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MINIMIZING THE EARLINESS AND TARDINESS COST
OF A SEQUENCE OF TASKS ON A SINGLE MACHINE

Philippe Chrétienne
1

Abstract. Assume that n tasks must be processed by one machine
in a fixed sequence. The processing time, the preferred starting time
and the earliness and tardiness costs per time unit are known for each
task. The problem is to allocate each task a starting time such that
the total cost incurred by the early and tardy tasks is minimum. Garey
et al. have proposed a nice O(n log n) algorithm for the special case of
symmetric and task-independent costs. In this paper we first extend
that algorithm to the case of asymmetric and task-independent cost
without increasing its worst-case complexity. For the general case of
asymmetric and task-dependent costs, we propose an O(n3 log n) al-
gorithm based on a strong dominance property that yields to model
the scheduling problem as a minimum cost path in a valued directed
acyclic graph.

Résumé. Supposons que n tâches doivent être exécutées par une ma-
chine dans un ordre fixé a priori. On connâıt pour chaque tâche sa
durée, la date souhaitée de son exécution et les coûts unitaires associés
d’avance et de retard. On cherche à allouer à chaque tâche une date
d’exécution de sorte que le coût total des avances et des retards soit
minimum. Un algorithme de complexité O(n log n) a été proposé par
Garey et al. pour le cas particulier de coûts unitaires. Nous proposons
d’abord un algorithme de complexité O(n2 log n) qui étend l’algorithme
Garey et al. au cas de coûts asymétriques indépendants des tâches.
Pour le cas général de coûts asymétriques dépendants des tâches, nous
proposons un algorithme de complexité O(n3 log n) fondé sur une pro-
priété de dominance permettant de ramener le problème à la recherche
d’un chemin de coût minimum dans un graphe valué sans circuit.
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1. Introduction

Due to their numerous applications, scheduling problems where the tasks
incurred a cost both if they are early or tardy have received much attention. As
an example, in a just-in-time production, a piece that is finished before its delivery
time incurs an inventory cost while it incurs a backlog cost if it is finished after
its delivery time. Moreover, there are many production systems where there is a
priori no evidence for the inventory and backlog per time unit costs to be equal or
not to depend on the individual tasks. Many variants of that problem have been
studied [1, 5–9] and quite good surveys such as [2–4] show the amount and the
diversity of the research in this field.

In this paper, we revisit the basic problem where a finite set of tasks must be
processed on a single machine in a given order. Each task has a given preferred
starting time and its earliness or tardiness in a schedule is the deviation about
that preferred starting time. We assume that an early or tardy task incurs a cost
which is proportional to the corresponding earliness or tardiness value. However,
the corresponding per-time-unit earliness and tardiness costs need neither be equal
nor be independent of the individual tasks.

The main reference for this problem concerns the special case of symmetric and
task-independent costs: Garey et al. [1] have developed a nice O(n log n) algorithm
that iterates a transformation that allows to compute an optimal schedule for the
problem restricted to its q + 1 first tasks from the problem restricted its first q
tasks.

We propose here an algorithm with the same complexity that extends the algo-
rithm in [1] to asymmetric costs. For the general problem with asymmetric and
task-dependent costs, we use a convexity property of the cost function of an allo-
cated block and a strong necessary condition on the starting times of the allocated
blocks in an strongly left-adjusted optimal schedule to first model the problem as
the search of a minimum-cost path in a directed acyclic graph called the indivisible
blocks graph and then derive an O(n3 logn) algorithm.

Section 1 defines the scheduling problem and its main notations. Section 2
briefly recalls the algorithm in [1] for symmetric and task-independent costs.
Section 3 presents the extension of that algorithm to asymmetric and task-indepen-
dent costs. Section 5 gives an algorithm for asymmetric and task-dependent costs.

2. Definitions and notations

n non-preemptive tasks T1, · · · , Tn must be processed by a single machine in a
given order, for example the order (1, · · · , n). For each task Ti, we denote by pi
its processing time, by ωi its preferred starting time, and respectively by ai and
ri its per time-unit earliness and tardiness costs. It is assumed that the unitary
costs ai and ri are strictly positive. The task Ti started at time ti incurs a cost
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ci(ti) defined by:

ci(ti) =
{
ai(ωi − ti) if ti ≤ ωi
ri(ti − ωi) if ti ≥ ωi.

The problem is to allocate a starting time to each task so as to minimize the total
cost

∑n
i=1 ci(ti).

A block of the schedule S is a left and right maximal list B = (Ti, Ti+1, · · · , Tj)
of tasks performed without any intermediate delay in S. Thus a schedule S is
also a list ((B1, s1), · · · , (Bb, sb)) of (block, date) pairs called allocated blocks such
that:

1. B1 · · ·Bb=(T1, · · · , Tn);
2. for any k ∈ {2, · · · , b}, sk > sk−1 + p(Bk−1);

where p(Bk) =
∑
Ti∈Bk pi and where sk is the starting time of the first task of Bk.

Let S = ((B1, s1), · · · , (Bb, sb)) be a schedule. We denote respectively by b(S),
sk(S), fk(S) and nk(S) the number of blocks, the starting time of the kth block,
the completion time of the kth block and the index of the last task of the kth block.
When there is no ambiguity to which schedule they refer, the reference to S will
be omitted in these notations.

If (B, s) is an allocated block, the subsets of the early tasks, on-time tasks and
tardy tasks in (B, s) are respectively denoted by A(B, s), H(B, s) and R(B, s).

The cost of (B, s) is denoted by cB(s) whereas the cost of S is denoted by c(S).
The following property concerns the shape of the time function cB(t).

Property 1. cB(t) is a convex and piecewise linear time function.

Proof. Let B = (T1, · · · , TK) and for any k ∈ {1, · · · ,K} let πk be equal to∑k−1
i=1 pi with by convention π1 = 0. For any k ∈ {1, · · · ,K}, the starting time of

task Tk within the allocated block (B, t) is thus πk + t. Let X be a subset of the
tasks in B, we denote by r(X) the value

∑
Ti∈X ri and we define h(X) and a(X)

in the same way. Let A(t),H(t), R(t) be respectively the subsets of early, on-time
and tardy tasks in (B, t).

Since the individual cost of the task Ti within (B, t) is a continuous time function
on [0,+∞[ (see Fig. 1), cB(t) is also a continuous time function on [0,+∞[.

Let θ0 = 0, we define θk as the smallest time t > θk−1 such that at least one
task in A(θk−1) is on-time at t. Let Ak,Hk, Rk be the subsets of the early, on-time
and tardy tasks in (B, θk) and let ck = cB(θk). We have for any t ∈ [θk−1, θk[:

cB(t) = ck−1 + (t− θk−1)r(R0 ∪ (∪k−1
j=0Hj)− a(A0 \ ∪k−1

j=1Hj)).

Let uk = r(R0 ∪ (∪k−1
j=0Hj)− a(A0 \ ∪k−1

j=1Hj); we get for any t ∈ [θk−1, θk[:

cB(t) = ck−1 + uk(t− θk−1). (1)

Let r be the number of terms of the sequence θk. Every task is tardy from time
θr on. So for any t ∈ [θr,+∞[, we have:

cB(t) = cr + (t− θr)r(B). (2)
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Figure 1. Cost functions.

