
RAIRO Operations Research
RAIRO Oper. Res. 35 (2001) 189-209

RESOURCE ALLOCATION IN A MOBILE TELEPHONE
NETWORK: A CONSTRUCTIVE REPAIR ALGORITHM

Patrice Boizumault
1
, Philippe David

1
and

Housni Djellab
1, 2

Abstract. To cope with its development, a French operator of mo-
bile telephone network must periodically plan the purchase and the
installation of new hardware, in such a way that a hierarchy of con-
straints (required and preferred) is satisfied. This paper presents the
“constructive repair” method we used to solve this problem within the
allowed computing time (1 min). This method repairs the planning
during its construction. A sequence of repair procedures is defined: if
a given repair cannot be achieved on a partial solution, a stronger re-
pair (possibly relaxing more important constraints) is called upon. We
tested our method on ten (both hand-made and real) problems. All
our solutions were at least as good as thoses computed by hand by the
engineer in charge with the planning.

Résumé. Afin de couvrir les besoins liés au développement de son
réseau, un opérateur français de téléphonie mobile doit périodiquement
planifier l’achat et l’installation de nouveaux matériels, tout en respec-
tant un ensemble de contraintes (contraintes obligatoires ou préférences
hiérarchisées). Cet article présente la méthode, baptisée “constructive
repair”, utilisée pour résoudre ce problème dans les délais impartis
(1 min de temps de calcul). Cette méthode répare le planning durant
sa construction. Une suite de procédures de réparation est définie : si
une réparation donnée ne peut aboutir sur une solution partielle, une
réparation plus forte (relâchant éventuellement des contraintes plus
importantes) est appelée. Nous avons testé notre méthode sur dix pro-
blèmes (aussi bien réels que spécifiquement conçus “à la main” pour
ces tests). Nos solutions sont toutes au moins aussi bonnes que celles
imaginées par l’ingénieur responsable de la planification.

Keywords: Resource allocation, repair algorithms, constrained reso-
lution time, CSP, telecommunications.

Received May, 1999.

1 Département Informatique, École des Mines de Nantes, 4 rue Alfred Kastler, La Chantrerie,
44307 Nantes Cedex 3, France; e-mail: {Patrice.Boizumault, Philippe.David}@emn.fr
2 Currently at: Eurodecision, 9a rue de la Porte de Buc, 78000 Versailles, France;
e-mail: housni.djellab@eurodecision.fr

c© EDP Sciences 2001

190 P. BOIZUMAULT, PH. DAVID AND H. DJELLAB

1. Introduction

Bouygues Telecom, a French operator of mobile telephone network, is grow-
ing rapidly. To cope with this development, new hardware must continually be
added to the existing network. The addition of new hardware must firstly fulfil
strong technical constraints related to compatibility and capacity. Moreover, both
the choice of new hardware to buy, and the possibilities of connections to the
network, must satisfy quality criteria stated by the operator. These criteria are
expressed as preference constraints, hierarchically ordered.

The problem is, on a given time horizon, to plan the purchase and installation
of hardware; this planning determines what hardware must be bought and what
connections must be achieved, knowing that connections may evolve (hereafter, a
connection change will be denoted “reconnection”). Bouygues Telecom asked
us to develop an application, with an important requirement: their engineers
should be able to use it very interactively, as a simulation tool. To do so, a
solution (even if it does not satisfy all constraints) has to be computed within a
given time3.

In this paper, we show how this problem can be solved using constraint pro-
gramming, and particularly repair techniques. Indeed, the “time-out” constraint,
together with the important size of the problem, do not allow the use of systematic
constructive methods. A hybrid technique (between constructive methods and lo-
cal search algorithms) appeared to be a well suited approach for this problem: the
planning is repaired during its construction.

In addition, repair techniques allowed us to cope with two specific features of
our problem:

constraints hierarchy: each hierarchy level is associated with specific re-
pair procedures which can possibly violate constraints up to this level;
“reconnection”: a new planning may change some existing connections;
moreover, a strong “meta-constraint” strictly limits the number of possible
reconnections.

The prototype we have developed has been validated by Bouygues Telecom,
both on hand-made benchmarks and on real data. Every problem has been solved
within one minute; moreover, each solution was at least as good as the solution
computed “by hand”.

Section 2 describes the resource allocation problem. In Section 3 we model
our problem as a Constraint Satisfaction Problem with preference constraints.
Section 4 presents related works (from systematic constructive methods to local
search algorithms) and motivates how repair algorithms are well suited for solving
this problem. Section 5 describes our resolution method, based upon local re-
pair techniques during the generation. We finally conclude with some results and
comments about this method.

3In our case, one minute.

RESOURCE ALLOCATION IN A MOBILE TELEPHONE NETWORK 191

2. The problem

In order to cope with the development of its mobile telephone network,
Bouygues Telecom has to plan, on a given time horizon, the purchase and
the installation of new transceivers and controllers. The whole period is divided
into np elementary time periods (here, np = 6) during which the planning will be
updated (see Fig. 1). For each time period, the number and the location of added
transceivers is fixed; but they can vary from one time period to another.

1 elementary time period

i i+1

i+1 i+np

Time horizon for the planning starting at period i

Time horizon for the next planning

i+np-1

np(= 6 elementary periods)

Figure 1. Time management for successive plannings.

