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, Stéphane Nègre
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Abstract. The notion of treewidth is of considerable interest in re-
lation to NP-hard problems. Indeed, several studies have shown that
the tree-decomposition method can be used to solve many basic opti-
mization problems in polynomial time when treewidth is bounded, even
if, for arbitrary graphs, computing the treewidth is NP-hard. Several
papers present heuristics with computational experiments. For many
graphs the discrepancy between the heuristic results and the best lower
bounds is still very large. The aim of this paper is to propose two new
methods for computing the treewidth of graphs: a heuristic and a meta-
heuristic. The heuristic returns good results in a short computation
time, whereas the metaheuristic (a Tabu search method) returns the
best results known to have been obtained so far for all the DIMACS ver-
tex coloring / treewidth benchmarks (a well-known collection of graphs
used for both vertex coloring and treewidth problems.) Our results ac-
tually improve on the previous best results for treewidth problems in
53% of the cases. Moreover, we identify properties of the triangulation
process to optimize the computing time of our method.
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1. Introduction

The tree-decomposition method was introduced by Robertson and Seymour
as part of their research into graph minors [17]. The approach decomposes the
representative graph G = (V, E) into separating vertex subsets, called separa-
tors, connected in a tree. It uses the property that several states of a subgraph
can be summarized by the state of a separator. For instance, in the graph col-
oration problem, the state of a subgraph can be summarized by a coloration of
the separator [16]. In the all-terminal reliability problem, it is summarized by the
decomposition of the separator into connected components [6]. The complexity
of the method becomes exponential when the maximum size of a separator is not
bounded by a constant.

The maximum size of a separator minus one in an optimal tree-decomposition
is called treewidth, and is denoted tw(G). The tree-decomposition method can
be used to tackle NP-hard problems in large graphs with a bounded treewidth,
using dynamic programming methods. It has numerous applications, including
classical optimization problems [6, 15] such as graph coloration [16], probabilistic
networks [11], and the frequency assignment problem [13].

Computing the treewidth of a graph is NP-hard [3]. Several exact methods deal
with the decision problem tw(G) ≤ k, but their practical interest is restricted to
small values of k (see [4] for k = 1, 2, 3 and [5] for an arbitrary k). A reasonable way
to tackle the problem is to compute good solutions using heuristic methods. The
most recent papers propose approximate methods and computational experiments.
It would appear that the distance between the lower and upper bounds is still large
for several instances [14], and so the design of more efficient heuristics is a real
challenge.

In this paper we focus on upper bounds with a greedy algorithm and a Tabu
search method. We apply them using the well known DIMACS benchmark for
graph coloring [12]. The results of the greedy algorithm are better on average
than those obtained by the most recent methods, and require substantially less
computation time. For each graph constituting the benchmark, our Tabu Search
finds the best upper bound known so far. Moreover, our results are strictly better
in 53% of the cases. The value returned by our method can be 25% lower than
the previous best upper bound.

In Section 2 we give the notation and the definitions of the notions used in this
paper. We propose a new heuristic in Section 3 and our Tabu Search Method in
Section 4. The computational experiments are presented in Section 5, and finally
concluding remarks and some ideas for future work in Section 6.

2. Definitions and notation

Let G = (V, E) be an undirected graph with vertex set V and edge set E ⊂
V × V . Let n = |V | and m = |E|. Let v be a vertex. u is a neighbor of v
in G if [v, u] ∈ E. The set of neighbors of v is called the neighborhood of v,
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Figure 1. A graph and a (non optimal) tree-decomposition for
this graph.

denoted N(v). Let deg(v) = |N(v)| be the degree of v. For W ⊂ V , we denote
G[W ] = (W, (W × W ) ∩ E) the subgraph induced by W .

A set of vertices Q is called a clique if there is an edge between each pair of
distinct vertices of Q. The maximum cardinality of a clique in G is denoted ω(G).