From (1, 2) and since cB(t) is a continuous time function on [0,+∞[, we get that
cB(t) is piecewise linear. Moreover the slopes uk, k ∈ {1, · · · , r} of the successive
pieces are strictly increasing since we have:

uk − uk−1 = r(Hk−1) + a(Hk−1) > 0.

So cB(t) is a piecewise linear and convex time function.

We derive from Property 1 that there is a unique time instant αB , called the
optimal starting time of block B, such that:

∀ε > 0, cB(αB − ε) > cB(αB) and cB(αB + ε) ≥ cB(αB).

In what follows, we denote by γB the value cB(αB). Figure 1 shows a pair of
values (αB, γB).

The following three operations on a schedule S = ((B1, s1), · · · , (Bb, sb)) will
appear to be quite useful (see Fig. 2):

• LEFTSHIFT (S,B′k, sk, t), where B′k is a prefix of Bk and fk−1 < t < sk,
is the schedule we get by left shifting (B′k, sk) until it becomes (B′k, t);
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• RIGHTSHIFT (S,B′′k , sk + p(Bk) − p(B′′k ), t), where B′′k is a suffix of Bk
and sk + p(Bk) < t + p(B′′k ) < sk+1 − p(B′′k ), is the schedule we get by
right-shifting (B′′k , sk + p(Bk)− p(B′′k )) until it becomes (B′′k , t);
• LEFTSHIFT&MERGE(S,B′k, sk), where B′k is a prefix of Bk and k > 1,

is the schedule we get by left shifting (B′k, sk) until it becomes (after merging)
a suffix of rearranged Bk−1, which starts at fk−1.

B' B"

t

LEFTSHIFT(S,B',s,t)

B' B"

s
S

S'

B' B"

s
S

B' B"

s
S'

u

v

RIGHTSHIFT(S,B",u,v)

u

B' B"

s
S

B' B"
S'

LEFTSHIFT&MERGE(S,B',s)

Figure 2. 3 basic operations on a schedule.

Let S = ((B1, s1), · · · , (Bb, sb)) be a schedule. The allocated block (Bk, sk) is said
to be left-adjusted if for any time t ∈ [fk−1, sk[, the inequality cBk(t) > cBk(sk)
(where by convention f0 = 0) is satisfied. By extension, the schedule S itself is
said to be left-adjusted if all its allocated blocks are left-adjusted. The following
property shows that there is an optimal schedule which is left-adjusted.

Property 2. Left-adjusted schedules make a dominant subset.

Proof. Let S = ((B1, s1), · · · , (Bb, sb)) be a non left-adjusted optimal schedule.
Since S is optimal, for any k ∈ {1, · · · , b}, we have for any time t ∈ [fk−1, sk[, cBk
(t) ≥ cBk(sk). Since S is not left-adjusted, let k0 be the first non left-adjusted
allocated block and let v be the smallest time in [fk0−1, sk0 [ such that cBk0

(t) =
cBk0

(sk0). We then define the schedule S′ as follows.
If v > fk0−1 then S′ = LEFTSHIFT (S,Bk0, sk0 , v). From the definition of v,

we know that the allocated block (Bk0 , v) of S′ is left-adjusted.
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If v = fk0−1 and k0 > 1 then S′ = LEFTSHIFT&MERGE(S,Bk0, sk0).
Since (Bk0−1, sk0−1) is left-adjusted in S and cBk0

(sk0) = cBk0
(v) we get from

Property 1 that the allocated block (Bk0−1Bk0 , sk0−1) is left-adjusted in S′.
If v = fk0−1 and k0 = 1 then S′ = LEFTSHIFT (S,B1, s1, 0).
Let us denote respectively by b′ and k′0 the number of allocated blocks and the

index of the first non left-adjusted allocated block in S′. Whatever the case, we
have b′ − k′0 < b− k0. So, after iterating the process at most b− k0 times we get
an optimal and left-adjusted schedule.

3. Symmetric and task-independent costs

Garey et al. have proposed in [1] an O(n log n) algorithm for the special case
when for any task Ti, ai = ri = 1. This algorithm, that will be called GTW in the
rest of the paper computes an optimal left-adjusted schedule S2 of the restriction
of the problem to its first q+ 1 tasks from an optimal left-adjusted schedule S1 of
the restriction of the problem to its first q tasks as follows:

1. if ωq+1 > fb(S1)(S1) then S2 is got by creating the allocated block
((Tq+1), ωq+1) and adding it to S1;

2. if ωq+1 < fb(S1)(S1) then let S be the schedule we g by adding the task Tq+1

as the last task of the last allocated block of S1.
If the last allocated block of S has less tardy tasks than on-time or early
tasks then S2 = S.
Otherwise the last allocated block of S is left-shifted until its starting time t
matches one of the three following events:

E1: t = 0;
E2: the number of tardy tasks of the shifted block strictly decreases at

time t;
E3: t is the completion time of the one-but-last block of S1.

In case of event E1 or E2, S2 = LEFTSHIFT (S,Bb(S), sb(S), t); in case of
event E3, S2 = LEFTSHIFT&MERGE(S,Bb(S), sb(S)).

The above GTW algorithm is illustrated in Figure 3 that shows the 6 first iterations
associated with the following input data.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
pi 2 3 1 2 1 2 2 1 1 2 1 5 1 2 2
ωi 4 1 7 8 5 3 13 14 16 18 19 15 16 17 18

The correctness of GTW mainly results from the following property whose proof
is in [1].

Property 3. The schedule provided by iteration k of GTW is a left-adjusted op-
timal schedule for the restriction of the problem to its k first tasks.

In [1], the authors also note that their algorithm may be simply extended to
the case when the execution cost of task Ti is wici(ti).
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Figure 3. The GTW algorithm.

4. Asymmetric and task-independent costs

4.1. The EXT-GTW algorithm

This section proposes an extension of GTW called EXT-GTW for the case when
for any task Ti, we have ai = a and ri = r where it is only assumed that a and r
are non negative. Let (B, s) be an allocated block. The inequalities LEFT (B, s)
and RIGHT (B, s) are defined by:

LEFT (B, s): a(A(B, s) +H(B, s))− rR(B, s) ≥ 0;
RIGHT (B, s): r(R(B, s) +H(B, s))− aA(B, s) ≥ 0;

where A(B, s), H(B, s) and R(B, s) are respectively the number of early, on-time
and tardy tasks in (B, s).

