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Abstract. In this work scheduling multiprocessor tasks on two par-
allel identical processors is considered. Multiprocessor tasks can be
executed by more than one processor at the same moment of time. We
analyze scheduling unit execution time and preemptable tasks to min-
imize schedule length and maximum lateness. Cases with ready times,
due-dates and precedence constraints are discussed.
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1. Introduction

New parallel architecture and software systems are proposed nowadays. Effi-
ciency is a crucial element of a parallel processing system. This is the reason for
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l’Informatique et la Production), organized at the CNRS Center of Aussois, in September
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a demand for efficient scheduling algorithms. In this work, we consider two pro-
cessor parallel computer systems. Recently, two processor computer systems are
becoming increasingly popular and are offered by many vendors even for low cost
platforms (e.g. PCs).

In this work we assume that applications are multiprocessor tasks. This means
that some of them may require two processors at the same moment of time. Exam-
ples of multiprocessor tasks include self-testing of processors by each-other [20],
scheduling file transfers [9, 21] which simultaneously require the sender and the
receiver. For efficiency reasons multiprocessor tasks are also favorable in parallel
systems with time-sharing [15,27]. Threads of the same parallel program should be
executed in the same time quantum on many processors rather than be scattered
in various time quanta on different processors. In such systems multiprocessor
tasks are called coscheduled or gang-scheduled tasks. An extensive description of
the multiprocessor task concept can be found in [3, 4, 11, 26].

Now, we will formulate the considered deterministic scheduling problem. The
computer system consists of two identical processors P1 and P2. Task set T is
composed of two subsets: tasks requiring only one processor T 1 = {T 1

1 , . . . , T 1
n1
},

and tasks requiring two processors at the same moment of time T 2 ={T 2
1,. . .,T

2
n2
},

where n1+n2 = n. For the sake of conciseness we will denote uniprocessor tasks by
1-tasks and duoprocessor tasks by 2-tasks. In the situations where the number of
required processors is meaningless we will denote tasks by Tj for j = 1, . . . , n. This
applies also to the rest of task parameters notation. Precedence constraints may
exist among tasks, e.g. when the results of one task are the input for some other
task. Ti ≺ Tj will denote that task Ti must be completed before the processing
of task Tj starts. All such relations in the task system constitute precedence
constraints graph (PCG). Tasks may arrive into the system at different moments
of time or may have limited duration of availability for processing. Therefore,
a task is characterized by a ready time and a due-date. We will denote ready
times of task T 1

j by r1
j for j = 1, . . . , n1, and of task T 2

j by r2
j for j = 1, . . . , n2.

Analogously, d1
j denotes due-date of a 1-task and d2

j due-date of a 2-task. In this
work we distinguish two ways of processing tasks. Tasks have either unit execution
times (UET) and are nonpreemptable or processing times of the tasks are different
but tasks are preemptable. When preemptions are not allowed all tasks must be
executed continuously on the same processor(s) from the beginning till the very
end. Preemptability means that each task can be suspended, and restarted later
(possibly on a different processor, in the case of 1-tasks) without incurring any
overheads. In the former case processing time is tj = 1 for j = 1, . . . , n. In
the latter case processing time is denoted t1j for 1-tasks and t2j for 2-tasks. We
say that a task is ready when it arrived into the system and all its predecessors
are finished. Let cj denote the completion time of task Tj . Three optimality
criteria will be analyzed: schedule length Cmax = maxj{cj}, maximum lateness
Lmax = maxj{cj − dj}, and the number of tasks completed after their due-dates∑

Uj . Mean tardiness
∑

τj =
∑n

j=1 max{0, cj − dj} is also mentioned in this
work.
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To denote considered problems the three-field notation introduced in [16, 26]
will be used (cf. also [11]). In particular word sizej in the task field stands for the
fact that tasks require several processors simultaneously.