In this paper, we will not describe the whole mobile telephone network. In-
stead, we only focus on the components related to our problem: transceivers and
controllers4. Each transceiver is controlled by exactly one controller while a con-
troller can manage several transceivers (depending on its capacity). A controller
must be assigned to every new transceiver installed on the network (see Fig. 2).
This controller can be either an already installed one (i.e., already in use), or a
new one.

The problem consists in assigning a controller to each transceiver on a given
time horizon and satisfying the following requirements:

1. a transceiver can be connected to a controller if technical constraints asso-
ciated to the network are satisfied (Fig. 2b): capacity constraints, compati-
bility between providers, compatibility between release versions, ...;

4For the sake of confidentiality we cannot provide more details, neither about data, nor about
constraints. However the problem we present is representative of the real life problem.

192 P. BOIZUMAULT, PH. DAVID AND H. DJELLAB

. . .

?

?

?

?

(a)

. . .

?

?

(b)

. . .?

(c)

. . .

(d)

Figure 2. Overview of the network.

2. a transceiver can be reconnected to another controller (reconnection) if the
technical constraints are satisfied (the bold transceiver in Fig. 2c). A re-
connection enables to temporarily find “a place” for a transceiver. But the
total number of reconnections has been limited by Bouygues Telecom. A
reconnection does not imply a physical movement of a transceiver (or a con-
troller); but it necessitates that technicians move to the transceiver location
to modify its pluggins in order to establish the new connection;

3. finally, when a transceiver cannot be connected to a controller a new con-
troller must be bought by Bouygues Telecom (Fig. 2d). The delivery
delay is several weeks; consequently, those purchases must be foreseen by
the planning.

Moreover, the planning has to satisfy at best a set of quality criteria defined by
Bouygues Telecom. Those criteria could not be combined into a linear objective
function. Instead, the quality of a planning is expressed by preference constraints
with different levels of priority (some criteria are more important than other ones).

Achieving such a planning “by hand” requires one week for an engineer.
Bouygues Telecom asked us to develop a tool which could help them designing
their planning by simulating an important number of possible scenarios. Conse-
quently, the computation time for building a planning has to be low5.

5For our application, the user requires a solution in less than one minute.

RESOURCE ALLOCATION IN A MOBILE TELEPHONE NETWORK 193

3. Modelling the problem as a CSP

with preference constraints

In this section, we model our problem as a Constraint Satisfaction Problem
(CSP) [17] with preference constraints.

3.1. Overview of the model

A CSP can be defined as a triple (X ,D, C): a finite set X of n variables
X1, X2, ..., Xn; the set D of their respective domains domain(X1), domain(X2), ...,
domain(Xn) (where domain(Xi) is the finite set of the possible values for Xi); and
the set C of the constraints specifying which combinations of values are allowed.

The “classical” CSP is a satisfiability problem: solving such a CSP consists
in assigning a value to every variable so that all constraints are satisfied.

In this case, the result provided by a constraint solver is either one or several
solutions if they exist, or “No Solution”.

But in most real life problems, the user cannot accept such an answer: he
does want a solution, even if some constraints are not satisfied. The “classical”
CSP model has therefore been extended to introduce preference constraints.
In this model, the set C of the constraints is divided in two subsets: required
constraints which must necessarily be satisfied, and preference constraints which
should preferably be satisfied, but can be violated. Now, a solution must satisfy
all the required constraints and the preferred ones in the best possible way with
respect to a given comparator [4, 16].

Example. In a research laboratory, Michael, John and Alan have to schedule a
meeting in order to present their current works. John and Alan want to present
their work to Michael. Michael wants to give a talk to John and Alan. Each
presentation requires an half-day. Michael, John and Alan have decided that the
duration of the meeting could not exceed 4 half-days. Each of the three researchers
has expressed a set of preference constraints that he expects to be verified by the
schedule.

This problem can be modelled as a CSP: let Ma,Mj,Am, Jm be the four pre-
sentations (Michael to Alan, Michael to John, Alan to Michael, John to
Michael respectively). As each talk lasts one half-day and the meeting could
not exceed 4 half-days, those variables will have [1, 2, 3, 4] as domain.
• integrity constraints are required:

– someone who attends a presentation cannot present something at the
same time:

{Ma 6= Am,Ma 6= Jm,Mj 6= Am,Mj 6= Jm}

– no one can attend two presentations at the same time:

{Am 6= Jm}

194 P. BOIZUMAULT, PH. DAVID AND H. DJELLAB

• preference constraints (by decreasing order of importance):
– Michael wants to know what John and Alan have done before presenting

his work (priority 3):

{Ma > Am,Ma > Jm,Mj > Am,Mj > Jm}

– Michael prefers not to present his work to Alan and John at the same
time (priority 2):

{Ma 6= Mj}

– Michael would like not to come the fourth half-day (priority 1):

{Ma 6= 4,Mj 6= 4, Am 6= 4, Jm 6= 4}·

There exists no solution that verifies all the constraints. The assignment {Ma =
4,Mj = 3, Am = 1, Jm = 2} violates only one constraint Ma 6= 4 with priority 1.