For distinct vertices u, v ∈ V , a chain is a sequence of distinct vertices [u =
v1, v2, . . . , vj = v] such that for all 1 ≤ i < j, [vi, vi+1] ∈ E. A cycle of length j is
a sequence of distinct vertices [v = v1, v2, . . . , vj = v] such that for all 1 ≤ i < j,
[vi, vi+1] ∈ E. A chord is an edge between two non-consecutive vertices in a cycle.
A graph is connected if for each u, v ∈ V , there is a chain between u and v. A tree
T = (V, E) is a connected graph with no cycle.

Definition 2.1 (see [17]). A tree-decomposition DT of G = (V, E) is a pair (X, T ),
where T = (I, F ) is a tree with node set I and edge set F , and X = {Xi : i ∈ I},
is a family of subsets of V such that:

(1) ∪i∈IXi = V ;
(2) ∀[v, w] ∈ E, there is a Xi, i ∈ I with v ∈ Xi and w ∈ Xi;
(3) ∀i, j, k ∈ I, if j is on the path from i to k in T , then Xi ∩ Xk ⊆ Xj.

The width of a tree-decomposition is maxi∈I |Xi| − 1. The treewidth of a graph
G, denoted by tw(G), is the minimum width over all possible tree-decompositions
of G.

A graph G is triangulated if for every cycle of length k > 3, there is a chord
joining two non-consecutive vertices [18]. Many heuristics use the properties of
triangulated graphs to find upper bounds for the treewidth, since computing the
treewidth is linear in time for triangulated graphs.

Proposition 2.1 (see [8]). If G is triangulated, tw(G) = ω(G) − 1. Moreover, if
G is triangulated, computing ω(G) and thus tw(G) has complexity O(n + m).

For an arbitrary graph G = (V, E), it is interesting to look for a triangulated
graph which contains G. A triangulated graph H = (V, ET ), with E ⊂ ET , is
called a triangulation for G.
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Proposition 2.2 (see [19]). For every graph G there exists a triangulation H∗

such that tw(H∗) = tw(G).

Computing the treewidth of a graph G is therefore equivalent to finding such
a graph H∗, and also equivalent to finding the triangulation minimizing the size
of the maximum clique. This problem is NP-hard, as computing the treewidth is
NP-hard, but each triangulation H of G gives an upper bound of tw(G) in linear
time.

Some definitions are needed to explain how a triangulation can be built. A
vertex is said to be simplicial if its neighborhood is a clique [18]. An ordering
σ(1, 2, . . . , n) of V (called elimination ordering) is a perfect elimination ordering
for G if for any i ∈ {1, . . . , n}, σ(i) is a simplicial vertex in G[{σ(i), . . . , σ(n)}].

Proposition 2.3 (see [10]). G is triangulated if and only if it has a perfect elim-
ination ordering.

Let G = (V, E) be an arbitrary graph and σ an elimination ordering of G. We
denote H = (V, E(σ)) the triangulation for G obtained by applying Algorithm 2.1
[20]. The vertices are eliminated in the elimination ordering σ. At each step i
of the algorithm, the necessary edges to make v = σ(i) be a simplicial vertex are
added to the current graph. Then the vertex is deleted. Let m′ = |E(σ)|. This
algorithm can be implemented in O(n + m′) time [20]. We denote M(v) the set of
neighbors of v in H , and succ(v) = {u/u ∈ M(v), σ−1(v) < σ−1(u)} the successors
of v, i.e. the neighbor set of v when it is eliminated. The predecessors of v is the
set of vertices which have v as a successor (pred(v) = {u/v ∈ succ(u)}).

Algorithm 2.1. Graph triangulation according to an elimination ordering σ

input: G = (V, E), σ(1, . . . , n)
output: H = (V, E(σ))
E(σ) := E
H0 := (V0, E0) = (V, E)
for i := 1 to n do

Ei := Ei−1

v := σ(i)
for u, z such that [v, u] ∈ Ei−1 and [v, z] ∈ Ei−1 do

Ei := Ei ∪ {[u, z]}
E(σ) := E(σ) ∪ {[u, z]}

end for
Vi := Vi−1 − {v}
Hi := (Vi, Ei)

end for
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So, computing the treewidth can be solved the following way: find an elimina-
tion ordering which minimizes the clique size of the triangulated graph obtained by
Algorithm 2.1. The treewidth is equal to maxv∈V |succ(v)|, the maximum degree
of a vertex when it is eliminated. Thus, the difficulty is finding such an ordering.