A detailed survey of multiprocessor task scheduling can be found e.g. in [11].
Now, we briefly review previous results for classical and multiprocessor tasks sched-
uling on two parallel processors. For problem P2 | pj = 1, prec | Cmax of schedul-
ing UET tasks with arbitrary precedences on two processors O(n2) algorithm was
given in [8]. For the preemptive case (P2 | pmtn, prec | Cmax) an O(n2) algorithm
was proposed in [25]. For problem P2 | sizej , pj = 1, prec | Cmax a solution based
on a reduction to problem P2 | pj = 1, prec | Cmax was given in [23]. In [22]
problem P2 | sizej , pj = 1 | Lmax is solved using the earliest due-date (EDD) rule.
In [12] problem P2 | sizej , pmtn, rj | Cmax is solved by an O(n2) algorithm similar
to the one proposed in [25]. On the other hand, problems P2|sizej |Cmax [13, 19],
P3|sizej , pj = 1, chain|Cmax [5], P |sizej , pj = 1|Cmax [3] are NP-hard. Yet, prob-
lems Pm|sizej , pj = 1|Cmax for any fixed m and problem P |sizej , pj = 1|Cmax when
sizej ∈ {1, . . . ,∆} can be solved in O(n) time by use of integer linear programming
with a fixed number of variables [3]. In [7] it was shown that the following prob-
lems are solvable in polynomial time: P2|sizej , pj = 1, rj |

∑
Cj , P2|sizej , pj =

1|
∑

wjCj , P2|sizej , pj = 1|
∑

Uj , P2|sizej , pj = 1|
∑

τj . On the other hand,
problems P2|sizej , pj = 1, rj , chain|Cmax, P2|sizej , pj = 1, rj , sp − graph|

∑
Cj ,

(sp − graph is series-parallel graph) are NP-hard in the strong sense [7].
Another class of multiprocessor task scheduling problems is concerned with

scheduling on dedicated processors. This kind of problems has been analyzed e.g.
in [2, 6, 17]. We do not analyze dedicated processors in this work.

Further organization of the work is as follows. In Section 2 we consider sched-
uling UET tasks, and in Section 3 preemptive scheduling is analyzed. Conclusions
are presented in the last section.

2. Scheduling UET tasks

In this section we study scheduling unit execution time multiprocessor tasks on
two processors.

P2 |sizej , pj =1, rj |Cmax

Here, we make a remark on applying the algorithm for problem P2|sizej ,
pj = 1, rj|Cmax. The algorithm with complexity O(n log n) was given in [22] by
showing equivalence to problem P2|sizej , pj = 1|Lmax. Yet, problem P2|sizej ,
pj = 1, rj |Cmax can be solved on-line (i.e. without knowledge about future task
arrivals) in O(n) time because sorting the tasks according to the release times is
done by the process issuing tasks to the computer system. Thus, 2-tasks should
be executed as soon as possible, and 1-tasks in the remaining time intervals. This
algorithm can be even expanded to work with the intervals of processor unavail-
ability.
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Figure 1. Lemma 1. Nonexistence of on-line optimization algo-
rithm for P2 | sizej , pj = 1, rj | Lmax.

P2 | sizej , pj = 1, rj | Lmax

In this section we show that no optimization algorithm (i.e. delivering optimal
schedules) can be run on-line.

Lemma 1. There is no on-line optimization algorithm for problem P2 | sizej,
pj = 1, rj | Lmax.

Proof. Consider an example. d1
1 = 1, d2

1 = 2, r1
1 = r2

1 = 0. T 1
1 and T 2

1 cannot be
executed in parallel. Let us consider two scenarios. Suppose T 1

1 is executed first
and completes by 1. Then, at r1

2 = r1
3 = r1

4 = 1 three new 1-tasks arrive which
have d1

2 = d1
3 = d1

4 = 2. T 2
1 and the 1-tasks cannot be processed simultaneously.

Independently of the sequence for the four tasks Lmax = 2 (Fig. 1a). However,
were T 2

1 executed first and completed by 1, T 1
1 and T 1

2 could be completed by 2
and T 1

3 , T 1
4 by 3. Thus, the optimality criterion would be Lmax = 1 (Fig. 1b). Now

analyze a different scenario. T 2
1 is executed first and completes by 1. No more

tasks arrive at 1. T 1
1 is completed at 2. This gives Lmax = 1 (Fig. 1c). However,

were T 1
1 processed first Lmax could be reduced to Lmax = 0 (Fig. 1d). We conclude

that whatever decision based on the available information is made, a scenario is
possible which leads to unoptimality of the previous decision. 2

