RATRO Operations Research
RAIRO Oper. Res. 40 (2006) 77-95
DOI: 10.1051/r0:2006018

COMBINING CONSTRAINT PROPAGATION
AND META-HEURISTICS FOR SEARCHING
A MAXIMUM WEIGHT HAMILTONIAN CHAIN

YVES CASEAU!

Abstract. This paper presents the approach that we developed to
solve the ROADEF 2003 challenge problem. This work is part of a
research program whose aim is to study the benefits and the computer-
aided generation of hybrid solutions that mix constraint programming
and meta-heuristics, such as large neighborhood search (LNS). This
paper focuses on three contributions that were obtained during this
project: an improved method for propagating Hamiltonian chain con-
straints, a fresh look at limited discrepancy search and the introduc-
tion of randomization and de-randomization within our combination
algebra. This algebra is made of terms that represent optimization
algorithms, following the approach of SALSA[1], which can be gener-
ated or tuned automatically using a learning meta-strategy [2]. In this
paper, the hybrid combination that is investigated mixes constraint
propagation, a special form of limited discrepancy search and large
neighborhood search.

1. INTRODUCTION

Combining constraint programming and meta-heuristics is a powerful technique
which requires, however, a large amount of experimental work for fine-tuning.
Furthermore, those hybrid algorithms lack robustness from an industrial point of
view since they are very sensitive to the typology of input problems. A small
change in the input problem often requires a new phase of experimental tuning.

Received December 31, 2005.

I Bouygues e-Lab, 1 avenue Eugene Freyssinet, 78061 St-Quentin en Yvelines Cedex, France;

ycs@caseau.com
© EDP Sciences 2006

http://www.edpsciences.org/ro or http://dx.doi.org/10.1051/r0:2006018

http://www.edpsciences.org/ro
http://dx.doi.org/10.1051/ro:2006018

78 Y. CASEAU

This is the reason why a lot of attention has been paid in the past few years,
especially by Minton in 96 [3], to the use of program synthesis and learning as an
alternative to human tuning. This is an ambitious but exciting path, which has
already shown interesting results in the field of vehicle routing [2]. The foundation
paradigm is to represent search algorithms as hybrid combinations of techniques,
mixing search patterns and generic heuristics, which may be seen as an algebraic
term. The learning meta-algorithm explores the algebra to produce terms that
represent algorithms that produce high-quality solutions.

ROADEF challenge problems are interesting candidates to apply such tech-
niques, because they are large-scale complex problems, with an industrial back-
ground that gives a lot of sense to the quest for robustness and ease of development.
The problem that was presented for the 2003 Challenge is a satellite scheduling
problem, where the goal is to pick a subset of views that make a feasible tour for
the observation satellite and have the maximal combined value. The feasibility
constraints may be seen as distance constraints between views, thus the result
may be seen as a Hamiltonian chain. The complexity of the cost function comes
from the existence of subsets of views which have a combined higher value that
the sum of the individual values. Compared to the previous 2001 problem, the
target run-time is shorter (300s) and the solution space is denser (it is easier to
find a first solution), which has enabled us to go further in the application of the
“meta-heuristic learning” approach. It is interesting to note, however, that we
used precisely the same combination of techniques (CP, LDS and LNS) for both
problems.

In this article, we relate our approach to this satellite scheduling problem and
focus on a few key aspects of this problem. First, because only a subset of the
existing views is selected in the final solution, the problem is not a TSPTW (Trav-
eling Salesman Problem with Time Window), which has been well studied by
the constraint programming community [4,5], but a Hamiltonian chain problem.
One of our contributions is to propose a new “OrderedSubchains” redundant con-
straint that yields interesting propagation methods. This redundant propagation
is mandatory to perform an efficient search based on a sub-chain branching schema,
which is implemented using a limited discrepancy search. This search is, in turn,
used within LNS. Another interesting contribution of this paper is a re-design of
the combination algebra compared with previous papers [2, 6], since some meta-
heuristics have been dropped but randomization and parallel composition has been
introduced.