3. A new heuristic for computing treewidth

Several heuristics have been proposed to compute treewidth [14]. Most of them
are greedy algorithms, and the quality of the results is highly dependent on the
structure of the input graph.

We propose a new heuristic which constructs an elimination ordering step by
step. It is close to the well-known minimum degree algorithm, a classical method
for triangulating a graph. Let G = (V, E) be a graph. A vertex v with minimum
degree is chosen. v is then eliminated after connecting its neighborhood to make
a clique as in Algorithm 2.1. The process is repeated until the vertex set is empty.
Locally, the choice of the vertex with minimum degree is suitable, as the size of
the clique composed of its neighborhood is minimized, but the resulting overall
decomposition is not optimal, globally speaking.

We propose an improvement to this method by adding a more global criterion
(cf. Algorithm 3.1). The idea is to compute for each vertex v a lower bound for
the treewidth of the graph Hv

i obtained by elimination of vertex v. We denote
it lower bound(Hv

i ). We use algorithm MMD [14] to compute the lower bound
because it returns good results quickly. The vertex v∗ chosen is the one that
minimizes the function 2× lower bound(Hv

i ) + |succ(v)|. We label this algorithm
D LB (see Algorithm 3.1).

Before using any heuristics the following pretreatment can be applied. The sim-
plicial vertices are recursively deleted, and the maximum degree found is recorded.
The result returned is the maximum between the maximum degree of a vertex
deleted during the pretreatment and the value returned by Algorithm 3.1 applied
to the remaining graph.

Algorithm 3.1. Algorithm D LB
input: G = (V, E)
output: An elimination ordering σ and the width associated with this ordering.
E(σ) := E
H0 := (V0, E0) = (V, E)
for i := 1 to n do

Ei := Ei−1

For each vertex v ∈ Vi, let Hv
i be the graph obtained after elimination of

vertex v and lb(Hv
i ) a lower bound for the treewidth of graph Hv

i .
v∗ := argminv∈V (|succ(v)| + 2 × lb(Hv

i ))
σ(i) := v∗

for u, z such that [v∗, u] ∈ Ei−1 and [v∗, z] ∈ Ei−1 do
Ei := Ei ∪ {[u, z]}
E(σ) := E(σ) ∪ {[u, z]}
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end for
Vi := Vi−1 − {v∗}

end for

4. Metaheuristic: Tabu treewidth (TW)

Another way to find good upper bounds is to use a metaheuristic method such
as a Tabu Search, which has been successfully applied to numerous combinatorial
optimization problems [1].

4.1. The Tabu TW

Tabu search [9] is a neighborhood search algorithm which starts with a fea-
sible solution and tries to improve on it iteratively. The improved solution s′

is found in some neighborhood of s. The complete neighborhood is often very
large. So techniques are generally used to reduce the number of neighbors actually
inspected [2, 9]. To be efficient, a neighborhood search algorithm has to avoid cy-
cling. One technique used in the Tabu search method is to keep a list L of the
latest moves. If a move is in L, it is Tabu (i.e. forbidden), and it will not be tested
until a fixed number of iterations has been reached.

4.1.1. Initialization

The initial solution is provided by algorithm MCS [21], which is a linear time
algorithm. As in Section 3, the simplicial vertices can be deleted from the initial
graph without modifying the treatment for the remaining graph. So the same
pretreatment is applied.

4.1.2. Solution structure

A solution σ is an elimination ordering of V . From σ we can obtain a tri-
angulation H for G, and thus an upper bound for tw(G) in linear time (see
Algorithm 2.1). Two orders σ and σ′ are said to be equivalent if H = H ′, where
H (resp. H ′) is the graph obtained by applying the elimination process associated
with σ (resp. σ′).

4.1.3. Neighborhood

An insertion neighborhood is used. A solution σ′ is a neighbor of the current
solution σ if it can be obtained from σ by translating a vertex v from position i
to position j �= i. The size of the complete neighborhood is bounded by n2. In
the final version of our Tabu method we use a smaller neighborhood whose size is
bounded by 2n.



