
RAIRO Operations Research
RAIRO Oper. Res. 37 (2003) 179-194

DOI: 10.1051/ro:2003020

CONSTRAINED STEINER TREES IN HALIN GRAPHS ∗

Guangting Chen
1

and Rainer E. Burkard
2

Abstract. In this paper, we study the problem of computing a min-
imum cost Steiner tree subject to a weight constraint in a Halin graph
where each edge has a nonnegative integer cost and a nonnegative in-
teger weight. We prove the NP-hardness of this problem and present a
fully polynomial time approximation scheme for this NP-hard problem.

Keywords. Steiner trees, Halin graph, approximation scheme.

1. Introduction

A computer network is often modeled by an undirected graph G = (V, E)
where V is the set of vertices and E is the set of edges. The traditional Steiner
tree problem associates an edge cost c(e) ≥ 0 with each edge e ∈ E and asks for
a minimum cost subgraph of G spanning a given subset S ⊆ V of target vertices.
Such problems find important applications in computer networks and have been
studied by many researchers [5–7, 9, 10].

In this traditional network model, there is only one cost for each edge. In real-
life problems, each edge may have a weight besides a cost, and we want to find
a minimum cost subgraph of G spanning the vertices in S with a total weight

Received February 28, 2003.

∗ This research has been supported by the Spezialforschungsbereich F 003 “Optimierung und
Kontrolle”, Projektbereich Diskrete Optimierung and by Chinese National Science Foundation.
1 The School of Science, Hangzhou Institute of Electronics Engineering, Hangzhou 310037,
P.R. China; e-mail: gtchen@sci.hziee.edu.cn
2 Technische Universität Graz, Institut für Mathematik, Steyrergasse 30, A-8010 Graz,
Austria; e-mail: burkard@tugraz.at

c© EDP Sciences 2003

180 G. CHEN AND R.E. BURKARD

no more than a given weight constraint W . We call this problem the Weight
Constrained Minimum Cost Steiner Tree Problem (WCSTP).

Formally, we generalize the traditional network model to allow two independent
edge weighting functions: with each edge e ∈ E, there is an associated integer cost
c(e) ≥ 0 and an associated integer weight w(e) ≥ 0. Let G′ be a subgraph of G.
The cost (or weight) of G′, denoted by c(G′) (or w(G′)), is the sum of the edge
costs (or weights) of G′. Given a set of target vertices S ⊆ V and an integer
weight W ≥ 0, we are interested in computing a minimum cost tree subgraph T
of G which spans the vertices in S subject to the constraint that w(T) ≤ W . We
call such a tree a weight constrained minimum cost Steiner tree.

It is easy to see that the WCSTP is NP-hard in the strong sense. In this paper,
we are interested in a WCSTP on an important class of networks known as Halin
graphs. A Halin graph H0 is obtained by a planar embedding of a tree T0 having
no vertices of degree 2, and then by adding new edges between the consecutive
leaves of T0 to form a cycle C0 (the order of leaves is determined by the embedding
of T0) [9, 10]. We write H0 = T0 ∪ C0.

Halin graphs are nontrivial generalizations of tree and ring networks, since a
Halin graph is obtained by connecting the leaves of a tree by a cycle. Whereas
Winter [9] showed that the Steiner tree problem on a Halin graph is solvable by a
linear time algorithm, we show in this paper that the weight constrained minimum
cost Steiner tree problem is NP-hard even when the graph is a Halin graph. We
then present a fully polynomial time approximation scheme for computing a weight
constrained minimum cost Steiner tree in a Halin graph.

2. WCSTP in Halin graphs is intractable

When there are only two vertices in S, the WCSTP becomes the well-known
weight constrained shortest path problem (WCSPP) which is known to be NP-
hard [3]. To the best of our knowledge, no one has ever addressed the complexity
of WCSTP or WCSPP in a Halin graph specifically. We will present the NP-
hardness of WCSPP in a Halin graph at first. Then we get that WCSTP in a
Halin graph is also NP-hard, since WCSTP is more general than WCSPP .

Theorem 2.1. The WCSPP in a Halin graph is NP-hard.

Proof. We transform PARTITION to the WCSPP in Halin graphs.
Suppose we have a set A with n elements and every element a has a correspond-

ing size s(a) ∈ Z+,
∑

a∈A

s(a) = 2B. We construct a graph as follows.