P2 | sizej , pj = 1, tree | Cmax

Now we examine UET tasks with tree-like PCG scheduled with the objective
of minimizing schedule length. For a more general problem P2 | sizej , pj = 1,
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prec | Cmax a solution based on a reduction to problem P2 | pj = 1, prec | Cmax

was given in [23]. Here we improve the above results by reducing the computational
complexity of the algorithm for the case of trees. To solve our problem we apply an
algorithm for problem P | pj = 1, tree | Cmax [18]. The algorithm proposed in [18]
builds level schedules, i.e. tasks are executed in the order of their nonincreasing
levels. In our case, however, processing times of 2-tasks is ignored. The level of
task Tj (denoted l(Tj)) is the length of the longest path of 1-tasks starting from
the considered task plus one. Thus, a 1-task without successors has level one. Our
algorithm can be summarized in the following steps:

Algorithm 1
1: calculate levels of 1-tasks;
2: while T 6= ∅ do

begin
2.1: while there are ready 2-tasks execute them;
2.2: if two 1-tasks are ready then schedule two highest level ready 1-tasks
2.3: else schedule the single 1-task if there is any;
2.4: remove the scheduled tasks from T

end;

Lemma 2. Algorithm 1 solves problem P2 | sizej , pj = 1, tree | Cmax in O(n)
time.

Proof. Note, that the schedule is feasible because in lines 2.1–2.3 only ready tasks
are executed. A schedule for our problem can be non-optimal only when unnec-
essary idle time appears. Since 2-tasks introduce no idle time, the schedule is
non-optimal only if a single 1-task is executed. Suppose that at time unit τ an
idle time appears, and task T 1

j is executed alone. Since a 1-task is executed alone
only when the unfinished tasks are its successors this idle time is unavoidable.

Note, that each task is considered four times: 1) while calculating levels, 2) while
notifying that one of its predecessors is finished - this requires O(n) because PCG
is a tree; 3) while putting it on the list of ready 1- or 2-tasks, 4) while executing
it. Hence, the complexity of the algorithm is O(n). 2

Though 1-tasks are scheduled according to their levels the whole schedule built
by Algorithm 1 is not strictly a level schedule. This is demonstrated in the follow-
ing example.

Example 1. The PCG is presented in Figure 2a. The wide boxes are 2-tasks, the
circles are 1-tasks. An example level schedule is depicted in Figure 2b, while the
(optimal) schedule built by our algorithm is in Figure 2c.

P2|sizej, pj = 1, prec|
∑

Uj

In this section we show that the problem with precedence constraints, and the
number of late tasks criterion is computationally hard.
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Figure 2. Example 1. a) PCG, b) level schedule, c) schedule
built by our algorithm for P2 | sizej , pj = 1, tree | Cmax.

Lemma 3. Problem P2|sizej, pj = 1, prec|
∑

Uj is NP-hard.

Proof. The proof has some similarity to the one presented in [14]. The problem
is obviously in NP. We will show polynomial transformation from the clique

problem defined as follows:

Instance: A graph G = (V, E) and positive integer k ≤ |V |. Without loss of
generality we assume that k is even.

Question: Does G contain a clique of size k or more, that is, a subset V ′ ⊆ V
such that |V ′| ≥ k and every two vertices in V ′ are connected by an edge in E?

The transformation of the clique to our problem is as follows. Set T has
n = |V |+|E| tasks in two subsets X and Y . Tasks in X correspond to vertices of G.
All tasks in X are 1-tasks and have deadlines d1

j = dV
2 e+ |E|+1 for j = 1, . . . , |V |.

Tasks in Y are 2-tasks corresponding to edges of G. Their deadlines are d2
j = k2/2

for j = 1, . . . , |E|. If vertex i in G is incident with edge j, then T 1
i ≺ T 2

j . We ask
whether a schedule with

∑
Uj ≤ |E| − k(k − 1)/2 exist.

Observe that only tasks in Y can be late. Suppose the answer to the clique

problem is positive. Then a feasible schedule with the required
∑

Uj may have
the following form: k 1-tasks corresponding to k vertices of clique V ′ are executed
in interval [0, k/2]. k(k − 1)/2 2-tasks corresponding to the edges joining the k
vertices of V ′ are scheduled in the interval [k/2, k2/2]. The number of late tasks
is |E| − k(k − 1)/2 as required.
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Assume that the answer to our scheduling problem is positive. Then at least
k(k−1)/2 tasks from set Y were completed before their deadlines. This leaves space
in interval [0, k/2] for processing at most k tasks corresponding to the vertices.
The 2-tasks which are not late (corresponding to edges in G) must have their
predecessors completed (corresponding to the vertices in G). Thus, there is a
subgraph of G which has k(k − 1)/2 edges joining k vertices. Hence, a positive
answer to the clique problem.