METHODS FOR COMPUTING GRAPH TREEWIDTH 19

4.1.4. Cost function

The aim is to minimize the maximum cardinality of a clique in the triangulated
graph H obtained by applying Algorithm 2.1. Computing ω(H) takes O(n + m′)
time, where m′ is the number of edges in H . If we use this cost function, there are
too many solutions with the same cost, so we have added a second criterion. It is
computed from the size of all subsets of the decomposition. Recall that succ(v) is
the neighbor set of v when it is eliminated (see Algorithm 2.1). The cost function is

f(σ) = n2 × (ω(H))2 +
∑

v∈V

(|succ(v)|)2. (1)

Decompositions with few large subsets are thus preferred. The first criterion always
dominates the second, so the function never favors a solution with a higher value
of ω(H).

4.1.5. Parameters

The size of the Tabu list is 7. Several translations of the same vertex induce
the same solution, so each move involving the last vertex inserted is Tabu, even if
the new position is different from the initial one. In fact, the vertex remains Tabu
during 7 iterations. The maximum number α of iterations allowed is 20000, and
the algorithm stops after 10000 non-improving solutions. These values are large,
and the best solution is often found after less than 500 iterations, but they are
necessary for very large graphs. After having reduced the computation time of our
method, the time required actually remains reasonable, even with these constants.

4.1.6. Diversification

If the current solution is a local optimum (i.e. there is no improving solution
in its neighborhood) a diversification process is launched. A vertex is inserted at
a random position in the ordering. As a large number of moves can be inefficient,
we choose a vertex with the largest set of successors. The obtained ordering
is therefore substantially different when compared to the previous ordering, but
we do not resume the search from a completely different solution, which would
be equivalent to restarting the method from scratch. Although our choice of a
diversification is exceedingly simple, the rest of the approach is such that this
choice works acceptably well.

4.2. Properties of the triangulation process

During our work on the Tabu TW, we stated properties of the triangulation
process (Algorithm 2.1). We use these to optimize the size of the neighborhood
and the computing time of the cost function. Indeed, in the version of TS finally
selected, we only consider O(n) moves for each ordering. A vertex may be ex-
changed with only two candidates, namely its nearest predecessor and successor
in σ. The aim of this section is to justify this method.
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Let
• G = (V, E) be a graph, and v, z ∈ V ;
• σ be an elimination ordering for V , and i be an index, 1 ≤ i < n such that

σ(i) = v and σ(i + 1) = z;
• σ′ be the elimination ordering obtained from σ by exchanging the positions

of the vertices v and z. So σ′(i) = z and σ′(i + 1) = v;
• H (resp. H ′) be the triangulated graph obtained by the triangulation

process with σ (resp. σ′);
• Hi = (Vi, Ei) (resp. H ′

i = (V ′
i , E′

i)) be the current graph after step i of
the triangulation process with the elimination ordering σ (resp. σ′) (see
Algorithm 2.1);

• succi(v) = {u/[v, u] ∈ Ei} (resp. succ′i(v)) be the successor set of v at
step i with the elimination ordering σ (resp. σ′).

We show that after step i of the triangulation algorithm the graph Hi is inde-
pendent of the ordering of the vertices previously eliminated. It depends only on
the set of vertices eliminated.

Recall that at each step i, if t, u ∈ succi(σ(i)), [t, u] is added to the graph Hi.
As the two elimination orderings σ and σ′ are equal until index i, for each j < i
and p ∈ V, succj(p) = succ′j(p).

We now define the existence of edge [t, u] in Hi+1.
[t, u] ∈ Ei+1 means either that [t, u] was added at step i + 1, or that it existed

before. At least one of the following three conditions obtains, corresponding re-
spectively to the situation where [t, u] existed before step i, or was added at step
i or i + 1.