• V = {v1, v2, . . . , vn+1, u2, u3, . . . , un, x2, x3, . . . , xn}·
• E = {(vi, vi+1), (ui, ui+1), (xi, xi+1)|i = 1, 2, . . . , n} ∪ {(vi, ui), (ui, xi)|i =

2, . . . , n}, where we suppose that x1 = u1 = v1, xn+1 = un+1 = vn+1.
• For e = (vi, vi+1), c(e) = s(ai), w(e) = 0.
• For e = (ui, ui+1), c(e) = 0, w(e) = s(ai).
• For e = (ui, vi), c(e) = 0, w(e) = 0.
• For the other edges, c(e) = w(e) = 2B.

CONSTRAINED STEINER TREES IN HALIN GRAPHS 181

Obviously, graph H is a Halin graph. For this Halin graph, we want to find a
shortest path from v1 to vn+1 such that the total weight of this path is no more
than B.

Figure 1. A graph H constructed from a PARTITION problem.

If we can find a partition of A = A1 ∪A2 such that
∑

a∈A1

s(a) =
∑

a∈A2

s(a) = B,

then we have a path from v1 to vn+1 consisting of the edges (vi, vi+1) for ai ∈
A1, (ui, ui+1) for ai ∈ A2 and some necessary edges (vi, ui). The total cost and
total weight of this path are all equal to B. This path is obviously the shortest
path under the restriction of a total weight no more than B.

Conversely, assume that we have found a shortest path from v1 to vn+1 with
the total weight no more than B. If the weight of this shortest path is just B, then
from the construction of this Halin graph, we can get a partition of A by setting
A1 = {ai|(vi, vi+1) is in the shortest path}. If the weight of the path is less than
B, then the answer to problem PARTITION is negative.

This shows that the WCSPP in Halin graphs is NP-hard. �
Since the weight constrained Steiner tree problem comprises the WCSPP, we

get immediately

Theorem 2.2. The WCSTP in a Halin graph is NP-hard.

Up to now we considered a Steiner tree problem under the additional constraint
that the sum of weights in the Steiner tree is bounded. This problem is NP-hard.
If we replace, however, this constraint by a bottleneck constraint of the form that
the largest weight of an edge in the Steiner tree is bounded by a given constant M0,
then the problem becomes polynomially solvable. Let us call the latter problem
MAX −WCSTP . To see this, let G′ be the graph obtained by changing the cost
of edges in G as follows: if the weight of edge e is more than M0, then let the
cost of this edge become BIG, a very large number. The graph G′ is still a Halin
graph, and we can compute a minimum cost Steiner tree of G′ in O(n) time. If the
cost of the minimum cost Steiner tree in G′ is smaller than BIG, then this tree is
the optimal solution of MAX −WCSTP . This shows that the MAX −WCSTP
can be solved in O(n) time. By using binary search it is possible to compute in

182 G. CHEN AND R.E. BURKARD

O(n log n) time a shortest Steiner tree in a Halin graph such that the maximum
weight of an edge in the Steiner tree is as small as possible.

3. A pseudo polynomial time algorithm

In the definition of the WCSTP , the weight and cost of an edge are symmet-
ric, we may also speak about the cost constrained minimum weight Steiner tree
problem(CCSTP) which asks for a minimum weight tree subject to a cost con-
straint. We will present a pseudo polynomial time algorithm for computing a cost
constrained minimum weight Steiner tree in this section, and then apply standard
techniques of scaling and rounding to turn the pseudo polynomial time algorithm
into a PTAS for WCSTP in the next sections.

3.1. Fan contractions

We are given a Halin graph G with target set S ⊆ V and a nonnegative inte-
ger M . We want to find a minimum weight Steiner tree among those whose cost
is bounded by M .

Let G = H0 = T0∪C0, and let i be a nonleaf of T0 which is adjacent to at most
one other nonleaf j of T0. If no such j exists, then H0 is a wheel. In this case j
may be an arbitrarily chosen neighbour of i. Let Γi denote the set of neighbours
of i. The subgraph Fi of H0 induced by Γi∪{i}−{j} is called a fan, and vertex i
is called the centre of the fan Fi. It is easy to verify that every Halin graph has
at least two fans.

Our algorithm is based on fan contractions. A fan contraction of H0 = T0 ∪C0

along fan Fi is obtained as follows (see Winter [9]). (i) Attach the edges incident
to Fi to the vertex i, (ii) delete the vertices Fi∩C0 from H0. The resultant graph,
denoted by H1, is clearly a Halin graph unless H0 is a wheel. If H0 is a wheel, H1

consists of two vertices joined by three parallel edges.

Figure 2. A Halin graph H0 and its fan contraction H1.