In the above proof we assumed k even. In the case of odd k the transformation
should be augmented by task T 1

|V |+|E|+1 with d1
|V |+|E|+1 = dV

2 e + |E| + 1 which
precedes all tasks in set Y . The deadlines of tasks in set Y should be d2

j = (k2+1)/2
for j = 1, . . . , |E|. 2

3. Preemptive scheduling

In this section we assume that processing times are arbitrary but tasks are
preemptable.

P2 | sizej , pmtn, rj | Lmax

The problem of preemptive scheduling multiprocessor tasks with ready times
for Lmax criterion can be solved in polynomial time using linear programming.
Observe that tasks appear in the system at ready times, disappear at respective
due-dates increased by Lmax. The above events create bounds for executing tasks,
yet they are not necessarily equivalent with starting or completing a task. Between
ready times and due-dates increased by Lmax the set of the tasks admissible for
execution remains constant. Since the moments at which tasks should disappear
from the system change with changing value of Lmax, also the set of tasks present
between two consecutive events (ready times and due-dates plus Lmax) changes
with Lmax. The set of tasks present between two events changes when ri = dj +
Lmax for some pair of tasks Ti, Tj . Thus,

(
n
2

)
intervals of Lmax value can be

identified where the set of tasks present in the system between two consecutive
events is the same. Assume, that the optimal schedule has Ll ≤ Lmax ≤ Ll+1

where [Ll, Ll+1] is one of the above defined intervals of Lmax values. If some event
is a release of a task then let ei (i = 1, . . . , 2n) denote the time moment at which
the event takes place. When the event is related to a due-date then let ei be
equal to the due-date (without Lmax). With each event we associate function gi

(i = 1, . . . , 2n) equal 1 if the event is a due-date, and equal 0 otherwise. Let bk
j (j =

1, . . . , nk, k = 1, 2) denote the index of the event at which task T k
j appears in the

system, and fk
j the index of the event when this task disappears from the system.

Thus, task T k
j can be executed in the interval [ebk

j
+ gbk

j
Lmax, efk

j
+ gfk

j
Lmax]. Let

(i, i+1) denote the interval between a pair of consecutive events i and i+1. We will
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denote by xij the amount of time 2-task T 2
j is executed in (i, i + 1). Analogously,

yij denotes the amount of processing 1-task T 1
j receives in (i, i + 1). Our problem

can be formulated as a linear program:
minimize Lmax

subject to

f2
j −1∑

i=b2j

xij ≥ t2j for j = 1, . . . , n2 (1)

f1
j −1∑

i=b1j

yij ≥ t1j for j = 1, . . . , n1 (2)

n2∑

j=1

xij + yik ≤ ei+1−ei+Lmax(gi+1−gi)

for k = 1, . . . , n1, i = 1, . . . , 2n (3)
n2∑

j=1

xij +
n1∑

j=1

yij

2
≤ ei+1−ei+Lmax(gi+1−gi) for i = 1, . . . , 2n (4)

Ll ≤ Lmax ≤ Ll+1 (5)
xij ≥ 0 for i = b2

j , . . . , f
2
j − 1, j = 1, . . . , n2 (6)

xij = 0

for i = 1, . . . , b2
j − 1, f2

j , . . . , 2n, j = 1, . . . , n2 (7)

yij ≥ 0 for i = b1
j , . . . , f

1
j − 1, j = 1, . . . , n1 (8)

yij = 0

for i = 1, . . . , b1
j − 1, f1

j , . . . , 2n, j = 1, . . . , n1. (9)

