj
and so RIGHT (D", v + p(D) — p(D")) is true.

For the suffix D itself, inequality (10) directly implies that r(Rs + Hz) > aAs
and so RIGHT (D, v) is true. (D,v) is thus a right-optimal allocated block. O

The second property whose simple proof is omitted concerns the merging of a
right-optimal and quasi left-optimal allocated block with a left and right-optimal
allocated block.

SCHEDULING A SEQUENCE OF TASKS 181

Property 10. Let (E,u) be a left and right-optimal allocated block and let (D, u+
p(E)) be a right-optimal and quasi left-optimal allocated block. The allocated block
(ED,u) is right-optimal. Moreover, (ED,u) is also left-optimal (respectively quasi
left-optimal) if LEFT(ED,u) is true (respectively false).

We now analyze the different issues of the generic step of EXT.GTW.

Case 1: wgq1 > fys1)(S1).

We have ¢(S%) = ¢(S!) since the cost of the last allocated block of S? is zero
and since ¢(S') < ¢(3[1,...,q]) from the induction. Since ¢(3) > ¢(X[1,..,q]), we
have ¢(X) > ¢(S?). So S? is optimal and left-adjusted.

Case 2: wg41 < fi(s1)(S?) and s, g0 (S°) = aB, G

If the last allocated block of ST does not start at time 0, then from the induction
and Property 4, that allocated block is left and right-optimal. It is then easy to
verify that the last allocated block of S° which is obtained from the last allocated
block of S by adding the tardy task T,i; is left and right-optimal too. Let [
be the index of the last task of the last-but-one allocated block of S!. From the
induction, we have ¢(S°[1,...,1]) = ¢(S'[1,...,1] < ¢(2[1,...,1]. Moreover we
get from Theorems 1, 2 and 3 that the cost ¢(S°[l +1,...,q 4 1]) of the last
allocated block of SO is at most equal to c(B[l+1,...,9+ 1]. We thus have
¢(89) < ¢(%).

If the last allocated block of St starts at time 0 (indeed S! has exactly one
allocated block), then from the induction and Property 4, this block is right-
optimal. Since the single allocated block making S0 is also right-optimal, we get
from Theorem 3 that ¢(5°) < ¢(%).

Case 3: wyi1 < fys1)(S"') and sb(s»o)(SO) >ap, -

For each k € {0,--- , K}, let (Dy, tx) be the last allocated block of the interme-
diate schedule S* and let respectively ag, hg, 7, be the number of early, on-time
and tardy tasks of (Dy, tx).

From Property 10, the allocated block (Dy, o) is right-optimal and quasi left-

optimal since on the one hand we have Sp(go)(SO) >« B, s, and on the other hand

this block results from adding to the last allocated block of S' (which from the
induction is left and right-optimal) task Ty, which is a right-optimal and quasi
left-optimal allocated block.

For any k € {1,--- , K — 1}, the allocated block (D, tx) is right-optimal and
b(§k)(5k) > ap, o and on the
other hand this block results from left-shifting (Dy_1, tx—1) (under the assumptions
of Property 9) and the merging of an allocated block S* (which from the induction
is left and right optimal) with the allocated block (Dg_1,v) (where v < tr_1),
which is from Property 9, a right-optimal and quasi left-optimal allocated block.

quasi left-optimal since on the one hand we have s

182 PH. CHRETIENNE

Let us now consider the allocated block (D, tx). Properties 9 and 10 yield
that this block is a left adjusted right and left-optimal (respectively right and quasi

left optimal) Aif sb(s»k)(Sk) =ap, o (respectively sb(s»k)(Sk) > osz(SAk)).
If sb(gk)(Sk) =B, 4 then S2 = SX. If p is the number of tasks in Dy,

we have S2[1,... ,¢q+1—p] = S[1,... ,¢+1—p]. From the induction, we have
c(SH1,...,q+1—p]) <c([L,...,q+1—p]). Moreover since the last allocated
block of S? is right and left-optimal, Theorem 3 implies that c¢(S?[q—p+2,...,q+

If Sb(S:’“)
by the occurrence of event F1 or F3.