3.2. Variables and domains

Let Trans = {ti} be the set of the transceivers, and Ctr = {ctrj} be the set
of the controllers; as some transceivers can be reconnected, time periods must be
taken into account. ti,p will refer to transceiver ti at time period p, and ctrj,p to
controller ctrj at time period p.

Each transceiver has some specific features: the administrative area it depends
on, its provider, its release version, its actual (physical) location ... Below is the
list of those features together with the associated notations:
• Administrative area: area(ti,p)
• Provider: provider(ti,p)
• Release version: release(ti,p)
• Whether the physical location is safe or not: safeLocation(ti,p)
• Identifier of the physical location: location(ti,p)
• Load of a transceiver: load(ti,p)

As well as transceivers, controllers have their own characteristics:
• Administrative area: area(ctrj)
• Provider: provider(ctrj)
• Release version of a controller for a given period p: release(ctrj, p)
• Capacity: capacity(ctrj)

The set of the controllers in use during period p will be denoted controllers(p).
To each transceiver ti,p is associated a variable Ci,p which represents the con-

troller allocated to ti at time period p. The domain of such a variable Ci,p is a
subset of controllers(p) verifying certain basic technical constraints (e.g., com-
patibility with the provider of ti,p).

For the sake of brevity and simplicity, the period parameter p will sometimes
be omitted. This means (notably in comparisons between features) that the time

RESOURCE ALLOCATION IN A MOBILE TELEPHONE NETWORK 195

period is the same for all parts. For instance,
• (Ci,5 = ctrj) ∧ (Ci,6 = ctrk)

transceiver ti has been reconnected from controller ctrj to controller ctrk at
period p = 6;
• release(ti) ≤ release(Ci)

whatever any given period, the release version of transceiver ti must be less
than or equal to the release version of the controller Ci which manages it,
during that given period.

The problem is made up of a few hundreds of transceivers ti and a few tens of
controllers ctrj ; there are about a few thousands of domain variables Ci,p whose
domains size are about a few tens.

The planning problem consists in assigning a value (controller) to every variable
Ci,p such that all required constraints are verified and preference constraints are
satisfied at best.

3.3. Constraints

There are three kinds of constraints:
• required constraints which must be satisfied: technical constraints, capacity

constraints, ...;
• preference constraints which characterize the quality of a solution; they con-

stitute a hierarchy according to their levels of priority [1, 12,19];
• meta-constraints which are related to the preference constraints by limiting

the number of violations of these constraints. For instance, the total number
of reconnections is strictly limited during a time period.

3.3.1. Required constraints

A transceiver can be connected to a controller only if technical constraints are
satisfied:
• compatibility between providers is ensured:

∀ti ,

provider(Ci) = provider(ti)

• compatibility between release versions is ensured:
∀ti ,

release(Ci) ≥ release(ti)

• capacity: each controller has a specific load; the total load of the transceivers
connected to a controller cannot exceed the capacity of the controller:
∀ctrj , ∑

ti |Ci=ctrj

load(ti) ≤ capacity(ctrj)

196 P. BOIZUMAULT, PH. DAVID AND H. DJELLAB

3.3.2. Preference constraints

Unlike the required constraints, preference constraints have to be satisfied at
best (a planning is allowed to violate some of them). Preference constraints are
expressed as a hierarchy according to the priority levels defined by the user. Pref-
erence constraints characterize the quality of a solution.

A constraint with a given priority will be considered as more important than
any number of constraints with lower priorities [1]. We present here a significant
subset of the actual preference constraints:

6. locality: every transceiver should be connected to a controller which belongs
to the same area:
∀ti ,

area(ti) = area(Ci)

5. controller purchase: as far as possible, no new controller should be bought:
∀p > 0,

card(controllers(p)) = card(controllers(p− 1))

4. controller version upgrading6: as far as possible, no controller should
have its version upgraded:
∀p > 0,∀ctrj ,

release(ctrj , p) = release(ctrj , p− 1)

3. safety: not all the transceivers physically located at the same place should
be connected to the same controller, except if this location is considered as
“safe” by Bouygues Telecom:
∀ti | not safeLocation(ti),

∃ tj 6= ti | location(tj) = location(ti)
⇒ ∃ tk | location(tk) = location(ti) ∧ Ck 6= Ci

2. reconnection: as far as possible, no transceiver already connected to a
controller should be reconnected to another one:
∀p > 0,∀ti,

Ci,p = Ci,p−1

1. safety margin: every controller has its own safe loads; no load should
exceed those safety margins (expressed as percentages):
∀ctrj ,∑

ti|Ci=ctrj

load(ti) ≤ safetyMargin(ctrj)× capacity(ctrj)

6Upgrading the version of a controller may increase its capacity or its functionalities.

RESOURCE ALLOCATION IN A MOBILE TELEPHONE NETWORK 197

3.3.3. Meta-constraints

Bouygues Telecom has restricted the allowed number of reconnection changes
and version upgrading changes. These meta-constraints are related to preference
constraints by limiting the number of violations of these constraints:
• upon every period, the number of reconnections is limited:

∀p > 0,

card({ti,p|Ci,p 6= Ci,p−1}) ≤ maxReconnectionNumber(p)

• upon every period, the number of version upgradings is limited as well:
∀p > 0,

card({ctrj |release(ctrj , p− 1) 6= release(ctrj , p)}) ≤ maxUpgradeNumber(p)

In the same way as for required constraints, those meta-constraints must neces-
sarily be satisfied.