This paper is organized as follows. Section 2 describes the hybrid algorithm,
from the constraint model to the LDS and LNS meta-heuristics. We introduce the
concept of ordered sub-chains, which is the basis for strengthening the propaga-
tion for ordering and time-window constraints in a problem where only a subset of
the initial tasks will belong to the final solution. We present a simplified version
of limited discrepancy search [7] which has proven successful with a large range
of problems and an implementation of LNS for this ROADEF problem that is
very similar to Shaw’s implementation for VRPTW|8,9]. Section 3 focuses on the

CONSTRAINT PROPAGATION FOR MAX. WEIGHT HAMILTONIAN CHAIN 79

algebra for describing hybrid algorithms and the use of step-by-step program syn-
thesis, which is the solution that we found to solve the run-time/experience-time
problem that we had reported with large-scale problems in an earlier paper. We
also describe the introduction of de-randomization, which actually improved the
efficiency of the random selection of the fragment that is removed and re-inserted
in the LNS schema. The last section draws on the strengths and weaknesses of
the approach that is presented in this paper to suggest directions for future work.
We introduce a new research project, named CECILE, whose aim is to improve
substantially the speed and robustness of the development of the algorithm, while
minimizing the impact on the quality of the solution that is produced.

2. A CONSTRAINT-BASED APPROACH

2.1. MODEL

The ROADEF problem is described in [10] (a formal model may also be found
in [9] together with a constraint propagation model which is similar to the one
presented here). It is defined by a set of views that must be selected for an earth-
orbiting satellite, such that the succession of shots is feasible and such that the
overall value of the views that are selected is maximal. There exists a time distance
between views, which reflects the travel time of the satellite from one observation
position to another, and a set-up time that represents the positioning of the camera
in the proper direction. The value that is associated to a set of views is complex
because it takes two “aggregation” features into account. First, some views are
part of a larger set of views, a group, so that the total value is a convex function
of the ratio of the global view that is actually made. Second, some views are part
of pairs of stereoscopic views and must be taken as pairs to be worthwhile.

The model that we use is a TSPTW model, that is, a Traveling Salesman
Problem with time windows. The principle is the construction of the solution
tour through a binary relation next/prev (z.next is the task that is the successor
of within the tour). The elementary branching decisions follow a “z.next := y”
pattern (y is the successor of z, thus y.prev := z). Each view is seen as a “task”,
which is a part of an “Order” object that represents, when necessary, the group
of views that constitute a global view. We use two virtual tasks TStart and Tend
to represent respectively the start and the end of the tour.

For each task, we build and maintain the following attributes:

e the time window (minStart, maxzStart) that represents the time constraints,
both the initial window that is part of the problem and the additional new
constraints inferred by propagation;

e the next/prev pair (once a choice is made) and the list of possible neighbors
(a neighbor is a possible successor), which is an ordered list (from the
closest to the furthest). The distance to the closest neighbor is kept and is
called the diameter of the task. It plays a classical role in the computation
of the lower bound;

80 Y. CASEAU

e features that are inherited from the view: duration, existence of a stereo
“twin”, order to which the task belongs;

e a status (in, out, or unknown), which says if the task is definitely part of
the solution, definitely not part of the solution, or if it is still unknown
whether the task will be used or not.

In addition to the distance constraint, the ROADEF problem requires two ad-
ditional types of constraint. Each view may actually be taken in two possible
directions. The algorithm must pick one direction, since the direction has an im-
pact on the set-up and on the starting/ending position of the satellite, but they
are obviously exclusive: one only need one view for each image. This is mod-
eled simply by creating a pair of tasks for each view and an exclusion constraint
between these two tasks. Similarly, we model the “stereo” constraint by saying
that if one view from a stereoscopic image is part of the solution, then the other
view must be part of the solution. We enforce arc-consistency on this constraint,
which means that if a stereo view is part of the solution, we ensure that there is
a possible assignment (a position in the solution chain) of its “stereo twin” that
does not cause a contradiction.

2.2. PROPAGATION

Propagation of constraints is defined according to the following set of events:

selecting an edge (selecting the successor y of a task x);

deleting a neighbor (a possible successor) for a task x;

dropping a task (changing its status to “out”);

reducing the time-window associated to a task (increase the minStart or
decrease the mazStart attribute).