Let Hk = Tk ∪ Ck denote a Halin graph obtained from the original graph
H0 = T0 ∪ C0 by k fan contractions. Let Fi denote a fan of Hk and assume that
1, 2, . . . , r denote the vertices in Fi ∩ Ck (in clockwise order). Note that some of
these vertices may represent contracted fans. For every p, 1 ≤ p ≤ r, let pf and pl

CONSTRAINED STEINER TREES IN HALIN GRAPHS 183

denote the first and the last vertex (in clockwise order) of C0, respectively, which
has been contracted into p in Hk. If p ∈ C0, then pf = p = pl. Let G(p) denote
the subgraph of H0 induced by all the vertices that have been contracted into p.

For every p, 1 ≤ p ≤ r, and every K, K = 0, 1, . . . , M , consider the following
subgraphs of G(p), each containing all target vertices of G(p). We are in particular
interested in the weights of these subgraphs. If some of the subgraphs do not exist,
the corresponding weights are a big number BIG.

• st(p, K) is the minimum weight of a Steiner tree with a cost at most K.
• tf(p, K) is the minimum weight of a Steiner tree containing pf , with a

cost at most K.
• tc(p, K) is the minimum weight of a Steiner tree containing p, with a cost

at most K.
• tl(p, K) is the minimum weight of a Steiner tree containing pl, with a cost

at most K.
• fc(p, K) is the minimum weight of a Steiner tree containing pf and p, with

a cost at most K.
• fl(p, K) is the minimum weight of a Steiner tree containing pf and pl,

with a cost at most K.
• cl(p, K) is the minimum weight of a Steiner tree containing p and pl, with

a cost at most K.
• fcl(p, K) is the minimum weight of a Steiner tree containing pf , p and pl,

with a cost at most K.
• dfc(p, K) is the minimum weight of two disjoint Steiner trees, one contain-

ing pf and the other containing p, with the total cost at most K.
• dfl(p, K) is the minimum weight of two disjoint Steiner trees, one contain-

ing pf and the other containing pl, with the total cost at most K.
• dcl(p, K) is the minimum weight of two disjoint Steiner trees, one contain-

ing p and the other containing pl, with the total cost at most K.
• ddfc(p, K) is the minimum weight of two disjoint Steiner trees, one con-

taining pf and p, the other containing pl, with the total cost at most K.
• ddfl(p, K) is the minimum weight of two disjoint Steiner trees, one con-

taining pf and pl, the other containing p, with the total cost at most K.
• ddcl(p, K) is the minimum weight of two disjoint Steiner trees, one con-

taining p and pl, the other containing pf , with the total cost at most K.
• ddd(p, K) is the minimum weight of three disjoint Steiner trees contain-

ing pf , p and pl, respectively, with the total cost at most K.
The corresponding subgraphs will be denoted by ST (p, K), TF (p, K), . . .,
DDD(p, K). In addition, we define none(p, K) := 0, if G(p) does not contain
any target vertices, and none(p, K) :=BIG, otherwise. That means there is a big
penalty if G(p) contains any target vertices.

3.2. Recurrence rules

Now we will show how to determine st(i, K), tf(i, K), . . . , ddd(i, K), none(i, K)
in a Halin graph Hk = Tk ∪ Ck, provided st(1, K), tf(1, K), . . . , ddd(1, K),

184 G. CHEN AND R.E. BURKARD

none(1, K), . . . , st(r, K), tf(r, K), . . . , ddd(r, K), none(r, K) are available by ini-
tialization or by previous computations, where i is the centre of a fan Fi in Hk,
and 1, 2, . . . , r are the vertices in Fi ∩Ck. First we initialize the variables for each
vertex p on the cycle C0 of the original Halin graph H0 = T0∪C0, and for every K,
K = 0, 1, . . . , M , as follows.

st(p, K) := tf(p, K) := tc(p, K) := tl(p, K) := fc(p, K) := fl(p, K) := cl(p, K)

:= fcl(p, K) := 0,

dfc(p, K) := dfl(p, K) := dcl(p, K) := ddfc(p, K) := ddfl(p, K) := ddcl(p, K)

:= ddd(p, K) := BIG,

none(p, K) :=

{
0 if p 6∈ S,

BIG if p ∈ S.

Let Gi(p), 1 ≤ p ≤ r, denote a subgraph of H0 induced by the vertex i to-
gether with the vertices of G(1), G(2), . . ., G(p). Define STi(p, K), TFi(p, K), . . .,
DDDi(p, K) in Gi(p) (and the corresponding weights as well as nonei(p, K)) in
the same manner as their counterparts in G(p), all occurrences of pf are replaced
by 1f , and all occurrences of p are replaced by i.