The algorithm EXT-GTW differs from GTW by the block invariant satisfied by
all the allocated blocks at each iteration and by the fact that within each iteration
EXT-GTW may repeat the merging process as long as the last allocated block of
the running schedule does not satisfy the invariant. As for GTW, we describe the
generic step of EXT-GTW that provides an optimal schedule S2 of the restriction
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of the problem to its first q+1 tasks from an optimal schedule S1 of the restriction
of the problem to its first q tasks

1. if ωq+1 > fb(S1)(S1) then S2 is got by creating the allocated block
((Tq+1), ωq+1) and adding it to S1;

2. if ωq+1 < fb(S1)(S1) then let S be the schedule we get by making task Tq+1

be the last task of the last allocated block of S1.
(a) If sb(S)(S) = αBb(S) (i.e.: the starting time of the last allocated block of
S is its optimal starting time), then S2 = S.
(b) Otherwise, the last allocated block of S is shifted to the left as long as
its starting time t matches one of the three following events:

F1: t = 0;
F2: t = αBb(S) ;
F3: t is the completion time of the one-but-last allocated block of S.

If F1 or F2 occurs, then S2 = LEFTSHIFT (S,Bb(S), t). If F3 occurs then
S := LEFTSHIFT&MERGE(S,Bb(S), sb(S)) and return to 2(a).

An allocated block (B, s) is said to be left-optimal if for any (B′, s) where B′ is a
prefix of B, the inequality LEFT (B′, s) is true. An allocated block (B, s) is said
to be right-optimal if for any (B′′, s+p(B)−p(B′′)) where B′′ is a suffix of B, the
inequality RIGHT (B′′, s+p(B)−p(B′′)) is true. An allocated block (B, s) is said
to be quasi left-optimal if LEFT (B, s) is false and if for any (B′, s) where B′ is
a proper prefix of B, the inequality LEFT (B′, s) is true. The following property
gives a strong structural condition met by the optimal and left-adjusted schedules.

Property 4. Let S = ((B1, s1), · · · , (Bb, sb)) be an optimal schedule. Any allo-
cated block (Bk, sk) such that sk > 0 is left and right optimal. Moreover if s1 = 0
then the allocated block (B1, s1) is right-optimal.

Proof. Assume that sk > 0 and that (Bk, sk) is not left-optimal. There is a prefix
B′k of Bk such that LEFT (B′k, sk) is false. There also exists a sufficiently small
ε > 0 such that:

1. R(B′k, sk − ε) = R(B′k, sk);
2. the schedule S′ = LEFTSHIFT (S,B′k, sk, sk − ε) meets the resource con-

straint.

From the definition of ε we have:

c(S′) = c(S) + ε(a(A(B′k, sk) +H(B′k, sk))− rR(B′k, sk))

since the tardy tasks of (B′k, sk− ε) are the tardy tasks of (B′k, sk), the early tasks
of (B′k, sk−ε) are the early or on-time tasks in (B′k, sk) and there is no on-time task
in (B′k, sk − ε). As LEFT (B′k, sk) is false, we have c(S′) < c(S), what contradicts
the optimality of S.

Assume that sk > 0 and that (Bk, sk) is not right-optimal. Let uk = sk +
p(Bk) − p(B′′k ). There is a suffix B′′k of Bk such that RIGHT (B′′k , uk) is false.
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There also exists a sufficiently small ε > 0 such that:
1. A(B′′k , uk + ε) = A(B′′k , uk);
2. the schedule S′′ = RIGHTSHIFT (B′′k , uk, uk + ε) is feasible.

From the definition of ε we have:

c(S′′) = c(S) + ε(r(R(B′′k , uk) +H(B′′k , uk))− aA(B′′k , uk))

since the early tasks of (B′′k , uk+ ε) are the early tasks of (B′′k , uk), the tardy tasks
of (B′′k , uk + ε) are the tardy or on-time tasks of (B′′k , uk) and there is no on-time
task in (B′′k , uk + ε). As RIGHT (B′′k , uk) is false, we have c(S′′) < c(S), what
contradicts the optimality of S.

If s1 = 0, the same argument as before applied to a suffix of B1 yields a
contradiction to the optimality of S if the allocated block (B1, s1) is not right-
optimal.

We now prove a dominance property of the left-optimal allocated blocks, a
symmetric property of the right-optimal allocated blocks and a theorem that more
generally applies to the right and left optimal allocated blocks.

Theorem 1. Let (B, s) be a left-optimal allocated block. The cost of any schedule
of B whose last task completes at most at time f = s + p(B) is not less than the
cost of (B, s).

Proof. Let us assume that B = (T1, · · · , Tn). Let σ be an arbitrary schedule of B
whose last task completes at most at time f . Let ui be the starting time of Ti in
(B, s), vi be the starting time of Ti in σ and ∆i = ui − vi. From the assumptions
on σ we derive that for any i ∈ {1, · · · , n}, ∆i ≥ 0 and

∆n≤· · ·≤∆1.

If Ti is early or on-time in (B, s), its cost in σ is exactly a∆i larger than in (B, s),
otherwise Ti is tardy in (B, s) and its cost in σ is at most r∆i less than in (B, s).
So if c1 is the cost of (B, s) and c2 the cost of σ, we have:

c2 ≥ c1 + a

 ∑
Ti∈A(B,s)∪H(B,s)

∆i

− r
 ∑
Ti∈R(B,s)

∆i

 .

We thus have to prove that:

a

 ∑
Ti∈A(B,s)∪H(B,s)

∆i

− r
 ∑
Ti∈R(B,s)

∆i

 ≥ 0. (3)

For any k ∈ {1, · · · , n}, let us denote by Bk the prefix (T1, · · · , Tk), by Ak =
{Ti1 , · · · , Tiak } the subset of early or on-time tasks in (Bk, s) and by Rk =
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{Tj1 , · · · , Tjrk} the subset of the tardy tasks in (Bk, s). Without loss of gener-
ality, we assume that

i1< · · ·<iak and j1< · · ·<jrk .
Let αk = maxj∈{1,··· ,k}{ rjaj } and let k∗ the smallest index in {1, · · · , k} such that
rj
aj

= αk. Notice that αk is well-defined for any k ∈ {1, · · · , n}: indeed we have
aa1− rr1 ≥ 0 since (B, s) is left-optimal and a1 + r1 = 1. We thus get that a1 = 1
and r1 = 0 (T1 is early in (B, s)), from which we conclude that ak > 0 for any
k ∈ {1, · · · , n}.

Let us define by Tk the following transportation problem:
• Ak is the set of suppliers and the availability of each supplier is rk∗ ;
• Rk is the set of demands and the amount of each demand is ak∗ ;
• the demands must be exactly fulfilled;
• a transportation arc (Ti, Tj) ∈ Ak ×Rk is feasible if i < j.

Such a transportation program is shown in Figure 4.

T1

T2

T3

T5

T6

T8

T12

T17

T4 T7 T9 T10 T11 T13 T14 T15 T16 T18 T19 T20 T21

Bk=(T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11,T12,T13,T14,T15,T16,T17,T18,T19,T20,T21)
Ak=(T1,T2,T3,T5,T6,T8,T12,T17)
Rk=(T4,T7,T9,T10,T11,T13,T14,T15,T16,T18,T19,T20,T21)
availability of each task in Ak: 13;
demand of each task in Bk: 8;
fordidden cells in grey;
α(k)=13/8; k*=21.

8 5

3 8 2

6 7

1 8 4

4 8 1

7 6

2 8 3

5 8

Figure 4. A transportation program Tk.