In the above formulation equations (1, 2) guarantee that tasks are fully executed.
Equations (3) guarantee that the longest 1-task in interval (i, i+1) is not executed
after event i + 1. Equations (4) ensure that all tasks assigned to interval (i, i + 1)
fit in it. Equation (5) guarantees that the set of tasks present in the system does
not change between the events. Equations and inequalities (6–9) prevent tasks
execution before their ready times and after their due-dates plus Lmax. The above
linear program has O(n2) constraints and O(n2) variables, can be formulated and
solved in polynomial time. When a feasible solution exists one may try an interval
of smaller Lmax. And vice versa, when a feasible solution does not exist, one
should try higher interval of Lmax values. Thus, by binary search over intervals
of Lmax value the optimum can be found in O(log n) calls to linear programming
procedure. We illustrate this method with an example.
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Example 2. Consider an instance of P2 | sizej , pmtn, rj | Lmax: n = 4, task data
are as follows:

tasks T 2
1 T 2

2 T 1
1 T 1

2 T 1
3

due dates d2
1 = 1 d2

2 = 3 d1
1 = 2 d1

2 = 3 d1
3 = 4

ready times r2
1 = 0 r2

2 = 1 r1
1 = 0 r1

2 = 1 r1
3 = 2

processing times t21 = 1 t22 = 2 t11 = 2 t12 = 1 t13 = 1

Equations ri = dj + Lmax for some Ti, Tj yield six values of Lmax: −4, −3,
−2, −1, 0, 1. Therefore, the optimal value of Lmax is in one of seven intervals:
(−∞,−4], [−4,−3], [−3,−2], [−2,−1], [−1, 0], [0, 1], [1,∞). We should start with
interval [−2,−1] as the central one. However, from observation that r1

1 + t11 ≤ d1
1 +

Lmax we have that Lmax ≥ 0. Therefore, we skip formulation of the linear program.
We also skip the formulation of the linear program for interval [0, 1] of Lmax,
because even for Lmax = 1 tasks T 2

1 , T 2
2 , T 1

1 cannot be executed feasibly. Thus, we
consider interval [1,∞] of Lmax. For these values of Lmax six intervals between
events can be distinguished: [0, 1], [1, 2], [2, d2

1 +Lmax], [d2
1 +Lmax, d

1
1 +Lmax], [d1

1 +
Lmax, d

1
2 +Lmax], [d1

2 +Lmax, d
1
3 +Lmax]. For the simplicity of presentation we drop

variables set to 0 according to equations (7, 9). The linear program is:
minimize Lmax

subject to

x11 + x21 + x31 ≥ 1 x22 + x32 + x42 + x52 ≥ 2
y11 + y21 + y31 + y41 ≥ 2 y22 + y32 + y42 + y52 ≥ 1
y33 + y43 + y53 + y63 ≥ 1
x11 + y11 ≤ 1
x21 + x22 + y21 ≤ 1 x21 + x22 + y22 ≤ 1

x21 + x22 +
1
2
(y21 + y21) ≤ 1

x31 + x32 + y31 ≤ Lmax − 1 x31 + x32 + y32 ≤ Lmax − 1

x31 + x32 + y33 ≤ Lmax − 1 x31 + x32 +
1
2
(y31 + y32 + y33) ≤Lmax−1

x42 + y41 ≤ 1 x42 + y42 ≤ 1

x42 + y43 ≤ 1 x42 +
1
2
(y41 + y42 + y43) ≤ 1

x52 + y52 ≤ 1 x52 + y53 ≤ 1

x52 +
1
2
(y52 + y53) ≤ 1 y63 ≤ 1

Lmax ≥ 1 .

Optimal solutions is x11 = x42 = x52 = 1, y21 = y22 = y31 = y33 = 1, Lmax = 2,
other variables are 0. The corresponding schedule is shown in Figure 3.
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Figure 3. Optimal schedule for Example 2.

P2 | sizej , pmtn, prec | Cmax

The problem of preemptive scheduling multiprocessor tasks with precedence
constraints on two processors for schedule length criterion can be solved analo-
gously to the method given in [23] for P2 | sizej , pj = 1, prec | Cmax. Namely,
PCG G is replaced by its transitive closure G′. Next, 2-tasks are removed from
G′. The remaining 1-tasks are scheduled according to their levels by the algorithm
for P2 | pmtn, prec | Cmax [25] in time O(n2). The level of a preemptable task
is defined as the length of the longest path constructed of 1-tasks, starting at the
considered task and including it. Finally, 2-tasks are inserted into the 1-tasks
schedule as soon as their predecessors are completed. We will call this proce-
dure Algorithm 3. Algorithm 3 has complexity O(n2 +min{nk, n2.376}) because
transitive closure can be built in O(min{nk, n2.376}) time, where k is the number
of edges in PCG. This complexity is a result of applying the faster of the two
methods: depth-first-search from each node of PCG requiring O(nk) time, or a
procedure proposed in [10] for finding transitive closure in O(n2.376). In the fur-
ther discussion we demonstrate that explicit calculation of the transitive closure
is not necessary.