[t, u] ∈ Ei−1 (2)

t, u ∈ succi−1(v) (3)

t, u ∈ succi(z). (4)
Now consider the existence of [t, u] at the same step with σ′. Symmetrically, its
existence implies that one of these conditions obtains, corresponding respectively
to the situation where [t, u] existed before step i, or was added at step i or i + 1.

[t, u] ∈ E′
i−1 = Ei−1 (5)

t, u ∈ succ′i−1(z) = succi−1(z) (6)

t, u ∈ succ′i(v). (7)
We consider two cases, depending on the existence of [v, z] in Hi−1.

Proposition 4.1. Suppose we have G, σ, σ′ (obtained by exchanging two con-
secutive vertices v and z in σ), H and H ′ as defined above. If v and z are not
neighbors in Hi−1 (and thus not in H), then H = H ′.

Proof. Suppose [v, z] �∈ Ei−1. Since z �∈ succi−1(v), succ′i(v) = succ′i−1(v) =
succi−1(v) and succi(z) = succi−1(z). Given this condition, (3) is equivalent
to (7), and (4) is equivalent to (6). So [t, u] ∈ E′

i+1 is equivalent to [t, u] ∈ Ei+1.
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As the elimination orderings are equal after index i + 1, it follows that the graphs
obtained with σ and σ′ are identical. �

Proposition 4.2. Let G = (V, E) be a graph, σ an elimination ordering for V ,
and σ′ the ordering obtained from σ by exchanging two consecutive vertices v and
z. For all t �∈ {v, z}, Hσ−1(t) = H ′

σ−1(t).

Proof. Using Proposition 4.1, we only have to consider the situation where [v, z] ∈
Ei−1. (4) means that one of the following is the case, according respectively to
the situation where [z, t] and [z, u] exist before step i, or [z, u] is added at step i,
[z, t] added at step i, or the two edges are added at step i.

t, u ∈ succi−1(z) (8)

(t ∈ succi−1(z)) and (u ∈ succi−1(v)) (9)

(u ∈ succi−1(z)) and (t ∈ succi−1(v)) (10)

t, u ∈ succi−1(v). (11)

(7) means that one of the following is the case, according respectively to the
situation where [z, u] and [z, t] exist in graph H ′

i−1 = Hi−1, or [z, u] is added at
step i, [z, t] is added at step i, or the two edges are added at step i.

t, u ∈ succ′i−1(v) = succi−1(v) (12)

(t ∈ succi−1(v)) and (u ∈ succi−1(z)) (13)

(u ∈ succi−1(v)) and (t ∈ succi−1(z)) (14)

t, u ∈ succi−1(z). (15)

From these cases, it can easily be verified that [t, u] ∈ E′
i+1 if and only if [t, u] ∈

Ei+1. Indeed, (2), (3), (8), (9), (10) and (11) correspond respectively to (5), (12),
(15), (14), (13) and (12).

So E′
i+1 = Ei+1. As the two sets are equal and σ(j) = σ′(j) for j > i, no other

following intermediate graph is modified. �

In the next section we explain how Proposition 4.2 can be used to reduce the
size of the neighborhood actually explored. Moreover, we generalize this property
using a simple inductive proof, and we apply it to the computation of the cost
function.

Proposition 4.3. Using the same notation as above, if vertex v is translated from
position i to position j in σ, then we have Hl = H ′

l for l �∈ [min{i, j}, max{i, j}].
Proof. Consider a translation of vertex v from position i to position j in σ (without
loss of generality, we assume i < j). This translation can be broken up into j − i
elementary exchanges of v and the consecutive vertices σ(k) with k ∈ [i, j]. All
exchanges are in the interval [i, j]. So, by Proposition 4.2, the only modified graphs
are the intermediate graphs Hk with k ∈ [i, j]. �
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4.3. Optimizing the Tabu TW

4.3.1. An improved neighborhood

Let us denote respectively minSucc(v) = minz∈succ(v)(σ−1(z)) and
maxPred(v) = maxz/v∈succ(z)(σ−1(z)) the positions of the nearest neighbors of
vertex v respectively after and before. Let σ′ be the elimination ordering obtained
from σ by translating vertex v from position i to position j. If maxPred(v) <
j < minSucc(v), σ′ is equivalent to σ (Prop. 4.1). The translation of v at position
maxPred(v) is therefore the first significant move to a lower position in the elim-
ination ordering. This observation also applies to minSucc(v). This property can
be recursively applied to reduce the size of the neighborhood. We have described
a large number of classes of solutions which are strictly equivalent. Thus, a new
neighborhood is: for each vertex, the only necessary translations to test are those
at the position of its neighbors in the current graph H obtained with σ.