If F1 occurs, the associated left-shifting matches the assumptions of Property 9
and 52 has a single allocated block that starts at time 0 and is right-optimal. We
then get from Theorem 2 that ¢(S?) < ¢(X).

If F2 occurs, the last allocated block of S? results from the left-shifting of
(Dg,tk) but this shift stops because the number of tardy tasks of the shifted
allocated block strictly decreases.

Notice first that for any k € {0, --- , K}, the inequality a(ax+hi)—r(ry—1) >0
is true. Indeed it is true by the definition of ag, hg and r¢ for & = 0. Let
us assume it is true at the end of the (k — 1) merging and let o/, ' and 7/
be respectively the number of early, on-time and tardy tasks of the allocated
block of S' that is merged during the k** merging. We then have hy = R/,
ap = ap_1 + hg_1 +a’ and ry = r,_1 +r’. Since the merged allocated block of
St is left-optimal we have a(a’ + h') — 1’ > 0 and since from the induction we
have a(ak—1 + hg—1) —r(rpx—1 — 1) > 0, we get by summing these two inequalities
a(ar + hy) —r(ry — 1) > 0.

We thus have:

(SF) >« B, g, then there is one more block left-shifting that completes

alag +hg) —r(rg —1) > 0. (11)

Let (Dg,v) (where v < tx) be the last allocated block of S? and let A, H and R
be respectively the number of early, on-time and tardy tasks of (Dg,v). Assume
that © > 1 tasks that are tardy in (D, tk) are on-time in (Dg,v).

The allocated block (D, v) itself satisfies A = ax +hg, H = x and R = rg —=x.
From Property 11 we get

a(A+H)—rR=alax + hg) —r(rg —1)+az +r(z —1).

Since x > 1, LEFT(Dg,v) is true. Moreover since LEFT (Dg,tr) is false, we
have that r(R 4+ H) — aA = rrx — a(akx + hk) is strictly positive, what implies
that RIGHT (Dg,v) is true too.

Let D’ be a proper prefix of Dg. Let A}, H{, R] be respectively the number of
early, on-time and tardy tasks of (D’,tx) and let A}, H), Rf be respectively the
number of early, on-time and tardy tasks of (D’,v). Let y > 0 be the number of
tardy tasks of (D', tx) that are on-time in (D', v). We have A; = A\ +H{, Hy =y

SCHEDULING A SEQUENCE OF TASKS 183

and R} = R} —y. We thus get that
a(A, + H)) —rRy = a(A] + H)) — R} + y(r + a)

what shows that LEFT(D',v) is true.

Let D" be a proper suffix of Dg. Let A}, H{', R} be respectively the number
of early, on-time and tardy tasks of (D", tx +p(Dg)—p(D")) and let AY, HY, RY
be respectively the number of early, on-time and tardy tasks of (D”,v+ p(Dg) —
p(D")). Let z > 0 be the number of tardy tasks in (D", tx +p(Dk)—p(D")) that
are on-time in (D", v + p(Dg) — p(D")). We have A} = A/ + H{, H} = y and
R) = R{ —y. So we get that

(R + HY) — adl = o B} + HY) - rRY

what shows that RIGHT (D" ,v + p(Dgk) — p(D")) is true.

As a conclusion the allocated block (D, v), which is the last allocated block
of S? is left and right-optimal. If that block has p tasks, we have S[1,... ¢+ 1
—p] = S1,...,q+ 1 — p]. From the induction, we have ¢(S'[1,... ,¢+ 1 —p|)
< ¢(X[1,...,q+ 1 —p]) and from Theorem 3 we get ¢(S%[q —p +2,...q¢+ 1])
<c(X[g—p+2,...q+1]). We thus may conclude that ¢(S?) < ¢(X).