We propose an algorithm which combines Algorithm 1 and the algorithm for
problem P2 | pmtn,prec | Cmax [25]. The latter algorithm uses the concepts of
processing capacities, and task level. Processing capacity is a number from range
[0, 1] which can be understood as a fraction of a processor obtained by a 1-task.
Levels of 1-tasks are calculated as before. The level of a 2-task is equal to the
highest level of its successor. If there is no 1-task successor then the level for the
2-task is zero. In the algorithm we denote by

Q – a set of ready 1-tasks;
β = [β1, . . . , βn1 ] – a vector of processing capacities;
τ – the length of the current processing capacities assignment.

Algorithm 4
1: calculate levels of 1-tasks; calculate set Q of ready 1-tasks;

order tasks in Q according to their nonincreasing level;
2: while T 6= ∅ do

begin
2.1: while there are ready 2-tasks execute them;
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2.2: remove the scheduled 2-tasks from T ;
2.3: capacities(Q, β);
2.4: calculate times:

if ∃T 1
j ,T 1

j+1∈Ql(T 1
j ) > l(T 1

j+1) then

τ ′ := minT 1
j ,T 1

j+1∈Q{ l(T 1
j )−l(T 1

j+1)

βj−βj+1
: βj 6=βj+1, l(T 1

j )>l(T 1
j+1)}

else τ ′ := ∞
(* the shortest time required for two tasks T 1

j , T 1
j+1 with different

levels to become equal *);

τ ′′:=minT 1
j ∈Q{

t1j
βj

:βj>0}; (*time to the earliest completion of any 1-task*)
2.5: τ := min{τ ′, τ ′′};
2.6: for T 1

j ∈ Q do schedule τβj piece of task T 1
j in interval of length τ

according to the algorithm for P | pmtn | Cmax [24];
2.7: t1j := t1j − τβj , l(T 1

j ) := l(T 1
j ) − τβj for T 1

j ∈ Q;
2.8: for T 1

j ∈ Q do if t1j = 0 then T = T − {T 1
j };

2.9: merge 1-tasks which became ready with Q in nonincreasing level order;
end; (* of the algorithm *)

procedure capacities(in:X ;out:β); (* X - a set of 1-tasks *)
begin

3: β := 0; avail := 2; (* avail is the number of free processors *)
4: while avail > 0 and | X |> 0 do

begin
4.1: construct set Y of tasks in X with the highest level;
4.2: if | Y |> avail then

begin
4.2.1: βj := avail

|Y | , for T 1
j ∈ Y ; avail:=0;

end
else (*at most avail processors can be used by tasks in Y *)
begin

4.2.2: βj := 1, for Tj ∈ Y ; avail := avail− | Y |;
end;

4.3: X := X − Y ;
end; (* of while loop *)

end; (* of procedure capacities *)

Lemma 4. Algorithm 4 solves problem P2 | sizej , pmtn, prec | Cmax in O(n2)
time.

Proof. In lines 2.1 and 2.6 only ready tasks are executed, therefore precedence
constraints are observed. In line 2.1 2-tasks are fully processed. A 1-task stops
receiving processor in line 2.6 only if its remaining processing time is 0 (line 2.8).
The τ unit long schedule built in line 2.6 is feasible (cf. [24]) because τβj ≤ τ , and∑

T 1
j ∈A βjτ +

∑
T 1

j ∈Q−A βjτ = τ(| A | +m−|A|
|Q−A| | Q − A |) ≤ mτ , where A is the

set of tasks receiving processing capacity in line 4.2.2 of procedure capacities.
Hence, schedules are feasible.



48 J. B lAŻEWICZ ET AL.

In the schedules for the problem two types of intervals can be distinguished:
intervals with 2-tasks only (which will be called 2-blocks), and intervals with
1-tasks or idle times (called 1-blocks). The proof of optimality boils down to
showing that the total length of 1-blocks is the same in Algorithm 4 and Algo-
rithm 3.