The following property shows that the transportation problems Tk are feasible.

Property 5. For any k ∈ {1, · · · , n}, the problem Tk is feasible.

Proof. T1 is feasible since R1 = ∅.
Assume now that Σk is a feasible solution of Tk and let us consider the two

following cases about the feasibility of Tk+1 depending on whether Tk+1 is an
early or on-time task or a tardy task in (B, s).
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First case: Tk+1 ∈ Ak+1.
We then have (k + 1)∗ = k∗ and problem Tk+1 has one more supplier (line

ak + 1) than Tk. Since the availability of the suppliers are the same in Tk and in
Tk+1, Σk is also feasible solution for Tk+1.

Second case: Tk+1 ∈ Rk+1.
Let us consider two subcases depending on whether (k+ 1)∗ = k∗ or (k+ 1)∗ =

k + 1.

First subcase: (k + 1)∗ = k∗.
We then have

rk+1

ak+1
=
rk + 1
ak

≤ rk∗

ak∗

Tk+1 has one more demand (column rk + 1) than Tk. The availability of the
suppliers and the amounts of the demands are the same in Tk and in Tk+1. Since
on one hand all the cells of the last column of Tk+1 are feasible and on the other
hand the difference rk∗ak − ak∗rk between the total avalailability and the total
demand of Tk is at least ak∗ from the above inequality, Σk may be extended into
a feasible solution Σk+1 of Tk+1.

Second subcase: (k + 1)∗ = k + 1.
In Tk+1, the availability of each of the ak suppliers is rk + 1 and the amount of

each of the rk + 1 demands is ak. So, from the definition of k∗ we get:

∀j ∈ {1, · · · , k}, rj
aj

<
rk + 1
ak

· (4)

Assume that 1 + rk = qkak + ρk where 0 ≤ ρk < ak. We then build line by line a
solution Σk+1 of Tk+1 as follows:
• the qk+1 first cells of the first line are respectively ak, · · · , ak, ρk whereas the

other cells of that line are null; we then define c(1) = qk + 1 and ρ(1) = ρk;
• assume that the l − 1 first lines of Tk+1 are built.

If ρ(l−1)+ρk ≤ ak then the values of the qk+1 cells whose column numbers
are c(l − 1), · · · , c(l − 1) + qk are respectively

ak − ρ(l − 1), ak, · · · , ak, ρ(l − 1) + ρk

whereas the other cells of line l are null; we then define c(l) = c(l − 1) + qk
and ρ(l) = ρ(l − 1) + ρk.
If ρ(l−1)+ρk > ak then the values of the qk+2 cells whose column numbers
are c(l − 1), · · · , c(l − 1) + qk + 1 are respectively

ak − ρ(l − 1), ak, · · · , ak, ρ(l − 1) + ρk − ak

whereas the other cells of line l are null; we then define c(l) = c(l−1)+qk+1
and ρ(l) = ρ(l − 1) + ρk − ak.
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The lines containing qk − 1 (respectively qk) intermediate cells with value ak are
said to be of type 1 (respectively type 2). The following invariant is easily verified:

Property 6. When line l is built, the demands of columns 1 to c(l)−1 are satisfied
and 0 ≤ ρ(l) ≤ ak.

On the example of Figure 4, we have rk +1 = 13, ak = 8, (k+1)∗ = k+1 = 21,
αk+1 = 13

8 , qk = 1 and ρk = 5. The solution built for T21 in written in the
transportation array. Lines 1, 3, 6, 8 are of type 1, lines 2, 4, 5, 7 are of type 2.

Σk+1 is a feasible solution of Tk+1 if and only if its non-zero valued cells are
feasible cells. We first show that there are exactly rk + 1 columns with at least
one non-zero cell and we prove next that every non-zero valued cell of Σk+1 is a
feasible cell.

Let C be the number of columns with a non-zero valued cell in Σk+1. From
the definition of Σk+1, the demands of the C− 1 first columns are exactly fulfilled
whereas the last column receives ρ(ak). Since in Σk+1 each of the ak suppliers
sends its whole availability 1 + rk, we have:

(1 + rk)ak = (C − 1)ak + ρ(ak).

Since 0 ≤ ρ(ak) ≤ ak, the previous inequality implies ρ(ak) = ak and C = 1 + rk.
Let us call the line separating the feasible cells from the unfeasible cells of the

transportation array the borderline F of Tk+1 (see Fig. 4). For any line l, let yl
be the greatest column number such that the point with coordinates (l, yl) in the
transportation array belongs to F .

The following property shows that the non-zero cells in Σk+1 are feasible cells
of Tk+1.

Property 7. For any line l ∈ {1, · · · , ak − 1}, we have yl ≤ c(l)− 1.

Proof. Let us consider the first line. We have c(1) = qk + 1. The point (1, y1) on
F is associated with a prefix Bj1 such that rj1 = y1 and aj1 = 1. We then get
from (4) that:

y1 < qk +
ρk
ak
≤ qk + 1.

The first line thus satisfies the property.
Assume now that among the l first lines, there are l1 lines of type 1 and l2 lines

of type 2. We then have ρ(l) = l1ρk + l2(ρk − ak).
If

ρ(l) + ρk = (l1 + 1)ρk + l2(ρk − ak) ≤ ak (5)

then the line l + 1 is of type 1 and we have c(l + 1) = (l + 1)qk + l2 + 1. The
point (l + 1, yl+1) on F corresponds to a prefix Bjl+1 such that rjl+1 = yl+1 and
aj1 = l + 1. Since from (4) we have:

yl+1

l + 1
< qk +

ρk
ak
·
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We get from (5) that yl+1 < (l + 1)qk + l2 + 1 and thus that yl+1 ≤ c(l + 1)− 1.
If

ρ(l) + ρk = (l1 + 1)ρk + l2(ρk − ak) > ak (6)

then line l is of type 2 and we have c(l+1) = (l+1)qk+l2+2. The point (l+1, yl+1)
on F corresponds to a prefix Bjl+1 such that rjl+1 = yl+1 and aj1 = l+1. From (4)
we get:

yl+1

l + 1
< qk +

ρk
ak
·

Since ρ(l) + ρk ≤ 2ak, we have (l + 1)ρk − l2ak ≤ 2ak, which rewrites

(l + 1)
ρk
ak
≤ l2 + 2.

We thus have yl+1 < (l + 1)qk + l2 + 2 and yl+1 ≤ c(l + 1) − 1. That completes
the proof of Property 7.

To conclude the proof of Property 5, notice that if Σk+1 is not feasible, there
necessarily exists a line l ∈ {1, · · · , ak−1} such that yl ≥ c(l). We thus get from 7
that Σk+1 is a feasible solution.