We have shown that, for each issue of the generic step of EXT.GTW, S2 is
an optimal schedule for the tasks sequence (T, -+ ,Ty4+1). That schedule is left-
adjusted since on the one hand each allocated block, which is not the last one
and that does not starts at time 0 is left-optimal from the induction and on the
other hand we have shown that the last allocated block is also a left-adjusted left-
optimal for all issues of the generic step except event F1. Finally the restriction
S2[1,...,nk(S?)] of S? to its k first allocated blocks is optimal and left-adjusted
for the tasks sequence (771,---,T),, (s2)) since on the one hand that is true from
the induction for k € {1,---,b(S?) — 1} and on the other hand we have shown
that is also true for S? itself.

Since the generic step of EXT.GTW correct, EXT.GTW is also correct because
the schedule S provided for the single task 7; is optimal, left-ajusted and has a
single block.

4.3. WORST-CASE COMPLEXITY OF EXT.GTW

Let us associate with each allocated block (By,sy) of the running schedule
the heap T} that contains the tardy tasks of (By, sx), each with a priority equal
to its tardiness. Each iteration of the mergings loop within the generic step of
EXT.GTW performs a left-shifting whose complexity is O(1) since it corresponds
to add a constant to the priority of all the tasks in the heap and the merging
that may be executed in O(logn)). The key point here is to notice that the
total number of mergings during an execution of EXT.GTW is O(n) since each
merging decreases by one the number of allocated blocks in the current schedule
of EXT.GTW. The complexity of all the mergings is thus O(nlogn). Apart from
the merging loop, the complexity of the generic step of EXT.GTW is O(1) except

184 PH. CHRETIENNE

when the task T, has to be inserted in the heap associated with the last allocated
block of St as its last (tardy) task, in which e the complexity is O(logn). The
overall worst-case complexity of EXT.GTW is thus O(nlogn).

5. ASYMMETRIC AND TASK-DEPENDENT COSTS

The approach of Section 4 does not easily extend to the general problem where
asymmetric and task-dependent costs are assumed. We present for that problem
a polynomial algorithm based on the convexity of the time function cp(t), on
an enhancement of the left-adjusted schedule notion and on the modelling of the
problem as the search of a minimum-cost path in a directed acyclic graph.

Let S = ((B1,81), - ,(Bp, Sp)) be a schedule. The allocated block (B, sx) of
S is said to be strongly left-adjusted in S if for any ¢ € [fi—1, sx| and for any prefix
By, of By, we have cp; (t) > cp; (si) (with by convention fy = 0). By extension,
S is said to be strongly left-adjusted if each of its allocated blocks is strongly
left-adjusted. A prefix Bj, of By is said to be left-movable in S if ap; < Sk

The following property shows that there is one optimal schedule that is strongly
left-adjusted.

Property 11. The strongly left-adjusted schedules are dominant.

Proof. Let S = ((B1,5s1),- -, (B, sp)) be an optimal left-adjusted but not strongly
left-adjusted schedule. Let (B, si) be the first non strongly left-adjusted allocated
block (Bg, si). Let Bj be the smallest left-movable prefix of By. Notice that B}
is not the empty prefix since (B, si) is not strongly left-adjusted. We then define
the schedule S’ as follows:

First case: ap; < fr_1.

S’ = LEFTSHIFT&MERGE(S, By, si;). From the definition of B}, the con-
vexity of ¢p«(t) and since (Bj_1,sk—1) is strongly left-adjusted, we derive that
the allocated block (By—1Bj, sk—1) is strongly left-adjusted. Notice that from the
optimality of S, ¢p«(t) is invariant over [fr_1, s].

Second case: apy > fr—1-

S" = LEFTSHIFT(S, By, sk, ap;). From the definition of By, note that in
this case the allocated block (Bj,ap;) of S’ is strongly left-adjusted. We may
now transform S’ into an optimal left-adjusted schedule S”.

Whatever the case, S” is still an optimal schedule and the index of the last task
of the last strongly left-adjusted allocated block is strictly larger in S’ than in S.
So, iterating the process (at most n times) as long as the current schedule is not
strongly left-adjusted yields an optimal strongly left-adjusted schedule. O

The block B = (T, --- ,T}) is said to be left-indivisible if for any proper prefix
B’ of B we have ap: > ap. Similarly, B is said to be right-indivisible if for any
proper suffix B” of B we have ap» < ap + p(B) —p(B"). The following property
gives a strong necessary condition on the starting times of the allocated blocks of
an optimal and strongly left-adjusted schedule.