Figure 3. G(p) and Gi(p) in a Halin graph.

Let w(i, 1) and c(i, 1) be the weight and cost of edge (i, 1), respectively. The
recurrence rules for sti(1, K), tfi(1, K), . . . , nonei(1, K) are as follows.

• sti(1, K) :=




st(1, K) if i 6∈ S,

0 if i ∈ S and none(1, K) = 0,

w(i, 1)+tc(1, K−c(i, 1)) if i ∈ S and none(1, K) = BIG.

• tfi(1, K) :=

{
tf(1, K) if i 6∈ S,

w(i, 1) + fc(1, K − c(i, 1)) if i ∈ S.

CONSTRAINED STEINER TREES IN HALIN GRAPHS 185

• tci(1, K) :=

{
0 if none(1, K) = 0,

w(i, 1) + tc(1, K − c(i, 1)) if none(1, K) = BIG.

• tli(1, K) :=

{
tl(1, K) if i 6∈ S,

w(i, 1) + cl(1, K − c(i, 1)) if i ∈ S.

• fci(1, K) := w(i, 1) + fc(1, K − c(i, 1)).

• fli(1, K) :=

{
fl(1, K) if i 6∈ S,

w(i, 1) + fcl(1, K − c(i, 1)) if i ∈ S.

• cli(1, K) := w(i, 1) + cl(1, K − c(i, 1)).

• fcli(1, K) := w(i, 1) + fcl(1, K − c(i, 1)).

• dfci(1, K) := min{tf(1, K), w(i, 1) + dfc(1, K − c(i, 1))}.

• dfli(1, K) :=




dfl(1, K) if i 6∈ S,

w(i, 1) + min{ddfc(1, K − c(i, 1)), ddcl(1, K − c(i, 1)}
if i ∈ S.

• dcli(1, K) := min{tl(1, K), w(i, 1) + dcl(1, K − c(i, 1))}·

• ddfci(1, K) := w(i, 1) + ddfc(1, K − c(i, 1)).

• ddfli(1, K) := min{tf l(1, K), w(i, 1) + ddfl(1, K − c(i, 1))}·

• ddcli(1, K) := w(i, 1) + ddcl(1, K − c(i, 1)).

• dddi(1, K) := min {dfl(1, K), w(i, 1) + ddd(1, K − c(i, 1))} ·

• nonei(1, K) :=

{
none(1, K) if i 6∈ S,

BIG if i ∈ S.

For some p, 2 ≤ p ≤ r, let q = p − 1. Suppose that sti(q, K), tfi(q, K), . . .,
nonei(q, K) and st(p, K), tf(p, K), . . ., none(p, K) of every K, K = 0, 1, . . . , M
are given. We want to determine sti(p, K), tfi(p, K), . . ., nonei(p, K). Gi(p)
consists of Gi(q), G(p) and the edges (ql, pf) and (i, p).

Let w1, w2 be the weights of (ql, pf) and (i, p), respectively. Let c1, c2 be the
costs of (ql, pf) and (i, p), respectively. STi(p, K) is a subgraph of Gi(p) which is
a minimum weight Steiner tree with a cost at most K and containing all target
vertices of Gi(p). Thus one of the following four exhaustive cases applies to the

186 G. CHEN AND R.E. BURKARD

Figure 4. The configuration of Gi(p).

subgraph STi(p, K):
(i) STi(p, K) contains neither (ql, pf) nor (i, p);
(ii) STi(p, K) contains (ql, pf) but not (i, p);
(iii) STi(p, K) contains (i, p) but not (ql, pf);
(iv) STi(p, K) contains both (ql, pf) and (i, p).

Case (i) means that STi(p, K) is just STi(q, K1) or ST (p, K1) for some K1, 0 ≤
K1 ≤ K. In this case sti(p, K) is the minimum of the numbers in the following
set:

{sti(q, K1) + none(p, K2); st(p, K1) + nonei(q, K2)|K1 + K2 =

K, K1 ≥ 0, K2 ≥ 0} ·

Case (ii) means that STi(p, K) must contain vertices ql, pf and edge (ql, pf) but
not (i, p). Edge (ql, pf) connects two parts of STi(p, K): the first part is a subgraph
of Gi(q), which contains the vertex ql. It must be a TLi(q, K1) for some K1 ≥ 0;
the second part is a subgraph of G(p), which contains the vertex pf . It must be a
TF (p, K2) for some K2 ≥ 0, where K1 + K2 = K − c1 ≥ 0. Then sti(p, K) is the
minimum of the numbers in the following set:

{w1 + tli(q, K1) + tf(p, K2)|K1 + K2 = K − c1 ≥ 0, K1 ≥ 0, K2 ≥ 0}·

Case (iii) means that STi(p, K) must contain vertices i, p and edge (i, p) but not
(ql, pf). Edge (i, p) connects two parts of STi(p, K): TCi(q, K1) and TC(p, K2),
where K1 + K2 = K − c2 ≥ 0, K1 ≥ 0, K2 ≥ 0. Then sti(p, K) is the minimum
of the numbers in the set:

{w2 + tci(q, K1) + tc(p, K2)|K1 + K2 = K − c2 ≥ 0, K1 ≥ 0, K2 ≥ 0}·

CONSTRAINED STEINER TREES IN HALIN GRAPHS 187

Case (iv) means that STi(p, K) must contain vertices i, p, ql and pf . STi(p, K)
consists of two edges, (i, p) and (ql, pf), and the other two subgraphs in Gi(q)
and G(p), respectively. The subgraph in Gi(q) is of the form CLi(q, K1) or
DCLi(q, K1) for some K1 ≥ 0, the subgraph in G(p) is of the form DFC(p, K2)
or FC(p, K2) for some K2 ≥ 0, where K1 +K2 = K−c1−c2 ≥ 0. Since STi(p, K)
is a tree, sti(p, K) is the minimum of the numbers in the set:

{w1 + w2 + min{cli(q, K1) + dfc(p, K2); dcli(q, K1) + fc(p, K2)}|K1 + K2 =

K − c1 − c2 ≥ 0, K1 ≥ 0, K2 ≥ 0}·

Therefore, the recurrence rule of sti(p, K) is as follows.

• For K = 0, 1, . . . , M , sti(p, K) is the minimum of the numbers in the
following sets:

{sti(q, K1)+none(p, K2); st(p, K1)+nonei(q, K2)|K1+K2 = K, K1 ≥
0, K2 ≥ 0};
{w1 + tli(q, K1) + tf(p, K2)|K1 + K2 = K − c1 ≥ 0, K1 ≥ 0, K2 ≥ 0};
{w2 + tci(q, K1) + tc(p, K2)|K1 + K2 = K − c2 ≥ 0, K1 ≥ 0, K2 ≥ 0};
{w1 +w2 +min{cli(q, K1)+dfc(p, K2); dcli(q, K1)+fc(p, K2)}|K1 +
K2 = K − c1 − c2 ≥ 0,
K1 ≥ 0, K2 ≥ 0}·

The recurrence rules of tfi(p, K), tci(p, K), . . . , nonei(p, K) can be obtained by a
similar way. We refrain from presenting these rules here in detail.

3.3. Determination of the Steiner tree

After contraction of Fi, i becomes a vertex on the cycle Ck+1 of Hk+1, and
Gi(r) is equal to G(i), where r is the last vertex in Fi ∩ Ck (in clockwise order).
Consequently, for every K, K = 0, 1, . . . , M , we get st(i, K) = sti(r, K), tf(i, K) =
tfi(r, K), . . . , ddd(i, K) = dddi(r, K), none(i, K) = nonei(r, K), and this process
can be repeated until the graph H0 is reduced to a graph Ht consisting of two
vertices i and j joined by three parallel edges. Let G(i) and G(j) be subgraphs of
H0 corresponding to i and j in Ht, respectively. In the same way as in Winter [9],
we can employ a contraction sequence H0, H1, . . . , Ht, such that G(j) consists of
a single vertex j. Let w1, w2, w3 and c1, c2, c3 be weights and costs of the three
edges (if , j), (i, j), (il, j), respectively. W.l.o.g. assume that there at least one
target vertex in G(i). For every cost constraint K, K = 0, 1, . . . , M , let w(TS , K)
be the minimum weight of a Steiner tree for the target set S in H0 with the cost
no more than K, the corresponding tree is denoted by TS(K). The configuration
of TS(K) must be one of the following cases:

(i) TS(K) contains none of (if , j), (i, j) and (il, j);
(ii) TS(K) contains one of (if , j), (i, j) and (il, j);
(iii) TS(K) contains two of (if , j), (i, j) and (il, j);
(iv) TS(K) contains all of (if , j), (i, j) and (il, j).

188 G. CHEN AND R.E. BURKARD

Figure 5. The configuration of G(i) and G(j).

In case (i), TS(K) is the subtree ST (i, K) of G(i). In addition, we should consider
whether j is a target vertex. Thus w(TS , K) is st(i, K) + none(j, 0).