4. Solution approach

The previous section models our problem as a CSP with preference constraints.
In order to select an appropriate method for solving it, we must take into account
two specificities of this planning problem:
• the computation time is bounded (less than one minute). So, an exhaustive

planning has to be rapidly built, even if it does not respect at best the
preference constraints;
• meta-constraints limit the number of reconnections and the number of ver-

sion upgradings.

4.1. Four main approaches

Four main categories of methods can be used to solve this problem:
1. systematic constructive methods, based upon backtracking or branch and

bound techniques. These methods are complete and could provide an optimal
solution, but they may be very time consuming. Constraint programming
can be classified in this category;

2. local search methods start from an initial solution (often randomly gener-
ated). From this initial solution, exchanges between components are achieved
and results are evaluated. The exchange producing the best solution is re-
tained and the procedure continues until a stopping test. The exchange pro-
cess depends on the method (e.g., simulated annealing [9, 10], tabu search
[5, 6], repair-based methods [13]...) and the neighbourhood system used.
The choice of a neighbourhood generating mechanism should be driven by
the structure of the problem;

198 P. BOIZUMAULT, PH. DAVID AND H. DJELLAB

3. greedy methods construct a solution from scratch with no backtracking mech-
anism. These methods are obviously very fast, but they can be used only on
problems with very specific properties;

4. hybrid methods, can be obtained by combining constructive methods (either
systematic or not) and local search methods [11,14,15].

4.2. Discussion

Systematic constructive methods could not be used because of the requirement
in computation time and of the size of the problem. An hybrid technique (combin-
ing constructive methods and local search algorithms) appeared to be well suited
for this problem: no systematic backtrack is achieved; instead, the planning is
repaired during its construction.

This method consists in two steps:
1. at each stage of the construction (instanciation of a variable Ci,p), we use a

guided local repair method in order to revise the current partial solution;
2. the solution of step 1 clearly depends on the variables ordering; we therefore

iterate the first step with another assignment order. The number of iterations
depends on the computational time imposed by the user.

5. “Constructive repair”

The principle of our method is to repair the planning during its construction;
we will therefore first present this approach, which could be called “constructive
repair”. Then, we give two examples of repair functions (Sect. 5.2).

As repairing algorithms are not complete, they naturally cannot ensure any
kind of optimality; Section 5.5 discusses how various heuristics are successively
tried in order to improve the quality of the solutions.

5.1. Constructive repair of a planning

At time period p, function allocate(S, p) tries to allocate a controller to
each transceiver belonging to the set S. For each transceiver to be connected to
the network, if no controller verifies all the constraints, repair functions are applied
until one succeeds.

For each transceiver there are three cases:
1. there exists a controller satisfying all the constraints (“initial” success);
2. a controller can be selected consequently to a repair (“repair” success);
3. no controller can be allocated to this transceiver without violating at least

one required constraint; in this case, all repair functions have failed to provide
a controller for this transceiver (“failure”)7.

7It does not necessary mean that such a controller does not exist; constructive repair does
not ensure completeness.

RESOURCE ALLOCATION IN A MOBILE TELEPHONE NETWORK 199

Finally, all the transceivers for which no repair function is able to provide a con-
troller are gathered.
function allocate(S, p)

-- looks first for an "initial" success, else for a "repair" success;

-- returns {ti,p in S | for every controller available at period p,

-- there exits at least one required constraint

-- that is not satisfied}

1 -- WithoutCtr denotes the set of the transceivers for which

-- no controller has been found;

2 WithoutCtr <- emptyset;

3 while S is not empty do

4 select a transceiver ti,p in S;

5 look for a controller in domain(Ci,p)

such that all constraints are satisfied;

6 if there is no such controller

7 then repair(ti,p);

8 if failure then add ti,p to WithoutCtr;

9 end while

10 return WithoutCtr

end

The order the transceivers are selected (line 4) does not greatly affect the quality
of the solution; we used several orders (highest load first, lowest load first, most
recently in use first, random) with similar results on average; the reason is that
all transceivers have approximately the same load.

planifyFrom(p1) performs the planning over the time-horizon (np time peri-
ods) starting from time period p1. At each time period p, the corresponding set Sp
of transceivers to be connected to the network is processed calling allocate(Sp,
p). The reason why a transceiver cannot find a controller at a time period is that
not enough compatible controllers are available at this time period.

If the purchase of a controller ctr is decided, this controller will be connected to
the network only at period p’= delivery-period(ctr) (because of delivery delay
depending on the provider). For periods anterior to p’, it is too late: the only
thing we can do is to send a warning to the user. For periods posterior to p’, this
controller will become available for every compatible transceiver (addNewCtr(ctr,
p’)) and a new allocation step is performed for non allocated transceivers, taking
into account this new controller (line 13)8.
planifyFrom(p1)

1 for each time period p from p1 to p1 + np - 1

2 for each ti do

domain(Ci,p) <- domain(Ci,p-1); Ci,p <- Ci,p-1

-- at period p, each ti remains connected to the

8For the sake of clarity, we present here a slightly simplified version of the method. In the
actual algorithm, line 13 is replaced by a call to function improve(p), which tries to benefit from
the new controller: it is added to the domains of all transceivers compatibles with it. improve

then applies to all those transceivers (those in NoC, those in Sp, but also those assigned “by
default” to the same controller as at period p-1) to try to perform some reallocations in order
to increase the quality of the partial plan (i.e., decrease the number of constraint violations).