SCHEDULING A SEQUENCE OF TASKS 185

Theorem 4. Let S = ((B1,51), - ,(Bp,sp)) be an optimal and strongly left-
ajusted schedule. For any k € {1,---,p}, if s > 0 then the block By, is right
and left indivisible and sy = ap, . If s1 =0 then By is right indivisible.

Proof. Let S be an optimal and strongly left-adjusted schedule and let (By, si) be
an allocated block of S such that s; > 0. If s, < ap,, by right-shifting (By, s) a
sufficiently small amount of time € > 0 we get from Property 1 a feasible schedule
whose cost is strictly smaller than the cost of S, what contradicts the optimality
of S. If s > ap,, by left-shifting (B, sx) a sufficiently small amount of time
€ > 0 we get from Property 1 either a schedule with a strictly smaller cost, what
contradicts the optimality of S, or a schedule with the same cost as S, what
contradicts the (strongly) left-adjusted assumption on S. We thus have s; = ap,
for any k € {1,---,p} such that s; > 0.

Assume that ap, > 0 and that there is a proper prefix Bj, of By such that
ap; < ap,. There exists a sufficiently small € > 0 such that the schedule S" =
LEFTSHIFT(S, By, ap,,ap, —¢) is feasible. From Property 1 we then get that
c(S") < ¢(S), what means that S is not strongly left-adjusted.

Assume that ap, > 0 and that there exists a suffix B}/ of By such that apy >
ap, + p(By,). There exists a sufficiently small € > 0 such that the schedule S” =
RIGHTSHIFT(S, By, u, ui, + €), where uy = ap, + p(Bi) — p(Bj},), is feasible.
From Property 1 we get that ¢(S”) < ¢(59), what contradicts the optimality of S.

Assume that s; = 0 and that there exists a suffix Bf of By such that apy >
ap, + p(B}). There exists a sufficiently small ¢ > 0 such that the schedule
S" = RIGHTSHIFT(S,BY,u1,u1 + €), where uy = p(By) — p(BY), is feasi-
ble. From Property 1 we get that ¢(S”) < ¢(S), what contradicts the optimality
of S. O

The necessary condition provided by Theorem 4 leads us to define the following
valued directed graph called IBG (for indivisible-block graph).

The vertices of IBG are:

1. the block B;; = (T;,---,T;) if 1 <4 < j < n and if B;; is a right and
left-indivisible block;

2. the block BM ifie{l,---,n} and if Bl,i is a right-indivisible block (BSM
corresponds to the allocated block (B 4,0));

3. a source node ¢ and a sink node 7.

The valued arcs of IBG are:
1. for any i € {1,--- ,n}, the arc (o, B1;) valued by v, ,;

2. for any i € {1,---,n}, the arc (o, By ;) valued by B, ;(0);

3. for any i € {1,--- ,n}, the arc (B, ,,7) valued by 0;

4. for each pair of nodes (B; ; and Bj;1,) such that QB ., — OB, ; = p(Bi ;)
the arc (B; j, Bj11,k) valued by vB,,, s

5. for each pair of nodes Belyj and Bji1 such that ap,,,, > p(Bi;), the arc

(Brj, Bjr1,x) valued by vg,., .
A path from o to 7 in IBG corresponds to a schedule matching the assumptions of

Theorem 4 and conversely every schedule matching these conditions corresponds

186 PH. CHRETIENNE

to a path from ¢ to 7 in IBG. Moreover the cost of the path and the cost of the
associated schedule are the same. We thus get the following property:

Property 12. An optimal and strongly left-adjusted schedule corresponds to a
minimum-cost path from o to w in IBG.

We propose the following two-step algorithm to compute a minimum-cost sched-
ule: the first step builds IBG from the problem instance while the second step com-
putes a minimum-cost path from o to 7 in IBG. Note that since IBG is acyclic,
the Bellman’s algorithm may be used in the second step.