The propagation rules are similar to the ones developed for the TSPTW prob-
lem [4], they perform straightforward updates following four propagation paths:

1. the time-windows are reduced according to the set of possible neighbors
(next/prev). The associated invariant is that the min and max values for
the starting time are compatible with the selection of one neighbor;

2. the list of possible predecessors and successors is reduced when the time-
windows do no longer allow for the duration of the link. It is also re-
duced by the propagation of the AllDifferent constraints associated with
the next/prev relations;

3. the constraints that states the absence of sub-tours is enforced by removing
the links that would create a loop from the possible neighbor list;

4. a simple lower bound of the total length of the final chain is maintained.

The master propagation method is the one that deals with the selection of a
link (i.e., making a decision of the kind z.next := y). This method may be
summarized as follows: the time bounds are modified by the distance between x
and y, the ancestor of x in the solution (sub-chain) is removed as a neighbor
of y to avoid the creation of cycles. There is, however, a major difference with
the time-window propagation since we can only apply the propagation rules if we

CONSTRAINT PROPAGATION FOR MAX. WEIGHT HAMILTONIAN CHAIN 81

//p Tend = ¢y

o o
- A

s;=Tstart

¢!
e ¥ O
o e b @ %
‘b = e,

FIGURE 1. Sub-chain ordering.

know that a task is definitely part of the solution. If we want to use the same
branching scheme that was described in [4] for TSPTW, the weakening of the
propagation rules is such that dead-ends occur in the search tree that requires
expensive exploration. It turns out that the propagation rules that are strong
enough to guarantee the convergence towards a feasible solution in the TSPTW
case are too soft in the Hamiltonian chain case. A simple solution is to revert to
a “chronological” branching scheme: start with the first task (TStart) and build
the final chain by choosing the successor nodes from start to end. This is in
contrast with the approach of [4] where we select the “most critical” task x with a
combination of number of neighbors and “regret” (difference in distance between
the closest neighbor and the next) and we branch on “z.next := y” or “x.next # y”.
This binary branching schema is much more powerful than chronological branching
but it yields to the creation of multiple sub-chains, which, in the Hamiltonian
chain, may become tricky to join together.

We solved this problem with the introduction of a redundant constraint, which
we call SCO for sub-chain ordering in the remainder of the paper. A sub-chain
is a set of tasks that have been selected in the solution (their status is “in”) and
that linked with the relation next. The sub-chain C; start with the task s; and
ends with the task e;, as shown in Figure 1. The ordering that we use here is the
time ordering induced by the time windows: we say that z < y if x.minStart +
distance(z, y) < y.maxStart.

It is important to notice that our contribution is not the principle of “subchain
ordering” (composing a tour from the proper ordering of various subchains), which
is used in many local optimization methods, such as the Tabu heuristic of [11],
but the propagation method associated to this global constraint (SCO).

The SCO constraint is the conjunction of two properties:

(P1) All sub-chains must be ordered: For each pair of sub-chains C; and Cj,
either e; < s; or ej < s;.
The total order among sub-chains is represented with the nextChain/
prevChain relation: if C; is just after C; then e;.nextChain = s;.

82 Y. CASEAU

(P2) Each well-ordered task must have a closest neighbor which is compatible
with the adjacent sub-chains. A task that is not part of a solution but that
may only fit between two sub-chains C; and Cj is said to be well-ordered.
The closest neighbor y of such a task z is compatible with C; and Cj iff
either:

o y=s; and d(e;, z,y) <= y.mazStart

o d(e;, x, y, sj) <= sj.mazStart
where d(x1, ..., z,,) is the earliest arrival time at ,, if we start at 1 at the
earliest time and take distance and time window constraints into account.
This simply says that there exists a feasible path from e; to s; that goes
through x and y.

Enforcing the SCO property reduces the search space and does not remove any
solution since any Hamiltonian chain satisfies the SCO constraint by definition
(one single chain). Enforcing this constraint requires two steps:

(1) SCO propagation. The propagation step uses a method SCOenforce(...)
whose goal is to detect well-ordered tasks, maintain the property P2 and
remove impossible links (deleteNeighbor) or tasks (dropTask).

(2) SCO branching selection. There is a restriction on the “smart” branching
task selection heuristic to ensure that (P1) is satisfied.