200 P. BOIZUMAULT, PH. DAVID AND H. DJELLAB

-- controller it was at period (p-1)

end for

3 let Sp be the set of the ti to be connected at period p;

4 let NoC = allocate(Sp, p)

5 while NoC is not empty -- there exist some ti without controller

6 choose any ti,p in NoC

7 let ctr be a new controller compatible with ti,p

8 let p’ = delivery-period(ctr);

9 if p < p’

10 then send a warning: too late for ti,p

11 remove ctr from NoC

12 else addNewCtr(ctr, p’)

13 NoC <- allocate(NoC, p)

end if

end while

end for

end

Every new controller ctr, connected to the network at period p, becomes available
for every compatible transceiver ti,q for time periods q ≥ p. To achieve this,
addNewCtr(ctr, p) extends the domains of the variables Ci,q by adding the value
ctr.

addNewCtr(ctr, p)

for each transceiver ti,q compatible with ctr such that q >= p do

add ctr to domain(Ci,q)

endfor

end

The key point of our method is the successive calls to repair functions. Each
repair tries to find a controller for a determined transceiver by locally modifying
the current solution, and possibly violating some constraints; if a repair succeeds,
a solution is obtained. If a repair fails, the next repair function is called, which
may violate more important constraints. As successive repairs fail, more and more
important constraints have to be relaxed in order to find a solution. A dozen of
repair functions have been developed for this application. The number of iterations
depends on the imposed computational time.

function repair(ti,p)

-- Each repair function revises the current partial solution.

1 repeat

2 select a repair function according to the hierarchy;

3 perform this repair for transceiver ti,p

4 until one repair succeeds;

5 if not, return failure

end function

We can now allocate the resources starting form period p. The number of iterations
(heuristics tried) depends on the allowed computing time. The various heuristics
are depicted in Section 5.2.

RESOURCE ALLOCATION IN A MOBILE TELEPHONE NETWORK 201

function repair-reallocate(ti,p)

-- returns {success,failure}

1 for all ctr in domain(Ci,p)

2 such that area(ctr) = area(ti,p)

3 and Ci,p <- ctr is safe

4 for all transceiver tj,p assigned ctr

5 for all ctr’ <> ctr in domain(Cj,p)

6 such that area(ctr’) = area(tj,p)

7 and Cj,p <- ctr’ is safe

8 if load(ctr’) + load(tj,p) <= capacity(ctr’)

9 and load(ctr) + load(ti,p) - load(tj,p) <= capacity(ctr)

10 then assign ctr’ to Cj,p

11 assign ctr to Ci,p

12 update data

13 return success

end if

end for

end for

end for

14 return failure

end function

Figure 3. First example of a repair function: repair-reallocate.

function planify(p)

1 while current-computing-time <= allowed-computing-time do

2 select a heuristic;

3 planifyFrom(p)

endwhile

4 return the best computed solution

end function

5.2. Repair functions

In this section, we give two examples of repair functions: the first one deals
with reconnection and the second one concerns version upgrading.

For instance, assume that for period p, no controller which is compatible with
transceiver ti,p has enough capacity left to manage it. This would lead to failure.
But, it may exist a transceiver tj,p connected to a controller ctr, belonging to
domain(Ci,p) such that it exists another controller ctr′ which can be allocated
to tj,p. A solution would consist in assigning ctr′ to tj,p (reconnection) and in
assigning ctr to ti,p, if ti,p verifies the capacity constraint. The repair function
outlined Figure 3 enables such reconnections ; Figure 7 in Section 5.4 illustrates
how this function repairs a partial plan.

Notice that if Cj,p−1 was assigned controller ctr, this repair adds one violation
of constraint 5 (reconnection). On the other hand, lines 2–3 and 6–7 ensure that
“same area” and “safe location” constraints cannot be violated.

202 P. BOIZUMAULT, PH. DAVID AND H. DJELLAB

function repair-upgrade(ti,p)

-- returns {success,failure}

1 for all ctr in domain(Ci,p) s.t. area(ctr) = area(ti,p)

2 if load(ctr) + load(ti,p) <= capacity(upgraded(ctr))

3 then upgrade(ctr,p)

4 assign ctr to Ci,p

5 update data

6 return success

end if

end for

7 return failure

end function

Figure 4. Second example of a repair function: repair-upgrade.

Another repair may upgrade the version of a controller to increase its capacity so
that it can be assigned to more transceivers (Fig. 4). As version upgrading is quite
an important constraint, this repair is called upon much later than this presented
above. Moreover, the total number of upgradings is strictly limited, which also
limits the use of this repair.

Notice that safety is not necessarily checked, since safety constraints have a
lower priority than version upgrading constraints. Another version of this repair
function with and additional check to ensure safety would be called just before
repair-upgrade.