When a translation is tested at position minSucc(v), v could have new neighbors
added by the elimination of σ(minSucc(v)). Consequently we have to determine
the new set of neighbors for each translation after minSucc(v). Another solution
is simply to ignore these new neighbors in order to shorten the computation time.
This produces a neighborhood whose size is bounded by m′ (one move for each
edge), but some information is lost. It makes the method scalable. Note that a
translation at maxPred(v) cannot increase the number of neighbors of v.

4.3.2. An O(n) Neighborhood

In the previous paragraph we defined the smallest significant move as the trans-
lation of v at the position of its nearest neighbors (minSucc and maxPred). Every
move can be broken down into several smallest significant moves. So we can de-
sign a new neighborhood: for each vertex v, the translations tested are those at
minSucc(v) and maxPred(v). The size of the neighborhood is bounded by 2n.
This last method has a time complexity bounded by αn(m′ + n), where prefixed
parameter α is the maximum number of iterations allowed. It finds upper bounds
for the treewidths of large graphs, and our computing times are not significantly
different from those of the well known Lex greedy heuristics, and from the MSVS
heuristic [14] which uses network flow techniques to find minimal separating vertex
sets.

4.3.3. Application for the computation of the cost function

Let σ be an elimination ordering of V , and σ′ the ordering obtained from σ
by the translation of vertex v from position i to position j. Let succ(v) (resp.
succ′(v)) be the successors of v with σ (resp. σ′). We have, from Proposition 4.3,
that for each z such that σ−1(z) �∈ [min{i, j}, max{i, j}], succ(z) = succ′(z).
Thus, by recording the previous values of |succ(z)| for each z in V , the only ones
to compute again for σ′ are those related to the vertices in [min{i, j}, max{i, j}].

As a quadratic sum is involved (cf. Eq. (1)), the values of |succ(v)| are not
sufficient for us to be able to avoid taking all vertices into account, because we



METHODS FOR COMPUTING GRAPH TREEWIDTH 23

still have to sum up the values of |succ(v)|2. To avoid computing the quadratic
sum entirely, the following intermediate sum

∑n
l=k |succ(σ(l))|2 is recorded for each

position k in the ordering. A similar technique is used to compute ω(H). The
value maxk≤l≤n|succ(σ(l))| is recorded for each position k. Thus the triangulation
process can stop at index max{i, j}. The total sum can be obtained by summing∑k

l=1 |succ′(σ(l))|2, the intermediate sum obtained and
∑n

l=k+1 |succ(σ(l))|2 the
recorded value. We could begin at position min{i, j}, but we would have to record
a large number of intermediate graphs, which would not be any faster.

4.3.4. List of non improving neighbors

The idea is to avoid testing moves that have been tested in a previous iteration.
Let σ be a solution and H its associated triangulated graph. With the O(n)
neighborhood, we only test two translations for each vertex. Now let σ′ (associated
to H ′ and σ′) be the solution obtained after translating vertex v from position
i to position j in σ. From Proposition 4.3, if a move m of a vertex from position k
to position l with k, l �∈ [min{i, j}, max{i, j}] does not improve solution σ, it does
not improve solution σ′ either. The intermediate graphs modified by the move are
in fact the same.

So, for each vertex v, we record whether or not the translation to position
maxPred(v) or minSucc(v) improves the current solution. The moves involving
positions k and l which do not improve the previous solution are not tested if
max{k, l} < min{i, j} or min{k, l} > max{i, j}.