The branching selection can be stated simply as follows: we select a pair (x,y) to
branch on the decision (z.next :=y or x.next # y) only if either:

“

e x or y are already part of the solution (their status is
e 1 is well-ordered.

in”);

The propagation for SCO consists of extending the link (z,y) propagation method
with another propagation method that is called SCOenforce. When we create
a new link in the solution, we first perform the usual TSPTW propagation as
explained earlier, then we determine easily if this new link creates a new sub-chain
(when z is well-ordered), extends an existing one or merges two sub-chains. We
then consider the beginning s; of the resulting chain C; to which x belongs, and
the end of this chain e;. We call SCOenforce (s;.prevChain,s;) and SCOenforce
(e4,e;.nextChain) to examine the tasks that could fit between respectively the chain
that is “before” C; and C}, then the tasks that could fit between C; and the chain
that is “after” C;.

More precisely, SCOenforce (a,b) examines all tasks that are not already part
of the solution or already dropped and looks if they could fit before the chain that
ends with a, after the chain that starts with b or in the middle. If a task x can
only fit between a and b it is well-ordered and the filtering (P2) may be applied.
Otherwise, we apply the exclusion rules: if a task may not be before the start of
a sub-chain, it must be after its end.

CONSTRAINT PROPAGATION FOR MAX. WEIGHT HAMILTONIAN CHAIN 83

TABLE 1. Impact of Hamiltonian propagation.

Problem Ch + simple | Ch + SCO B&B + | B&B + SCO
(cf. 3.3) p. simple p.

4 417 486 401 496

) 449 439 386 523

6 405 405 - 498

7 282 337 - 610

9 160 175 89 159

10 - (no sol) 284 - 352

Here is a pseudo-code description of the SCOenforce(z,y) method:

// examine tasks that could be well-ordered between a and b

SCOenforce(a,b)

Let a*x = start of the chain that ends with a, b*x = end of the

chain that starts with b in

for all tasks t with status ‘‘unknown’’

if (t < ax) (if not(a < t) pushBefore(t,a*) else mark t

as not(well-ordered))

else if (b* < t) (if not(t < b) pushAfter(t,b*) else mark t

as not(well-ordered))

else (if (a < t and t < b)
(mark t as well-ordered,
enforce the interval: pushAfter(t,a) and pushBefore(t,b),
filter all neighbors of t to make sure that they will
satisfy (P2) if they become closest neighbors)

Else dropTask(t))
Figure 1 shows the various tasks that are used in the previous algorithm.

The existence of the SC ordering has an additional (trivial) impact on the time-
window propagation since lower/upper bound updates may now be propagated
both on the prev/next links (the sub-chains) and the prevChain/nextChain links
(the ordering).

The other propagation method that is impacted by the SCO constraint is the
neighbor deletion method since whenever the closest neighbor is removed for a
node that is well-ordered, the new closest neighbor must be checked to satisfy the
consistency principle (P2).

Table 1 shows the improvements that are obtained with SCO with either chrono-
logical or “smart” branching schemas. Another way to measure the improvement

84 Y. CASEAU

is the fact that SCO ensures that the branch-and-bound algorithm finds a solution
for each of the 20 ROADEF problems without any backtrack, which makes it a
powerful greedy heuristic.

It is also interesting to notice that our experiments with “shaving”, a domain
consistency technique that was shown to be successful for job-shop scheduling by
Martin [12] and that we found very successful in the previous ROADEF challenge,
did not bring any improvement for this problem. Shaving may be described as
removing extreme values from a variable domain by propagating the choice of
this value and removing it whenever the propagation yields a contradiction. The
absence of benefits from this technique (which main drawback is to be computa-
tionally expensive) confirms that this ROADEF problem is much closer to a TSP
than to a scheduling problem.

2.3. SEARCH WITH LDS

The search for a solution is made using an incomplete branch-and-bound scheme,
very similar to the limited discrepancy search of [7], although we have found that
the simpler approach that is presented here is more efficient and more generic
than the original design of Harvey and Ginsberg. This algorithm has been used
for large-scale routing problems since 1993 and has shown very competitive results
(for instance, [2]).