5.3. Complexity

The complexity of the constructive repair method is closely related to the com-
plexity of the repair functions. Fast repairs allow a low run time, whereas more
sophisticated (and consequently more time consuming) repairs increase the qual-
ity of the search, and may therefore produce a better solution. The efficiency of
constructive repair relies on this compromise.

5.3.1. Complexity of repair functions

In this section, we evaluate the complexity in the worst case of the function
repair.

Let nt be the total number of transceivers, d be the total number of controllers
and e be the total number of constraints; the number of time periods (np) is a
constant (for our application np = 6); let n = np × nt; the CSP has n variables
with domains of maximum size d.

Every repair function has a low polynomial complexity. This is necessary be-
cause a solution has to be computed in a given time.

We first evaluate the complexity of the two repair functions described in
Section 5.2; then, we deduce the complexity of the function repair.

RESOURCE ALLOCATION IN A MOBILE TELEPHONE NETWORK 203

Let us consider function repair-upgrade depicted in Figure 4. The worst case
happens when there is no controller verifying the required property. So, there will
be at most d (max size of a domain) iterations in the loop (line 1). The complexity
of repair-upgrade is O(d).

The function repair-reallocate described in Section 5.2 is also a search al-
gorithm which proceeds by enumerating all the potential solutions. So, the worst
case happens when no solution can be found. repair-reallocate is made up of
three nested loops. There will be:
• at most d (max size of a domain) iterations in the first loop (line 1);
• at most nt iterations in the second loop (line 4): the worst case happens

when all the transceivers are connected to the same controller;
• at most d iterations in the third loop (line 5).

The complexity of repair-reallocate is O(nt × d2).
The worst case for function repair happens when all repair functions have to be

applied. The complexity of repair is the sum (or maximum) of the complexities
of all the repair functions. For our application, no repair function has a complexity
greater than the complexity of repair-reallocate; so the complexity in the worst
case of repair is O(nt× d2).

5.3.2. Complexity of general algorithm

The function allocate tries to allocate a value (controller) to every variable in
S:
• first (line 5), all values (possibly d) are checked against all constraints; there

may therefore be O(e× d) checks;
• if no value is found, repair is called upon, whose complexity is O(nt × d2)

(see above).
The complexity of allocate is therefore O(card(S)× (e× d+ nt× d2)).

The function planifyFrom planifies the successive allocations for all time pe-
riods. For each period p, there is an initialization step, where all transceivers
already connected at period p-1 default to the same controller (line 2); the second
step allocates a controller to all new transceivers: those in Sp (lines 3-13).

The complexity of planifyFrom is therefore∑
p∈periods

(complexity(initialization(p)) + complexity(connection(Sp)))

=
∑

p∈periods
complexity(initialization(p)) +

∑
p∈periods

complexity(connection(Sp))

∑
p∈periods complexity(initialization(p)) = nt

Let us now compute α =
∑
p∈periods complexity(connection(Sp))

The worst case happens when each call to allocate only connects one ti,p:

204 P. BOIZUMAULT, PH. DAVID AND H. DJELLAB

T1
load: 4
loc1

T2
load: 2
loc2

1113

T4
load: 5
loc4

T3
load: 2
loc3

ctr1 ctr2

Figure 5. Initial state of the network.

card(Sp) calls to allocate are then required. This would mean that a new con-
troller should be purchased for each transceiver to be inserted into the network,
which never happens.

α =
∑
p∈periods

∑i=card(Sp)
i=1 complexity(allocate(NoC, p))

Since card(NoC) = i, complexity(allocate(NoC, p)) = i× (e× d+ nt× d2)
Let us denote β = e× d+ nt× d2

α =
∑
p∈periods

∑i=card(Sp)
i=1 i× β

= β ×
∑
p∈periods

∑i=card(Sp)
i=1 i

≤ β ×maxp∈periods card(Sp)× nt, since
∑
p∈periods card(Sp) = nt

= (e× d+ nt× d2)×maxp∈periods card(Sp)× nt
As maxp∈periods card(Sp) < nt, the complexity of planifyFrom is O(nt2 × (e ×
d+ nt× d2)).

5.4. Running an example

Let us now illustrate constructive repair with an example. The initial network
is composed of two controllers and four transceivers (see Fig. 5). For the sake of
simplicity, we will assume that compatibility constraints and administrative area
constraints are always satisfied. Also, the safety margin constraint is 5% for both
controllers: safetyMargin(ctr1) = safetyMargin(ctr2) = 0.95
• controller ctr1 manages transceivers t1, t2 and t3; its capacity is 13

– load(t1) = 4; location(t1) = loc1; loc1 is safe
– load(t2) = 2; location(t2) = loc2; loc2 is unsafe
– load(t3) = 2; location(t3) = loc3; loc3 is safe

• controller ctr2 manages transceiver t4; its capacity is 11
– load(t4) = 5; location(t4) = loc4; loc4 is safe

Now, assume we want to connect a new transceiver (say, t5), whose load is 3,
and located on loc2. We must allocate a controller to t5:

RESOURCE ALLOCATION IN A MOBILE TELEPHONE NETWORK 205

T1
load: 4
loc1

T2
load: 2
loc2

1113

T4
load: 5
loc4

T3
load: 2
loc3

T5
load: 3
loc2

ctr1 ctr2

Figure 6. t5 is connected.