Recall that in order to prove Theorem 1, we have to prove the inequality (3):

a

 ∑
Ti∈A(B,s)∪H(B,s)

∆i

− r
 ∑
Ti∈R(B,s)

∆i

 ≥ 0

where B = (T1, · · · , Tn) and (B, s) is a left-optimal allocated block. Since (B, s)
is left-optimal, we have aan∗ − rrn∗ ≥ 0. A sufficient condition for (3) is:

rn∗

( ∑
Ti∈An

∆i

)
− an∗

( ∑
Ti∈Bn

∆i

)
≥ 0. (7)

But from Property 5, we know that Tn has a feasible solution nl,c, l ∈ {1, · · · , an},
c ∈ {1, · · · , rn}. Let J(l) (respectively I(c)) the column (respectively line) numbers
associated with a feasible cell of line l (respectively column c). We have:

∀l ∈ {1, · · · , an}
∑
c∈J(l) nl,c ≤ rn∗

∀c ∈ {1, · · · , rn}
∑
l∈I(c) nl,c = an∗

∀(l, c), l ∈ {1, · · · , an}, c ∈ J(l) ∆il ≥ ∆jc

∀(l, c), l ∈ {1, · · · , an}, c 6∈ J(l) nl,c = 0.
For any line l ∈ {1, · · · , an}, we thus have:

rn∗∆il ≥
∑
c∈J(l)

nl,c∆jc .
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By summing all these inequalities we get:

rn∗
an∑
l=1

∆il ≥
rn∑
c=1

∆jc

∑
l∈I(c)

nl,c


which rewrites:

rn∗
an∑
l=1

∆il ≥ an∗
rn∑
c=1

∆jc .

Since the inequality (7) is satisfied, the same is true for inequality (3), what com-
pletes the proof of Theorem 1.

The right-optimal allocated blocks satisfy the following symmetrical property.

Theorem 2. Let (B, s) be a right-optimal allocated block. The cost of any schedule
of B whose first task starts at least at time s is not less than the cost of (B, s).

Proof. Since that proof is quite similar to the proof of Theorem 1, we only give
its global scheme. Let B = (Tn, · · · , T1) and let τ be an arbitrary schedule of
B whose first task starts at least at time s. Let ui and vi be respectively the
starting times of task Ti in (B, s) and in τ . From the assumptions on τ we get
that ∆i = vi − ui ≥ 0 and that

∆n≤· · ·≤∆1.

Let c1 and c2 be respectively the costs of (B, s) and τ . If Ti is on-time or tardy in
(B, s), its cost in τ is exactly r∆i larger, otherwise if it is early in (B, s), its cost
in τ is at most a∆i less. We thus have:

c2 ≥ c1 + r

 ∑
Ti∈R(B,s)∪H(B,s)

∆i

− a
 ∑
Ti∈A(B,s)

∆i


and we must prove that:

r

 ∑
Ti∈R(B,s)∪H(B,s)

∆i

− a
 ∑
Ti∈A(B,s)

∆i

 ≥ 0. (8)

For each k ∈ {1, · · · , n}, let Bk be the suffix (Tk, · · · , T1), Rk={Ti1 , · · · , Tirk }
be the set of the on-time and tardy tasks of (Bk, s +

∑n
i=k+1 pi) and let also

Ak = {Tj1 , · · · , Tjak} be the set of the early tasks of (Bk, s+
∑n
i=k+1 pi). Without

any loss of generality we assume that

i1< · · ·<irk and j1< · · ·<jak .

Let βk = maxj∈{1,··· ,k}{ajrj } and k̂ be the smallest index of {1, · · · , k} such that
aj
rj

= βk. We notice that βk is defined for each k ∈ {1, · · · , n}: indeed we have
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a1 + r1 = 1 and rr1 − aa1 ≥ 0 since (B, s) is right-optimal, we thus have r1 = 1
and a1 = 0 (T1 is tardy), from which we get that rk > 0 for any k ∈ {1, · · · , n}.
Let us define the transportation problem Uk where:
• Rk is the set of suppliers and the availability of each supplier is ak̂;
• Ak is the set of demands and the amount of each demand is rk̂;
• the demands must be exactly fulfilled;
• a transportation arc (Ti, Tj) ∈ Ak ×Rk is feasible if i < j.

We then have the symmetrical property of Property 5 whose proof, which is analog
to that of Property 5 is omitted:

Property 8. For any k ∈ {1, · · · , n}, Uk has a feasible solution.

Since (B, s) is right-optimal, we have

rrn̂ − aan̂ ≥ 0.

A sufficient condition for (8) to be satisfied is that:

an̂

( ∑
Ti∈Rn

∆i

)
− rn̂

( ∑
Ti∈An

∆i

)
≥ 0. (9)

But the feasibility of Un implies that (9) is satisfied, what completes the proof
of 2.

Theorem 1 and Theorem 2 may be generalized to left and right optimal allocated
blocks as follows:

Theorem 3. Let (B, s) be a left and right optimal allocated block. The cost of
(B, s) is at most the cost of an arbitrary schedule of B.

Proof. Let σ be an arbitrary schedule of B. If σ completes at most at time s+p(B)
(respectively starts at least at time s), Theorem 1 (respectively 2) shows cB(s) ≤
c(σ). Otherwise, there is a prefix B′ of B such that the last task of B′ is completed
in σ at most at time s+ p(B′) and such that the first task of the complementary
suffix B′′ of B′ in B is started at least at time s + p(B′). Let σ′ (respectively
σ′′) be the restriction of σ to the tasks of B′ (respectively B′′). Since (B′, s) is
left-optimal, we have cB′(s) ≤ c(σ′) from Theorem 1. Since (B′′, s+p(B)−p(B′′))
is right-optimal, we get from Theorem 2 that cB′′(s+ p(B)− p(B′′)) ≤ c(σ′′). We
thus may conclude that cB(s) ≤ c(σ).

4.2. Correctness of EXT.GTW

We show in this section that if S1 is a left-adjusted optimal schedule for the
restriction of the problem to its first q tasks, then the schedule S2 provided by
the generic step of EXT.GTW is also a left-adjusted optimal schedule for the
restriction of the problem to its first q + 1 first tasks.
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In order to prove the correctness of EXT.GTW, we assume that for any k ∈
{1, · · · , b(S1)}, the restriction S1[1, .., nk(S1)] of S1 to its k first allocated blocks
is optimal and left-adjusted for the task sequence (T1, · · · , Tnk(S1)) and we show
the same is true for S2.

If ωq+1 < fb(S1)(S1), let Ŝ0 be the first schedule built by the generic step
of EXT.GTW by adding task Tq+1 to the last allocated block of S1. Then if
EXT.GTW performs K mergings, let Ŝ1, · · · , ŜK the intermediate schedules we
got just after these mergings. Notice that if K ≥ 1, then S2 is either ŜK or re-
sults from the occurrence of event F1 or event F2 during the left shift of the
last allocated block of ŜK . Let Σ be an arbitrary schedule for the tasks se-
quence (T1, · · · , Tq+1). Before we examine the different issues of the generic step
of EXT.GTW, we give two properties that will simplify the proof: the first shows
that an allocated block remains right-optimal and quasi left-optimal when it is
left-shifted as long as the initially tardy tasks remain tardy.

Property 9. Let (D,u) be a right optimal and quasi left-optimal allocated block
and let v < u. If R(D, v) = R(D,u) then (D, v) is right optimal and quasi left-
optimal.