Case (ii): If TS(K) contains (if , j), then TS(K) consists of (if , j) and a subtree
of G(i). This subtree is a Steiner minimum tree containing if with a cost at most
K − w1. That means w(TS , K) is w1 + tf(i, K − c1). In the other two subcases,
we get that w(TS , K) is w2 + tc(i, K − c2), or w3 + tl(i, K − c2).

In case (iii) a similar analysis shows that w(TS , K) is w1+w2+dfc(i, K−c1−c2),
or w1 + w3 + dfl(i, K − c1 − c3), or w2 + w3 + dcl(i, K − c2 − c3).

In case (iv), TS(K) contains all the three edges. Then TS(K) consists of these
three edges and a subgraph of G(i). This subgraph consists of three disjoint Steiner
trees containing if , i and il, respectively, with the total cost at most K−c1−c2−c3.
That means w(TS , K) is w1 + w2 + w3 + ddd(i, K − c1 − c2 − c3).

Based on above discussion, we know that w(TS , K) is the minimum of the
following numbers, and a weight BIG which indicates the nonexistence of a cost
constrained Steiner tree.

st(i, K) + none(j, 0);
w1 + tf(i, K − c1), for K ≥ c1;
w2 + tc(i, K − c2), for K ≥ c2;
w3 + tl(i, K − c2), for K ≥ c3;
w1 + w2 + dfc(i, K − c1 − c2), for K ≥ c1 + c2;
w1 + w3 + dfl(i, K − c1 − c3), for K ≥ c1 + c3;
w2 + w3 + dcl(i, K − c2 − c3), for K ≥ c2 + c3;
w1 + w2 + w3 + ddd(i, K − c1 − c2 − c3), for K ≥ c1 + c2 + c3.

CONSTRAINED STEINER TREES IN HALIN GRAPHS 189

3.4. Pseudo polynomial time algorithm

We summarize the method discussed before in the following Algorithm 1.

Algorithm 1. Pseudo polynomial time algorithm for CCSTP

Step 1. Let H0 = T0 ∪ C0, M be the bound for the cost. Set k := 0, Fi be a fan
of Hk with centre i, {1, 2, . . . , r} be the vertices of Fi ∩ Ck in clockwise
order.
Define the quantities st(p, K), . . . , none(p, K) as in the initialization step
(Subsection 3.2), for p := 1, 2, . . . , r and K := 0, 1, . . . , M ;

Step 2. Use the recurrence rules of Subsection 3.2 to get sti(p, K), . . . , nonei(p, K),
for p := 1, 2, . . . , r and K := 0, 1, . . . , M ;

Step 3. Let st(i, K) := sti(r, K), . . . , none(i, K) := nonei(r, K) for every K =
0, 1, . . . , M when Fi is contracted into a vertex and Hk is transformed to
Hk+1. Set k := k + 1.
if Hk consists of only two vertices with three parallel edges, goto Step 4;
Otherwise, take a fan Fi of Hk and the vertices {1, 2, . . . , r} of Fi ∩Ck in
clockwise order and goto Step 2;

Step 4. Get the minimum weight Steiner tree for the target set S with a cost
bound K, for every K = 0, 1, . . . , M .

Theorem 3.1. For the target set S, Algorithm 1 correctly determines the mini-
mum weight of a Steiner tree interconnecting all the vertices in S with a cost no
more than a given bound M , and a weight BIG indicates the nonexistence of a
cost constrained Steiner tree. Furthermore, the time complexity of Algorithm 1 is
O(n(M + 1)2), where n is the number of vertices in the graph.

Proof. We note that the variables are initialized correctly. In order to prove the
recurrence rules, we simply need to list all relevant cases. We prove the rule for
st(i, M), the others can be verified in a similar way.

Gi(1) consists of G(1), vertex i and edge (i, 1). If i 6∈ S, then STi(1, K) contains
neither i nor the edge (i, 1), hence sti(1, K) = st(1, K). If i ∈ S, then i must
belong to Gi(1). If G(1) contains no target vertex, i.e., none(1, K) = 0, then
STi(1, K) consists of the vertex i alone. Thus sti(1, K) = 0. If G(1) contains
some target vertices, i.e., none(1, K) = BIG, then STi(1, K) must contain the
edge (i, 1). STi(1, K) is a union of (i, 1) and TC(1, K − c(i, 1)), thus sti(1, K) =
w(i, 1) + tc(1, K − c(i, 1)). This proves the correct definition of sti(1, K).