Observe that in lines 2.3–2.8, 1-blocks are built by a rephrased algorithm for
P | pmtn,prec | Cmax [4, 25]. Thus, Algorithm 3 and Algorithm 4 use the same
method based on levels to schedule 1-tasks. Now analyze levels. In Algorithm 3,
2-tasks are not present in PCG G′. Precedence constraints involving 2-tasks in the
original PCG G are preserved in G′ by additional transitive arcs. The level of a
1-task is equal to its processing time plus the highest level among its successors
added by the transitive arcs and its original 1-task successors in G. Also in Algo-
rithm 4 processing times of 2-tasks do not contribute to the level of 1-tasks. The
level of a 1-task is its processing time plus the highest level of its original 1-task
successors and 2-task successors. The level of a 2-task is equal to the highest level
of its 1-task successor. Thus, levels of 1-tasks in Algorithm 3 and Algorithm 4 are
the same and the schedules in 1-blocks have the same lengths.

Finally, we analyze complexity of Algorithm 4. Line 1 requires O(n2) to cal-
culate levels, select ready tasks and sort them. Lines 2.1, 2.2 over all algorithm
run need O(n2) time because one must verify completion of 2-task predecessors.
Line 2.3 requires O(n) time because loop 4 in procedure capacities can be exe-
cuted at most twice, and line 4.2.1 requires O(n1) time. Observe that by calcu-
lation of β when two 1-tasks achieve the same level they remain equal until their
completion. Therefore, line 2.4 is executed O(n1) times because two different lev-
els may become equal at most n1 − 1 times and O(n1) times some task can be
finished. By the same token loop 2 is repeated O(n1) times. Lines 2.5–2.9 together
require O(n1) time. Thus, total complexity of Algorithm 4 is O(n2). 2

We finish this section with an example.

Example 3. Consider an instance of P2 | sizej , pmtn, prec | Cmax: n2 = 5, n1 =
8 task processing times are as follows: t21 = 2, t22 = 5, t23 = 2, t24 = 4, t25 = 3,
t11 = 3, t12 = 4, t13 = 1, t14 = 6, t15 = 3, t16 = 5, t17 = 4, t18 = 3. PCG is presented in
Figure 4a. In Figure 4a 1-tasks are represented by circles, 2-tasks are represented
by rectangles. Each task in Figure 4a is labeled with processing time and level
calculated by Algorithm 4.

Algorithm 3 builds transitive closure G′ of the PCG. Then, 2-tasks are removed
from the graph. In Figure 4b G′ is shown (for clarity of the presentation, only non-
transitive arcs are depicted). Each task in Figure 4b is labeled with processing time
and level calculated by Algorithm 3. Observe that levels of 1-tasks are identical
in Algorithm 3 and Algorithm 4. Algorithm 3 builds optimal schedule for 1-tasks
in PCG G′ (Fig. 4c). Later, 2-tasks are inserted into this schedule to obtain
the optimal schedule for all tasks (Fig. 4d). Algorithm 4 builds the same optimal
schedule as Algorithm 3 because at each point in time 1-tasks have the same levels,
cf. Figure 4d.
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a) b)

c)

d)

Figure 4. Example 3. a) PCG, b) PCG G′ with 1-tasks only,
c) optimal schedule for 1-tasks only, d) optimal schedule for all
tasks.

4. Conclusions

In this work we analyzed scheduling multiprocessor tasks on two identical pro-
cessors. The following results were obtained:

Problem Result

Unit execution time
P2 |sizej , pj =1, rj |Cmax O(n) - on line
P2 | sizej , pj = 1, rj | Lmax no on-line algorithm exist
P2 | sizej , pj = 1, tree | Cmax O(n)
P2|sizej, pj = 1, rj, prec|

∑
Uj NP-hard

Preemptive scheduling
P2 | sizej , pmtn, rj | Lmax linear programming
P2 | sizej , pmtn, prec | Cmax O(n2)

Further research may include, for example, analysis of problems where both re-
lease times and due-dates are present, e.g. reduction of problem P2 | sizej , pmtn,
rj | Lmax complexity below the complexity of linear programming. Recently we
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learnt that a solution for problem P2 | sizej , pj = 1, rj | Lmax, has been pro-
posed [1].
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Poznań University of Technology Press, Series: Rozprawy, No. 321, Poznań (1997). See also:
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