Proof. Let A1,H1, R1 (respectively A2,H2, R2) be the number of early, on-time
and tardy tasks in (D,u) (respectively (D, v)). Since each tardy task of (D,u)
is still tardy in (D, v), we have A2 = A1 + H1, H2 = 0 and R2 = R1. Since
LEFT (D,u) is false, we have a(A1 +H1) < rR1 and so we get

a(A2 +H2) < rR2 (10)

which implies that LEFT (D, v) is false.
Consider a proper prefix D′ of D and let A′1,H

′
1, R

′
1 (respectively A′2,H

′
2, R

′
2)

be the number of early, on-time and tardy tasks in (D′, u) (respectively (D′, v)).
Since any tardy task in (D′, u) is still tardy in (D′, v), we get: A′2 = A′1 + H ′1,
H ′2 = 0 and R′2 = R′1. As LEFT (D′, u) is true, we have a(A′1 +H ′1) ≥ rR′1 and so
a(A′2 +H ′2) ≥ rR′2, which implies that LEFT (D′, v) is true. Thus (D, v) is quasi
left-optimal.

Let D′′ be a proper suffix of D. We denote by A′′1 , H ′′1 and R′′1 (respectively A′′2 ,
H ′′2 and R′′2 ) the number of early, on-time and tardy tasks in (D′′, u+p(D)−p(D′′))
(respectively (D′′, v+ p(D)− p(D′′))). Let D̂ be the complementary proper prefix
of D′′ in D. Since each tardy task in (D̂, u) is still tardy in (D̂, v), we have: Â2 =
Â1+Ĥ1, Ĥ2 = 0 and R̂2 = R̂1. As LEFT (D̂, v) is true, we have a(Â2+Ĥ2) ≥ rR̂2,
which rewrites a(−A2+A′′2−H2+H ′′2 ) ≤ r(−R2+R′′2). By summing that inequality
with inequality (10), we get a(A′′2 +H ′′2 ) < rR′′2 , which implies r(R′′2 +H ′′2 ) > aA′′2
and so RIGHT (D′′, v + p(D)− p(D′′)) is true.

For the suffix D itself, inequality (10) directly implies that r(R2 +H2) > aA2

and so RIGHT (D, v) is true. (D, v) is thus a right-optimal allocated block.

The second property whose simple proof is omitted concerns the merging of a
right-optimal and quasi left-optimal allocated block with a left and right-optimal
allocated block.
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Property 10. Let (E, u) be a left and right-optimal allocated block and let (D,u+
p(E)) be a right-optimal and quasi left-optimal allocated block. The allocated block
(ED, u) is right-optimal. Moreover, (ED, u) is also left-optimal (respectively quasi
left-optimal) if LEFT (ED, u) is true (respectively false).

We now analyze the different issues of the generic step of EXT.GTW.

Case 1: ωq+1 > fb(S1)(S1).
We have c(S2) = c(S1) since the cost of the last allocated block of S2 is zero

and since c(S1) ≤ c(Σ[1, . . . , q]) from the induction. Since c(Σ) ≥ c(Σ[1, .., q]), we
have c(Σ) ≥ c(S2). So S2 is optimal and left-adjusted.

Case 2: ωq+1 < fb(S1)(S1) and s
b(Ŝ0)

(Ŝ0) = αB
b(Ŝ0)

.

If the last allocated block of S1 does not start at time 0, then from the induction
and Property 4, that allocated block is left and right-optimal. It is then easy to
verify that the last allocated block of Ŝ0 which is obtained from the last allocated
block of S1 by adding the tardy task Tq+1 is left and right-optimal too. Let l
be the index of the last task of the last-but-one allocated block of S1. From the
induction, we have c(Ŝ0[1, . . . , l]) = c(S1[1, . . . , l] ≤ c(Σ[1, . . . , l]. Moreover we
get from Theorems 1, 2 and 3 that the cost c(Ŝ0[l + 1, . . . , q + 1]) of the last
allocated block of Ŝ0 is at most equal to c(Σ[l + 1, . . . , q + 1]. We thus have
c(Ŝ0) ≤ c(Σ).

If the last allocated block of S1 starts at time 0 (indeed S1 has exactly one
allocated block), then from the induction and Property 4, this block is right-
optimal. Since the single allocated block making Ŝ0 is also right-optimal, we get
from Theorem 3 that c(Ŝ0) ≤ c(Σ).

Case 3: ωq+1 < fb(S1)(S1) and s
b(Ŝ0)

(Ŝ0) > αB
b(Ŝ0)

.
For each k ∈ {0, · · · ,K}, let (Dk, tk) be the last allocated block of the interme-

diate schedule Ŝk and let respectively ak, hk, rk be the number of early, on-time
and tardy tasks of (Dk, tk).

From Property 10, the allocated block (D0, t0) is right-optimal and quasi left-
optimal since on the one hand we have s

b(Ŝ0)
(Ŝ0) > αB

b(Ŝ0)
and on the other hand

this block results from adding to the last allocated block of S1 (which from the
induction is left and right-optimal) task Tq+1, which is a right-optimal and quasi
left-optimal allocated block.

For any k ∈ {1, · · · ,K − 1}, the allocated block (Dk, tk) is right-optimal and
quasi left-optimal since on the one hand we have s

b(Ŝk)
(Ŝk) > αB

b(Ŝk)
and on the

other hand this block results from left-shifting (Dk−1, tk−1) (under the assumptions
of Property 9) and the merging of an allocated block S1 (which from the induction
is left and right optimal) with the allocated block (Dk−1, v) (where v < tk−1),
which is from Property 9, a right-optimal and quasi left-optimal allocated block.
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Let us now consider the allocated block (DK , tK). Properties 9 and 10 yield
that this block is a left adjusted right and left-optimal (respectively right and quasi
left optimal) if s

b(Ŝk)
(Ŝk) = αB

b(Ŝk)
(respectively s

b(Ŝk)
(Ŝk) > αB

b(Ŝk)
).

If s
b(Ŝk)

(Ŝk) = αB
b(Ŝk)

, then S2 = ŜK . If p is the number of tasks in DK ,

we have S2[1, . . . , q + 1− p] = S1[1, . . . , q + 1− p]. From the induction, we have
c(S1[1, . . . , q + 1− p]) ≤ c(Σ[1, . . . , q + 1− p]). Moreover since the last allocated
block of S2 is right and left-optimal, Theorem 3 implies that c(S2[q−p+2, . . . , q+
1]) ≤ c(Σ[q − p+ 2, . . . , q + 1]).

If s
b(Ŝk)

(Ŝk) > αB
b(Ŝk)

, then there is one more block left-shifting that completes
by the occurrence of event F1 or F3.

If F1 occurs, the associated left-shifting matches the assumptions of Property 9
and S2 has a single allocated block that starts at time 0 and is right-optimal. We
then get from Theorem 2 that c(S2) ≤ c(Σ).

If F2 occurs, the last allocated block of S2 results from the left-shifting of
(DK , tK) but this shift stops because the number of tardy tasks of the shifted
allocated block strictly decreases.