For p ≥ 2, Gi(p) consists of Gi(q), G(p) and of the edges e1 = (ql, pf) and
e2 = (i, p). We have to consider the following four cases for STi(p, K):

(i) STi(p, K) contains neither e1 nor e2;
(ii) STi(p, K) contains e1 but not e2;
(iii) STi(p, K) contains e2 but not e1;
(iv) STi(p, K) contains both e1 and e2.

These four cases exhaust all possible configurations of STi(p, K) and correspond
to the four sets used for computing sti(p, K). This proves the correctness of the
recurrence rule for sti(p, K).

190 G. CHEN AND R.E. BURKARD

For computing the minimum weight w(TS , K), we simply need to exhaust all
possibilities of the three edges (if , j), (i, j) and (il, j). The 8 cases just correspond
to the 8 numbers used for computing w(TS , K).

Since there are O(M +1) choices for each of the numbers K, K1, K2, the update
of the quantities can be accomplished in O((M + 1)2) time for each reduction.
There are at most n reductions. This completes the proof of the theorem. �

We point out that the cost constrained Steiner tree can be constructed in
O(n(M + 1)) extra time by some bookkeeping operations during the reduction. If
we fix M at 0 and assume the cost of all edges in the graph are zero, the above
algorithm finds a minimum weight Steiner tree in O(n) time.

4. The polynomial time approximation scheme

We use scaling and rounding techniques [1,2,4,8] to turn the pseudo polynomial
time algorithm for CCSTP into a fully polynomial time approximation scheme
for WCSTP in Halin graphs.

Let c(S, W) be the minimum cost of a Steiner tree spanning the targets in S with
a weight of no more than W . Given a positive real number C and a constant ε > 0,
we can decide in polynomial time whether c(S, W) > C or c(S, W) < (1 + ε)C.
This technique is described by the following Algorithm 2.

Algorithm 2. TEST (C, ε)
Step 1. Set θ := n−1

C·ε ;
Let cθ(e) := bc(e) · θc for every e ∈ E;
Set M := C · θ;

Step 2. Apply Algorithm 1 using the scaled edge cost cθ instead of the original edge
cost c;
if the weight of the cost constrained Steiner tree is no more than W then
output YES
else
output NO
endif

Theorem 4.1. For the given target set S, the weight constraint W , the positive
real numbers C and ε, if TEST (C, ε) = NO, then c(S, W) > C, if TEST (C, ε) =
YES, then c(S, W) < (1 + ε) · C. In addition, the worst case time complexity of
TEST (C, ε) is O

(
n3

ε2

)
.

The proof of the above theorem is standard and almost the same as in [1], so
we omit it here. Now we use L and U to denote a lower and upper bound on
c(S, W), respectively. Our FPTAS starts with efficiently computable values of L
and U and uses bisection to drive the ratio U

L to below 4.
The initial values of L and U can be computed as follows. Let c1 < c2 < . . . < ck

be the different edge cost values. For a Halin graph with n vertices we have clearly
k ≤ 2n− 2. Denote by Gj the graph obtained by changing the weight of the edges

CONSTRAINED STEINER TREES IN HALIN GRAPHS 191

in G as following: if the cost of edge e is more than cj , then let the weight of this
edge become BIG. We can compute a minimum weight Steiner tree in Gj in O(n)
time for every j = 1, 2, . . . , k. Let J be the smallest index j such that the weight
of the minimum weight Steiner tree in Gj is no more than W . From the definition
of Gj , no edge with weight BIG can be included in the minimum weight Steiner
tree of Gj , unless the weight of the tree is more than BIG. Therefore c(S, W), the
cost of an optimal solution to the weight constrained Steiner tree must be in the
interval [cJ , cJ · (n − 1)]. We may use cJ and cJ · (n − 1) as the initial values for
L and U , respectively. The index J can be found in O(n log n) time by bisection.
Then we can use scaling and rounding to compute a (1 + ε) − approximation to
the weight constrained Steiner tree. Algorithm 3 summarizes the FPTAS for a
weight constrained minimum cost Steiner tree problem in Halin graphs.

Algorithm 3. FPTAS for finding a weight constrained minimum cost Steiner tree
in a Halin graph

Step 1. Set L and U to their initial values such that U ≤ L · (n − 1);
Step 2. if U ≤ 4L then

goto Step 3;
else

let C :=
√

U·L
2 ;

if TEST (C, 1) =NO, set L = C;
if TEST (C, 1) =YES, set U = 2C;
goto Step 2;
endif

Step 3. Set θ := n−1
L·ε ;

M := U · θ;
Let cθ(e) := bc(e) · θc for every e ∈ E;
Apply Algorithm 1 using the scaled edge cost cθ instead of the original edge
cost c, find the smallest integer C ≤ M such that there is a weight con-
strained Steiner tree whose scaled cost is C and output the corresponding
Steiner tree.