The LDS principle is to develop a bare search tree with few nodes and branches,
by restricting the branching points to a few decisions, according to the depth in
the search tree (with the implicit assumption that the most important choices are
made earlier) and according to the heuristic function that selects greedily the tasks
that need to be inserted (with the implicit assumption that the heuristic is most
often right). More precisely, our generic LDS scheme is a method to transform a
greedy heuristic defined by a choice heuristic f into a limited search algorithm that
shows a performance improvement, when we increase the size of the search space,
that is far superior to a classical branch-and-bound. The efficiency of this scheme
is tightly linked to the efficiency of the greedy heuristic: applied to a poor heuristic,
it gives poor results; applied to a good heuristic, it provides interesting results,
especially for large scale problems (such as vehicle routing with 1000s of nodes).
Here we suppose that the heuristic is defined by a valuation function f which tells
which task should be inserted into the solution, and that the insertion means to
link the task to its closest successor. However, the scheme can be extended easily
to a non-binary branching schema.

The LDS extension of the greedy heuristic defined by f may be described as
follows. It is characterized by two parameters, k and d, which represent respec-
tively the maximal number of branching to build a solution (hence, with a binary
branching schema, a bound of 2* for the size of the search tree) and the “discrep-
ancy” which is the difference in the heuristic value that will cause a branching
(measured as a percentage).

CONSTRAINT PROPAGATION FOR MAX. WEIGHT HAMILTONIAN CHAIN 85

LDS (k,d)

Pick x such that the SCO branching constraint is satisfied
and f(x) is maximized
Let y := closest_neighbor(x)
Create a choice point // not for branching
(cf. explanation)
Assert (x.next := y) // and propagate
If no contradiction has been detected, recursive
call of LDS(k,d)
Return to choice point (backtrack)
If ¥k > 0 and if there exists x2 such that
f(x2) > £(x) *d, // dk
Create a choice point // optional branching
Assert(z.next != y)
If no contradiction has been detected, call
LDS(k - 1, 4)
backtrack

There is one subtlety with the use of “choice points”. A choice point is a vir-
tual store of the current state that supports further restore (backtracking). This
mechanism is supported by most constraint programming languages. Here, we use
choice points for two different purposes. The first case is a contradiction handling
pattern: propagation may raise “contradiction exceptions” that yield a backtrack.
The second case is the conditional branching that correspond to the exploration
of the reduced search tree.

In this pseudo-code description, assert(decision) means to generate the event
that correspond to the decision, and then call the propagation methods recursively
on this event and all the events that are generated by propagation, until no new
further deduction can be made. Then a call to the upper bound method is made,
which raises a contradiction if the upper bound is lower than the best value found
so far (as in any branch-and-bound algorithm).

Computing an upper bound for a partial solution of this problem is difficult
because of the complexity of the objective function. The principle that we use
here is to use a relaxation of the problem into a scheduling problem, for which
a bound is obtained with a greedy algorithm. We associate to each task in the
original problem a scheduling task whose duration is the travel time between the
original task and its closest neighbor. We then use three ideas:

(1) Use a simplified “task interval” analysis [13] to find which tasks, for each
order, are the most profitable and may participate to the final solution.

(2) Use the convex nature of the value function associated with each order to
determine an upper bound of the value per second for each of these tasks

(3) Each task is then virtually decomposed into time units with an associated
value and the solution is composed in a greedy manner by picking for each
time interval the units that bring the most value. Alternatively, we could
solve the continuous relaxation of the associated knapsack problem, but

86 Y. CASEAU

TABLE 2. Comparing LDS with a regular search.

Problem | Search@ | Search@ | Search@ | LDS (7)@| LDS (7)@| LDS (7)@
5K 20 K 100 K 5K 20 K 100 K
4 480 480 480 490 496 496
) 511 513 515 517 523 540
6 428 428 428 610 610 613
7 415 415 425 471 498 498
9 155 155 155 157 159 162
10 313 323 329 328 352 352

we found that the pre-emptive relaxation (seeing each task of duration n
as n units) is simpler to work out with our existing data structures.

This bound computation is fairly complex, with a first step that combines the two
first ideas to associate to each task a “value per second” and a second task which
fills the time schedule with pieces of the task. The greedy process described in (3)
is implemented with a loop that successively merges tasks that have intersecting
time intervals until one single combination is obtained.