5. Computational analysis

We have tested our methods on the DIMACS benchmarks for vertex coloring.
So, we can compare them to the most recent heuristics (Lex and MSVS) [14]. The
lower bound is provided by algorithm LB P [7] which returns the best lower bounds
known for this benchmark. Our algorithm is implemented in C on a Pentium III
1GHz, whereas the computation time of Lex and MSVS were obtained with a
C++ implementation on a Pentium III 800 Mhz.

The results of the heuristic are on average as good as those returned by MSVS
and Lex, and our computing times are far smaller for the large instances, even
taking into account the different speeds of the two computers. It finds good upper
bounds in a short computation time.

As far as we know, the results returned by the Tabu TW method are the
best upper bounds achieved for the DIMACS benchmarks. Note that the values
returned by the Tabu search are never larger than the previous bests. Moreover,
a better upper bound is found in 53% of the cases, with improvements as high as
25%. The computation time of this method is longer than for the other methods,
in view of the high value of the constant α. The best value is often found after
several iterations, and although this constant may be reduced for small graphs,
results may be less impressive. Our computational experiments are reported in
Table 1.
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Table 1. Computational experiments for the DIMACS Benchmark.

instance n m lb ub CPU time
LB P LEX MSVS D LB Tabu LEX MSVS D LB Tabu

Anna 138 986 11 12 12 12 12 1.24 18.39 0.880 2776.93
David 87 812 11 13 13 13 13 0.56 7.77 0.220 796.81
Huck 74 602 10 10 10 10 10 0.24 2.30 0.130 488.76
Homer 561 3258 21 37 31 32 31 68.08 556.82 27.380 157716.56
Jean 80 508 9 9 9 9 9 0.29 1.98 0.130 513.76
Games120 120 638 12 37 51 41 33 5.20 65.97 1.620 2372.71
QUEEN5 5 25 160 12 18 18 18 18 0.04 0.22 0.340 100.36
QUEEN6 6 36 290 15 26 28 27 25 0.16 1.16 0.140 225.55
QUEEN7 7 49 476 20 35 38 38 35 0.51 4.66 0.090 322.40
QUEEN8 8 64 728 23 46 49 50 46 1.49 16.38 0.350 617.57
QUEEN9 9 81 1056 26 59 66 64 58 3.91 47.35 0.740 1527.13
QUEEN10 10 100 1470 31 73 79 80 72 9.97 128.30 1.670 3532.78
QUEEN11 11 121 1980 34 89 101 102 88 23.36 310.83 3.160 5395.74
QUEEN12 12 144 2596 37 106 120 117 104 49.93 702.29 6.720 10345.14
QUEEN13 13 169 3328 42 125 145 141 122 107.62 1589.77 10.940 16769.58
QUEEN14 14 196 4186 45 145 164 164 141 215.36 3275.75 20.300 29479.91
QUEEN15 15 225 5180 48 167 192 194 163 416.25 6002.33 31.070 47856.25
QUEEN16 16 256 6320 53 191 214 212 186 773.09 11783.30 63.890 73373.12
FPSOL2.I.1 269 11654 66 66 66 66 66 319.34 4220.91 176.110 63050.58
FPSOL2.I.2 363 8691 31 52 31 31 31 622.22 8068.88 174.930 78770.05
FPSOL2.I.3 363 8688 31 52 31 31 31 321.89 8131.78 144.650 79132.70
INITHX.I.1 519 18707 56 223 56 56 56 3144.95 37455.10 2966.020 101007.52
INITHX.I.2 558 13979 31 228 35 35 35 5567.96 37437.20 1004.340 121353.69
INITHX.I.3 559 13969 31 228 35 35 35 5190.39 36566.80 884.430 119080.85
MILES1000 128 3216 48 49 53 53 49 14.39 229.00 3.420 5696.73
MILES1500 128 5198 76 77 83 77 77 29.12 268.19 3.470 6290.44
MILES250 125 387 8 10 9 9 9 1.12 10.62 0.350 1898.29
MILES500 128 1170 22 22 28 28 22 4.37 87.18 0.960 4659.31
MILES750 128 2113 33 37 38 43 36 8.13 136.69 1.850 3585.68