Theorem 4.2. If there is a weight constrained Steiner tree for target set S, then
Algorithm 3 finds a (1 + ε)–approximation T of the weight constrained Steiner
tree. If there is no weight constrained Steiner tree of set S, we can find this out
during the computation of the initial values of U and L: one can not find the
smallest index J . Furthermore, the worst case time complexity of Algorithm 3 is
O(n3 · (log log n + 1

ε2)).

Proof. The correctness of the algorithm is due to Theorems 3.1 and 4.1.
Now let us proof the time complexity. As discussed before Theorem 4.2, Step 1
requires O(n log n) time. Let L[0] and U [0] be the initial lower bound and upper
bound for c(S, W), and L[k] and U [k] be the lower and upper bound for c(S, W)
after k iterations of Step 2 for k ≥ 1.

192 G. CHEN AND R.E. BURKARD

According to the rules of Step 2,

U [k] = 2 ·
√

U [k−1] · L[k−1]

2
, L[k] = L[k−1],

or

L[k] =

√
U [k−1] · L[k−1]

2
, U [k] = U [k−1].

Therefore
U [k]

L[k]
=

√
2 · U [k−1]

L[k−1]
·

Then

log
U [k]

L[k]
=

1
2

log
2 · U [k−1]

L[k−1]
=

(
i=k∑
i=1

1
2i

)
log 2 +

1
2k

log
U [0]

L[0]
≤ 1 +

1
2k

log(n− 1).

As a result, we would have U [k]

L[k] ≤ 4 after k iterations where k is no more than
log log n. Every iteration of Step 2 requires O(n3) time according Theorem 4.1.
Then the total time of Step 2 is O(n3 log log n). In Step 3, we apply Algorithm 1
to compute all quantities for K = 0, 1, . . . , M , in O(n3

ε2) time. Then we find the
smallest integer C in O(log n

ε) extra time by bisection. Therefore the total time
complexity of Algorithm 3 is O

(
n3 · (log log n + 1

ε2

))
. �

5. Conclusions

In this paper we have studied the weight constrained minimum cost Steiner tree
problem on a class of Halin graphs which generalize in a nontrivial way tree and
ring networks. Although the traditional Steiner tree problem is polynomial time
solvable on Halin graphs, it is shown that the weight constrained minimum cost
Steiner tree problem on Halin graphs is NP-hard. We presented a fully polynomial
time approximation scheme for this problem, which has many applications to com-
munication networks. Our result is also of interest from the network design point
of view, as it can be used to obtain suboptimal solutions to the weight constrained
minimum cost Steiner tree problem on a general graph by appropriately removing
some edges such that the graph becomes a Halin graph.

References

[1] G. Chen and G. Xue, A PTAS for weight constrained Steiner trees in series-parallel graphs.
Springer-verlag, Lecture Notes in Comput. Sci. 2108 (2001) 519-528.

[2] G. Chen and G. Xue, K-pair delay constrained minimum cost routing in undirected networks.
Proc. of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms (2001) 230-231.

[3] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of
P-Completeness. San Francisco, W.H. Freeman and Company (1979).

CONSTRAINED STEINER TREES IN HALIN GRAPHS 193

[4] R. Hassin, Approximation schemes for the restricted shortest path problem. Math. Oper.
Res. 17 (1992) 36-42.

[5] F.K. Hwang and D.S. Richards, Steiner tree problems. Networks 22 (1992) 55-89.
[6] F.K. Hwang, D.S. Richards and P. Winter, The Steiner tree problem. Ann. Discrete Math.

53 (1992) 68-71.
[7] T. Jiang and L. Wang, Computing shortest networks under a fixed topology, in Advances

in Steiner Trees, edited by D.-Z. Du, J.M. Smith and J. H. Rubinstein. Kluwer Academic
Publishers (2000) 39-62.

[8] D.H. Lorenz and D. Raz, A simple efficient approximation scheme for the restricted shortest
path problem. Oper. Res. Lett. 28 (2001) 213-219.

[9] P. Winter, Steiner problem in Halin networks. Discrete Appl. Math. 17 (1987) 281-294.
[10] P. Winter, Steiner problem in networks – a survey. Networks 17 (1987) 129-167.

To access this journal online:
www.edpsciences.org