Notice first that for any k ∈ {0, · · · ,K}, the inequality a(ak+hk)−r(rk−1) ≥ 0
is true. Indeed it is true by the definition of a0, h0 and r0 for k = 0. Let
us assume it is true at the end of the (k − 1)th merging and let a′, h′ and r′

be respectively the number of early, on-time and tardy tasks of the allocated
block of S1 that is merged during the kth merging. We then have hk = h′,
ak = ak−1 + hk−1 + a′ and rk = rk−1 + r′. Since the merged allocated block of
S1 is left-optimal we have a(a′ + h′) − rr′ ≥ 0 and since from the induction we
have a(ak−1 + hk−1)− r(rk−1 − 1) ≥ 0, we get by summing these two inequalities
a(ak + hk)− r(rk − 1) ≥ 0.

We thus have:

a(aK + hK)− r(rK − 1) ≥ 0. (11)

Let (DK , v) (where v < tK) be the last allocated block of S2 and let A,H and R
be respectively the number of early, on-time and tardy tasks of (DK , v). Assume
that x ≥ 1 tasks that are tardy in (DK , tK) are on-time in (DK , v).

The allocated block (DK , v) itself satisfies A = aK+hK , H = x and R = rK−x.
From Property 11 we get

a(A+H)− rR = a(aK + hK)− r(rK − 1) + ax+ r(x− 1).

Since x ≥ 1, LEFT (DK , v) is true. Moreover since LEFT (DK, tK) is false, we
have that r(R + H) − aA = rrK − a(aK + hK) is strictly positive, what implies
that RIGHT (DK , v) is true too.

Let D′ be a proper prefix of DK . Let A′1,H
′
1, R

′
1 be respectively the number of

early, on-time and tardy tasks of (D′, tK) and let A′2,H
′
2, R

′
2 be respectively the

number of early, on-time and tardy tasks of (D′, v). Let y ≥ 0 be the number of
tardy tasks of (D′, tK) that are on-time in (D′, v). We have A′2 = A′1 +H ′1, H ′2 = y
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and R′2 = R′1 − y. We thus get that

a(A′2 +H ′2)− rR′2 = a(A′1 +H ′1)− rR′1 + y(r + a)

what shows that LEFT (D′, v) is true.
Let D′′ be a proper suffix of DK . Let A′′1 ,H

′′
1 , R

′′
1 be respectively the number

of early, on-time and tardy tasks of (D′′, tK + p(DK)− p(D′′)) and let A′′2 ,H
′′
2 , R

′′
2

be respectively the number of early, on-time and tardy tasks of (D′′, v + p(DK)−
p(D′′)). Let z ≥ 0 be the number of tardy tasks in (D′′, tK +p(DK)−p(D′′)) that
are on-time in (D′′, v + p(DK) − p(D′′)). We have A′′2 = A′′1 + H ′′1 , H ′′2 = y and
R′′2 = R′′1 − y. So we get that

r(R′′2 +H ′′2 )− aA′′2 = a(R′′1 +H ′′1 )− rR′′1

what shows that RIGHT (D′′, v + p(DK)− p(D′′)) is true.
As a conclusion the allocated block (DK , v), which is the last allocated block

of S2 is left and right-optimal. If that block has p tasks, we have S2[1, . . . , q + 1
−p] = S1[1, . . . , q + 1 − p]. From the induction, we have c(S1[1, . . . , q + 1 − p])
≤ c(Σ[1, . . . , q + 1 − p]) and from Theorem 3 we get c(S2[q − p + 2, . . . q + 1])
≤ c(Σ[q − p+ 2, . . . q + 1]). We thus may conclude that c(S2) ≤ c(Σ).

We have shown that, for each issue of the generic step of EXT.GTW, S2 is
an optimal schedule for the tasks sequence (T1, · · · , Tq+1). That schedule is left-
adjusted since on the one hand each allocated block, which is not the last one
and that does not starts at time 0 is left-optimal from the induction and on the
other hand we have shown that the last allocated block is also a left-adjusted left-
optimal for all issues of the generic step except event F1. Finally the restriction
S2[1, . . . , nk(S2)] of S2 to its k first allocated blocks is optimal and left-adjusted
for the tasks sequence (T1, · · · , Tnk(S2)) since on the one hand that is true from
the induction for k ∈ {1, · · · , b(S2) − 1} and on the other hand we have shown
that is also true for S2 itself.

Since the generic step of EXT.GTW correct, EXT.GTW is also correct because
the schedule S1 provided for the single task T1 is optimal, left-ajusted and has a
single block.

4.3. Worst-case complexity of EXT.GTW

Let us associate with each allocated block (Bk, sk) of the running schedule
the heap Tk that contains the tardy tasks of (Bk, sk), each with a priority equal
to its tardiness. Each iteration of the mergings loop within the generic step of
EXT.GTW performs a left-shifting whose complexity is O(1) since it corresponds
to add a constant to the priority of all the tasks in the heap and the merging
that may be executed in O(log n)). The key point here is to notice that the
total number of mergings during an execution of EXT.GTW is O(n) since each
merging decreases by one the number of allocated blocks in the current schedule
of EXT.GTW. The complexity of all the mergings is thus O(n log n). Apart from
the merging loop, the complexity of the generic step of EXT.GTW is O(1) except
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when the task Tq+1 has to be inserted in the heap associated with the last allocated
block of S1 as its last (tardy) task, in which e the complexity is O(log n). The
overall worst-case complexity of EXT.GTW is thus O(n logn).

5. Asymmetric and task-dependent costs

The approach of Section 4 does not easily extend to the general problem where
asymmetric and task-dependent costs are assumed. We present for that problem
a polynomial algorithm based on the convexity of the time function cB(t), on
an enhancement of the left-adjusted schedule notion and on the modelling of the
problem as the search of a minimum-cost path in a directed acyclic graph.

Let S = ((B1, s1), · · · , (Bb, sb)) be a schedule. The allocated block (Bk, sk) of
S is said to be strongly left-adjusted in S if for any t ∈ [fk−1, sk[ and for any prefix
B′k of Bk, we have cB′k(t) > cB′k(sk) (with by convention f0 = 0). By extension,
S is said to be strongly left-adjusted if each of its allocated blocks is strongly
left-adjusted. A prefix B′k of Bk is said to be left-movable in S if αB′

k
< sk.

The following property shows that there is one optimal schedule that is strongly
left-adjusted.

Property 11. The strongly left-adjusted schedules are dominant.

Proof. Let S = ((B1, s1), · · · , (Bb, sb)) be an optimal left-adjusted but not strongly
left-adjusted schedule. Let (Bk, sk) be the first non strongly left-adjusted allocated
block (Bk, sk). Let B∗k be the smallest left-movable prefix of Bk. Notice that B∗k
is not the empty prefix since (Bk, sk) is not strongly left-adjusted. We then define
the schedule S′ as follows:

First case: αB∗k ≤ fk−1.
S′ = LEFTSHIFT&MERGE(S,B∗k, sk). From the definition of B∗k, the con-

vexity of cB∗(t) and since (Bk−1, sk−1) is strongly left-adjusted, we derive that
the allocated block (Bk−1B

∗
k , sk−1) is strongly left-adjusted. Notice that from the

optimality of S, cB∗(t) is invariant over [fk−1, sk].