MULSOL.I.1 138 3925 50 66 50 50 50 17.77 240.24 12.700 3226.77
MULSOL.I.2 173 3885 32 69 32 32 32 34.06 508.71 15.290 12310.37
MULSOL.I.3 174 3916 32 69 32 32 32 34.58 527.89 14.010 9201.45
MULSOL.I.4 175 3946 32 69 32 32 32 35.53 535.72 14.100 8040.28
MULSOL.I.5 176 3973 31 69 31 31 31 36.25 549.55 12.920 13014.81
MYCIEL3 11 20 4 5 5 5 5 0.00 0.01 0.000 72.50
MYCIEL4 23 71 6 11 11 11 10 0.02 0.13 0.310 84.31
MYCIEL5 47 236 12 23 20 20 19 0.28 2.00 0.300 211.73
MYCIEL6 95 755 20 47 35 35 35 4.56 29.83 2.410 1992.42
MYCIEL7 191 2360 31 94 74 70 66 109.86 634.32 28.640 19924.58
SCHOOL1 385 19095 116 252 244 242 188 3987.64 41141.10 273.620 137966.73
SCHOOL1 NSH 352 14612 100 192 214 200 162 2059.52 28954.90 161.700 180300.10
ZEROIN.I.1 126 4100 50 50 50 50 50 17.78 338.26 10.680 2595.92
ZEROIN.I.2 157 3541 31 40 33 33 32 24.82 448.74 26.760 4825.51
ZEROIN.I.3 157 3540 31 40 33 33 32 24.69 437.06 24.780 8898.80
LE450 5A 450 5714 33 310 317 323 256 7836.99 73239.66 274.490 130096.77
LE450 5B 450 5734 33 313 320 321 254 7909.11 73644.28 260.290 187405.33
LE450 5C 450 9803 51 348 340 329 272 10745.70 103637.17 525.350 182102.37
LE450 5D 450 9757 51 349 326 318 278 10681.29 96227.40 566.610 182275.69
LE450 15A 450 8168 56 296 297 300 272 6887.15 59277.90 273.700 117042.59
LE450 15B 450 8169 55 296 307 305 270 6886.84 65173.20 230.900 197527.14
LE450 15C 450 16680 92 379 376 379 359 12471.09 122069.00 356.610 143451.73
LE450 15D 450 16750 91 379 375 380 360 12481.22 127602.00 410.350 117990.30
LE450 25A 450 8260 62 255 270 267 234 4478.30 53076.40 243.290 143963.41
LE450 25B 450 8263 59 251 264 266 233 4869.97 52890.00 248.610 184165.21
LE450 25C 450 17343 100 355 365 361 327 10998.68 109141.00 344.360 151719.58
LE450 25D 450 17425 98 356 359 362 336 11376.02 111432.25 434.120 189175.40
DSJC125.1 125 736 16 70 67 65 65 12.90 171.54 2.500 1532.93
DSJC125.5 125 3891 62 110 110 110 109 38.07 254.90 3.870 2509.97
DSJC125.9 125 6961 108 119 120 120 119 55.60 70.79 56.630 1623.44
DSJC250.1 250 3218 32 183 179 176 173 528.10 5507.86 32.730 28606.12
DSJC250.5 250 15668 125 233 233 233 232 1111.66 7756.38 48.510 14743.35
DSJC250.9 250 27897 218 243 244 244 243 1414.58 1684.83 15.600 30167.70
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6. Conclusion

We propose two methods for computing upper bounds for graph treewidths.
The heuristic gives good results in a short computation time, whereas the Tabu
search returns the best upper bounds known so far for the DIMACS benchmarks.
Our results, even in the worst case, are at least as good as the previous best
results. In addition, we note that the Tabu search includes strategies that we have
not examined, and taking these into account may improve our results yet further.

The gap between our upper bounds and the best lower bounds is still large. The
exact value of treewidth is still unknown for most of the benchmarks. In order
to reduce the distance between the bounds we need first to raise the value of the
lower bound, before we set about developing an exact method.

In the future we also plan to adapt the Tabu TW for computing the pathwidth
of graphs. We need to modify the cost function and to identify new properties
involving interval graphs instead of triangulated graphs.
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comments.
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