T1
load: 4
loc1

T2
load: 2
loc2

1113

T4
load: 5
loc4

T3
load: 2
loc3

T5
load: 3
loc2

T6
load: 6
loc1

ctr1 ctr2

Figure 7. t6 is connected.

• ctr1 is first tried; all required constraint are satisfied, but the safety con-
straint is violated: loc2 is unsafe;
• ctr2 is then successfully tried, and therefore allocated to t5: see Figure 6.

Another new transceiver, t6 (load = 6, location = loc1), has to be inserted into
the network; neither ctr1 nor ctr2 can be allocated to it: they do not have enough
capacity (4 + 2 + 2 + 6 > 13, 5 + 3 + 6 > 11). We therefore try to “repair” the
current planning. First, repair-reallocate is called:
• reconnecting t1 to ctr2 fails: not enough capacity (5 + 3 + 4 > 11);
• reconnecting t2 to ctr2 fails: loc2 is unsafe (t5 is located on loc2 and is

already managed by ctr2);
• t3 can be reconnected to ctr2; ctr1 now has enough capacity to be allocated

to t6 (4 + 2 + 6 ≤ 13); therefore this repair is achieved (Fig. 7).
Finally, we will insert transceiver t7 (load = 4, location = loc3). No controller
has enough capacity to manage it; moreover, repair-reallocate fails (notice it

206 P. BOIZUMAULT, PH. DAVID AND H. DJELLAB

T1
load: 4
loc1

T2
load: 2
loc2

11

T4
load: 5
loc4

T3
load: 2
loc3

T5
load: 3
loc2

T7
load: 4
loc3

26

T6
load: 6
loc1

ctr2ctr1

Figure 8. t7 is connected.

could not succeed, since the total load of all transceivers exceeds the total capacity
of all controllers). We then try repair-upgrade (assume both controllers can be
upgraded, and upgrading one would double its capacity):
• ctr1 is upgraded; its new capacity is 26 and it can now be allocated to t7.

Notice that if repair-upgrade checks safety constraint, t7 cannot be connected
to ctr1, since t6 is also located on loc3, which is unsafe.

Last remark: if no upgrade were available, a new controller should be purchased.

5.5. Heuristics for variable ordering

Our method is not complete; hence, it cannot ensure optimality. The resulting
planning clearly depends on the order in which the transceivers are assigned, even
though this order is not related to the average quality. In order to tackle that
problem, we try several orders: as long as the allowed computing time is not
exceeded, the whole method is run with a different order9; we then keep the best
solution. Of course, the longer the computing time, the higher the likelihood
to improve the planning. There exist various elementary transformations of the
transceivers order; Figure 9 shows three possible transformations.
• Insertion: one transceiver is randomly selected and inserted between two

transceivers also randomly chosen.
• Swapping: swap two transceivers, randomly chosen.
• Circular rotation: choose one transceiver i at random and apply circular

rotation between the transceivers before i and those after i (included).
We implemented the first two transformations. Simulation results indicate that
the swapping transformation is better than the insertion transformation. Hence
we used that one.

9The static orders (minimum load, maximum load, random) we have tested approximately
lead to the same solution quality.

RESOURCE ALLOCATION IN A MOBILE TELEPHONE NETWORK 207

Insertion Circular
rotation

Swapping
Order in which
the transceivers
are assigned

Figure 9. Three elementary transformations.

6. Results

The prototype we developed in C++ has been tested with Bouygues Telecom

on ten problems (both hand-made problems and real problems), on a PC (pentium
II-300 Mhz), with no specific compiler option. Real life problems deal with a few
hundreds of transceivers and a few tens of controllers. From the CSP point of
view, there are about thousands of variables whose domains size are about of a
few tens.

In all cases, the solution computed during the first iteration was at least as
good as the solution computed by hand by the engineer.

We then increased the computation time: in only one case, a better solution
was found within one minute. Even with longer computing times (more than one
hour), no further improvement was found, for that single problem as well as for
the other nine ones. This behaviour is mainly due to the fact that:

1. each controller has an important load (the decision to buy a new controller
is postponed as long as possible);

2. the quality of a solution is characterized by the hierarchy of constraints
and the constructive repair algorithm looks for solutions according to this
hierarchy.

Bouygues Telecom currently uses our application to schedule the installation
of new hardware for its mobile telephone network, with several advantages:

• they no longer need such a qualified engineer to achieve the planning;
• due to the low computation time, they can perform several simulations,

and therefore be more demanding; the hand-made planning was too time-
consuming: they could not afford searching more than one single solution;
• due to the quality of the solutions,

– they save hardware when the solution provided by the application re-
duces the purchase of new controllers;

– they save cost of labour when the number of reconnections is reduced.

208 P. BOIZUMAULT, PH. DAVID AND H. DJELLAB

7. Conclusion

This paper shows how repair algorithms were well suited for solving a resource
allocation problem in a mobile telephone network. A strong request was that
computation time should not be greater than one minute. A complete method
could not guarantee a solution could be found within this time. We therefore used
an incomplete method based upon repair techniques during the construction; the
user can easily limit the computing time to any value he wants (including a few
seconds); moreover, successive repairs easily cope with priority between preference
constraints.