Second case: αB∗
k
> fk−1.

S′ = LEFTSHIFT (S,B∗k, sk, αB∗k ). From the definition of B∗k, note that in
this case the allocated block (B∗k , αB∗k ) of S′ is strongly left-adjusted. We may
now transform S′ into an optimal left-adjusted schedule S′′.

Whatever the case, S′′ is still an optimal schedule and the index of the last task
of the last strongly left-adjusted allocated block is strictly larger in S′ than in S.
So, iterating the process (at most n times) as long as the current schedule is not
strongly left-adjusted yields an optimal strongly left-adjusted schedule.

The block B = (Ti, · · · , Tj) is said to be left-indivisible if for any proper prefix
B′ of B we have αB′ ≥ αB. Similarly, B is said to be right-indivisible if for any
proper suffix B′′ of B we have αB′′ ≤ αB + p(B)− p(B′′). The following property
gives a strong necessary condition on the starting times of the allocated blocks of
an optimal and strongly left-adjusted schedule.
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Theorem 4. Let S = ((B1, s1), · · · , (Bp, sp)) be an optimal and strongly left-
ajusted schedule. For any k ∈ {1, · · · , p}, if sk > 0 then the block Bk is right
and left indivisible and sk = αBk . If s1 = 0 then B1 is right indivisible.

Proof. Let S be an optimal and strongly left-adjusted schedule and let (Bk, sk) be
an allocated block of S such that sk > 0. If sk < αBk , by right-shifting (Bk, sk) a
sufficiently small amount of time ε > 0 we get from Property 1 a feasible schedule
whose cost is strictly smaller than the cost of S, what contradicts the optimality
of S. If sk > αBk , by left-shifting (Bk, sk) a sufficiently small amount of time
ε > 0 we get from Property 1 either a schedule with a strictly smaller cost, what
contradicts the optimality of S, or a schedule with the same cost as S, what
contradicts the (strongly) left-adjusted assumption on S. We thus have sk = αBk
for any k ∈ {1, · · · , p} such that sk > 0.

Assume that αBk > 0 and that there is a proper prefix B′k of Bk such that
αB′

k
< αBk . There exists a sufficiently small ε > 0 such that the schedule S′ =

LEFTSHIFT (S,B′k, αBk , αBk − ε) is feasible. From Property 1 we then get that
c(S′) ≤ c(S), what means that S is not strongly left-adjusted.

Assume that αBk > 0 and that there exists a suffix B′′k of Bk such that αB′′
k
>

αBk + p(B′k). There exists a sufficiently small ε > 0 such that the schedule S′′ =
RIGHTSHIFT (S,B′′k , uk, uk + ε), where uk = αBk + p(Bk)− p(B′′k ), is feasible.
From Property 1 we get that c(S′′) < c(S), what contradicts the optimality of S.

Assume that s1 = 0 and that there exists a suffix B′′1 of B1 such that αB′′1 >
αB1 + p(B′1). There exists a sufficiently small ε > 0 such that the schedule
S′′ = RIGHTSHIFT (S,B′′1 , u1, u1 + ε), where u1 = p(B1) − p(B′′1 ), is feasi-
ble. From Property 1 we get that c(S′′) < c(S), what contradicts the optimality
of S.

The necessary condition provided by Theorem 4 leads us to define the following
valued directed graph called IBG (for indivisible-block graph).

The vertices of IBG are:
1. the block Bi,j = (Ti, · · · , Tj) if 1 ≤ i ≤ j ≤ n and if Bi,j is a right and

left-indivisible block;
2. the block B̂1,i if i ∈ {1, · · · , n} and if B̂1,i is a right-indivisible block (B̂1,i

corresponds to the allocated block (B1,i, 0));
3. a source node σ and a sink node π.

The valued arcs of IBG are:
1. for any i ∈ {1, · · · , n}, the arc (σ,B1,i) valued by γB1,i ;
2. for any i ∈ {1, · · · , n}, the arc (σ, B̂1,i) valued by cB1,i(0);
3. for any i ∈ {1, · · · , n}, the arc (Bi,n, π) valued by 0;
4. for each pair of nodes (Bi,j and Bj+1,k) such that αBj+1,k − αBi,j ≥ p(Bi,j)

the arc (Bi,j , Bj+1,k) valued by γBj+1,k ;
5. for each pair of nodes B̂1,j and Bj+1,k such that αBj+1,k ≥ p(B1,j), the arc

(B̂1,j , Bj+1,k) valued by γBj+1,k .
A path from σ to π in IBG corresponds to a schedule matching the assumptions of
Theorem 4 and conversely every schedule matching these conditions corresponds
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to a path from σ to π in IBG. Moreover the cost of the path and the cost of the
associated schedule are the same. We thus get the following property:

Property 12. An optimal and strongly left-adjusted schedule corresponds to a
minimum-cost path from σ to π in IBG.

We propose the following two-step algorithm to compute a minimum-cost sched-
ule: the first step builds IBG from the problem instance while the second step com-
putes a minimum-cost path from σ to π in IBG. Note that since IBG is acyclic,
the Bellman’s algorithm may be used in the second step.

Worst-case complexity

The number of vertices of IBG is clearly O(n2). Since each block Bi,j has
n− j immediate successors and since for fixed j, there are j − 1 blocks Bi,j , the
number of arcs of IBG is O(n3). If Bi,j is a block with k tasks, then by using a
heap to maintain the set of the early tasks of the allocated block (Bi,j , t) (initially
(Bi,j , 0)), the pair (αBi,j , γBi,j ) may be computed in O(k log k). Thus computing
all these pairs takes O(n3 logn). Moreover deciding whether the k-tasks block
Bi,j is right and left-indivisible takes O(k). So computing the nodes of IBG takes
O(n3 logn). Since searching for a minimum-cost path in IBG takes O(n3), the
worst-case complexity of the algorithm is O(n3 logn).

Notice that restricting to the indivisible blocks increases the worst-case com-
plexity compare to a more naive algorithm with worst-case complexity O(n3) that
would consider all the blocks Bi,j such that 1 ≤ i ≤ j ≤ n and B̂1,i such that
1 ≤ i ≤ n. However it appears that in practice many blocks are divisible so that it
is really worth taking the time to search for the indivisible blocks to get a graph
with a quite smaller number of nodes.

6. Conclusion

In this paper, we first have proposed an O(n log n) algorithm for the special
case of asymmetric and task-independent costs. This algorithm extends a previ-
ous algorithm by Garey et al. that applies to the case of symmetric and task-
independent costs without increasing its worst-case complexity. For the general
case with assymetric and task-dependent costs, we have proposed an O(n3 logn)
algorithm, which is based on a strong necessary condition on the starting times
of the allocated blocks of an optimal and strongly left-adjusted schedule. We now
plan to study algorithms for minimizing the mean cost per iteration for infinite
periodic tasks systems.
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