WORST-CASE COMPLEXITY

The number of vertices of IBG is clearly O(n?). Since each block B;; has
n — j immediate successors and since for fixed j, there are j — 1 blocks B; ;, the
number of arcs of IBG is O(n?). If B;; is a block with k tasks, then by using a
heap to maintain the set of the early tasks of the allocated block (B; ;,t) (initially
(Bi,5,0)), the pair (ap, ;,vB,,;) may be computed in O(klogk). Thus computing
all these pairs takes O(n3logn). Moreover deciding whether the k-tasks block
B, ; is right and left-indivisible takes O(k). So computing the nodes of IBG takes
O(n3logn). Since searching for a minimum-cost path in IBG takes O(n?), the
worst-case complexity of the algorithm is O(n® logn).

Notice that restricting to the indivisible blocks increases the worst-case com-
plexity compare to a more naive algorithm with worst-case complexity O(n?) that
would consider all the blocks B; ; such that 1 < ¢ < j < n and 31,i such that
1 <i < n. However it appears that in practice many blocks are divisible so that it
is really worth taking the time to search for the indivisible blocks to get a graph
with a quite smaller number of nodes.

6. CONCLUSION

In this paper, we first have proposed an O(nlogn) algorithm for the special
case of asymmetric and task-independent costs. This algorithm extends a previ-
ous algorithm by Garey et al. that applies to the case of symmetric and task-
independent costs without increasing its worst-case complexity. For the general
case with assymetric and task-dependent costs, we have proposed an O(n?logn)
algorithm, which is based on a strong necessary condition on the starting times
of the allocated blocks of an optimal and strongly left-adjusted schedule. We now
plan to study algorithms for minimizing the mean cost per iteration for infinite
periodic tasks systems.

Acknowledgements. T thank the referees for their helpful remarks and comments.

(1]
2]

(3]

(4]

(5]
[6]

[7]

SCHEDULING A SEQUENCE OF TASKS 187

REFERENCES

M.R. Garey, R.E. Tarjan and G.T. Wilfong, One-processor scheduling with symmetric ear-
liness and tardiness penalties. Math. Oper. Res. 13 (1988) 330-348.

K.R. Baker and G.D. Scudder, Sequencing with Earliness-Tardiness Penalties: A Review.
Oper. Res. 38 (1989) 22-36.

V. Gordon, J.M. Proth and C. Chu, A State-of-the-Art Survey of Due Date Assignment
and Scheduling Research: Common Due Date. Rapport de recherche INRIA, 3454, Theme 4
(1998).

V. Gordon, J.M. Proth and C. Chu, A State-of-the-Art Survey of Due Date Assignment
and Scheduling Research: SLK, TWK and Other Due Date Assignment Models. Rapport
de recherche INRIA, 3537, Theme 4 (1998).

J.A. Hoogeveen and S.L. Van de Velde, A branch-and-Bound Algorithm for Single-Machine
Earliness-Tardiness Scheduling with Idle Time. INFORMS J. Comput. 8 (1996) 402-412.
A. Federgruen and G. Mosheiov, Single-Machine Scheduling Problems with General Break-
downs, Earliness and Tardiness Costs. Oper. Res. 45 (1997) 66-71.

A. Federgruen and G. Mosheiov, Greedy Heuristics for Single-Machine Scheduling Problems
with General Earliness and Tardiness Costs. Oper. Res. Lett. 16 (1994) 199-208.

N.G. Hall, W. Kubiak and S.P. Sethi, Earliness-Tardiness Scheduling Problems I. Deviation
of Completion Times about a Restrictive Common Due Date. Oper. Res. 39 (1991) 102-110.
N.G. Hall, W. Kubiak and S.P. Sethi, Earliness-Tardiness Scheduling Problems II. Deviation
of Completion Times about a Restrictive Common Due Date. Oper. Res. 39 (1991) 102-110.

to access this journal online:
www.edpsciences.org