This application is currently used at Bouygues Telecom in order to plan the
installation of new hardware on their mobile telephone network. This planning tool
is also used as a simulation tool in order to find and investigate rather different
solutions. The user can interactively change the order of the criteria describing
the quality of a solution by modifying the priority levels of the constraints in
the hierarchy. The constructive repair algorithm remains the same. Taking into
account new kinds of constraints would require to extend the program. This adding
can be incrementally performed by just giving the level of the new constraints and
defining a repair function specific to them.

Repairing algorithms have also been successfully applied for scheduling an ex-
amination timetabling (with a bounded computing time) [2]. We think that this
approach is well suited for optimization problems where computing time is critical
as well as for devising anytime algorithms. With repairing algorithms, a good
solution can be computed very quickly10, which may be quite useful if there is no
time for an iterative improvement phase. Moreover, the number and the levels of
repair function can be adapted to every specific situation, in terms of quality of
solution as well as in terms of computing time. We think that repairing algorithms
will be of great help for solving dynamic resource allocation problems in particular
in the field of computer network or mobile telephone network.

Acknowledgements. This work was partially supported by Bouygues Telecom. We

wish to thank Laurent Bister, Corinne Cohen, Vincent Ducas and Virginie Gaborit

for their helpful comments.

References

[1] A. Borning, M. Maher, A. Martindale and M. Wilson, Constraint hierarchies and logic
programming, in Proc. of ICLP’89. Lisbon, Portugal (1989) 149-164.

[2] P. David, A constraint-based approach for examination timetabling using local repair tech-
niques, Selected papers (extended version) from the Second International Conference on the
Practice and Theory of Automated Timetabling (PATAT’97). Lecture Notes in Comput.
Sci. 1408 (1998) 169-186.

10Generally, the first computed solution is already very good.

RESOURCE ALLOCATION IN A MOBILE TELEPHONE NETWORK 209

[3] S. de Givry, G. Verfaillie and T. Schiex, Bounding the optimum of constraint optimization
problems, in Proc. of the 3rd Int. Conference on Principles and Practice of Constraint
Programming (CP’97). Schloss Hagenberg, Austria, Lecture Notes in Comput. Sci. 1330
(1997) 405-419.

[4] E.C. Freuder and R.J. Wallace, Partial constraint satisfaction. Artificial Intelligence 58
(19923) 21-70.

[5] F. Glover, Tabu search, I. ORSA J. Comput. 1 (1989) 190-206.
[6] F. Glover, Tabu search, II. ORSA J. Comput. 2 (1990) 4-32.
[7] N. Jussien and P. Boizumault, Implementing constraint relaxation over finite domains us-

ing ATMS, edited by M. Jampel, E. Freuder and M. Maher, Over-Constrained Systems.
Springer-Verlag, Lecture Notes in Comput. Sci. 1106 (1996) 265-280.

[8] N. Jussien and P. Boizumault, Best-first search for property maintenance in reactive con-
straints systems, in International Logic Programming Symposium. MIT Press, Port Jeffer-
son, NY, USA (1997) 339-353.

[9] S. Kirkpatrick, C.D. Gelatt and M.P. Vecchi, Optimization by simulated annealing. Science
220 (1983).

[10] S. Kirkpatrick, Optimization by simulated annealing: Quantitative studies. J. Statist. Phys.
34 (1984).

[11] F. Laburthe and Y. Caseau, SALSA, a language for search algorithms, in Proc. of CP’98.
Springer, Lecture Notes in Comput. Sci. 1520 (1998) 310-324.

[12] F. Menezes and P. Barahona, Defeasible constraint solving, in Over-Constrained Systems.
Springer, Lecture Notes in Comput. Sci. 1106 (1996) 151-170.

[13] S. Minton, M.D. Johnston, A.B. Philips and P. Laird, Minimizing conflicts: A heuristic
repair method for constraint satisfaction and scheduling problems. Artificial Intelligence 58
(1992) 161-205.

[14] G. Pesant and M. Gendreau, A view of local search in constraint programming, in Proc. of
CP’96. Springer, Lecture Notes in Comput. Sci. 1118 (1996) 353-366.

[15] A. Schaerf, Combining local search and look-ahead for scheduling and constraint satisfaction
problems, in Proc. of the 15th International Joint Conference on Artificial Intelligence
(IJCAI-97). Morgan Kaufmann, Nagoya, Japan (1997) 1254-1259.

[16] T. Schiex, H. fargier and G. Verfaillie, Valued constrain satisfaction problems: Hard and
easy problems, in Proc. of the 14th International Joint Conference on Artificial Intelligence
(IJCAI’95). Montréal, Canada (1995) 631-637.

[17] E. Tsang, Foundations of constraint satisfaction. Academic Press (1993).
[18] G. Verfaillie and T. Schiex, Solution reuse in dynamic constraint satisfaction problems, in

Proc. of the 12th National Conference on Artificial Intelligence (AAAI’94). Seattle, WA,
USA (1994) 307-312.

[19] M. Wilson and A. Borning, Hierarchical constraint logic programming. J. Logic Program-
ming 16 (1993) 277-318.

to access this journal online:
www.edpsciences.org