Table 1 compares the two branching methods (Ch for chronological and B&B
for the “smart branch&bound” with a dynamic insertion ordering) and the effect
of SCO (simple p. stands for the simple TSPTW rules of [4] and SCO for the
addition of Sub-Chain Ordering). The problems are the 6 difficult problems of
the first set of instances of the ROADEF challenge (the correspondence with the
full instance names is given in Sect. 3.3), the value in the table is the objective
function divided by 1000000). The effectiveness of SCO is obvious, but is clearly
more spectacular when combined with a dynamic branching scheme (the effect of
the improved propagation is limited with a chronological approach).

The previous results were obtained with a LDS (7, 80) with a cut-off at 20 K
backtracks. Table 2 shows the effectiveness of the LDS scheme. We compare a
regular branch-and-bound scheme (search) with LDS at different level of search
tree (there is an automatic cut-off after 5 K, 20 K and 100 K backtracks). We see
that LDS is both much more efficient for a given size of search tree but also makes
a better usage of additional search time.

2.4. LNS

Large Neighborhood Search (LNS), also called “shuffle” [14] in the context of
jobshop scheduling, is an optimization meta-heuristic that is based on using LDS to
reconstruct a better new solution from an old one, thus defining a structure of large
neighborhoods (the distance between such two solutions may be important). More
precisely, this technique consists of removing a fragment of the initial solution, then
re-introducing it using a LDS search for an improvement. The key part of this
strategy is to define which fragment should be removed (or which part should be
kept).

CONSTRAINT PROPAGATION FOR MAX. WEIGHT HAMILTONIAN CHAIN 87

For this ROADEF 2003 problem, we have used a simple approach, which is
based on removing a fragment that is defined by a time interval. We pick a small
sub-chain (size 1 or 2), then add all initial neighbors and tasks that are linked
with a “stereo” constraint. The choice of neighbors may be randomized slightly,
following a suggestion of Shaw in [8]. The fragment is then reduced to match a
given size. This size is the key parameter for LNS: for instance, in [8] the best
strategy is to try all possible sizes in an incremental manner. For the ROADEF
2001 problem, we enriched this strategy with a rotation: increase from 5% of the
solution up to 90% (!) and then revert to 5% and so on. For this problem, which
has a much simpler structure than the 2001 problem, using fragments from 5% to
25% of the solution seemed to provide the best results.

The LNS algorithm may be described as follows:

LNS(k,n)
Repeat k times
pick a set S of tasks of size n,
re-initialize the tasks from S,
find a solution with LDS(_,_.)
if we find a solution which is better than the current
solution, this solution becomes the current solution

The re-initialization step consists of removing a task from the current solution if
it is part of it, or resetting the task’s status to “unknown” if was dropped out,
and then re-computes the initial time window and the original set of neighbors.
One may notice that there is a proper tuning needed with the LDS method to
find which parameters work best for the LNS. This will be addressed in the next
section. The efficiency of the LNS method is directly bound to the strength of the
constraint propagation, as noticed already by Applegate and Cook in [14].

2.5. CONTROL

The overall strategy used in this paper is to produce a first solution with a
LDS algorithm and then optimize it through successive application of the LNS
algorithm. Experience shows that, although it is important to produce a strong
propagation strategy and to tune the LDS parameters to make the LNS efficient,
it is not mandatory to get a very good first solution. Indeed, the “repair” capacity
of the LNS algorithm is such that it is faster to improve a mediocre solution up to
a “good” one than to tune the LDS so that it produces a “good” first solution. To
ensure an “anytime” behavior, we encapsulate the LNS loop within another loop,
which is controlled by the run time and which stops once the target time for the
challenge has elapsed.

It is interesting to notice that it seems that the quality of the bound, which is
crucial to produce a first solution of high quality with LDS; is less important for
“repairing” an existing solution within the LNS framework. This is an insight that
will influence future experiments with the CECILE framework (cf. Sect. 4) since
a large part of the development time both for the ROADEF 2001 and ROADEF
2003 challenges was spent on the implementation of an upper bound method.

88

3.

Y. CASEAU

ALGEBRAIC REPRESENTATION OF HYBRID ALGORITHMS

3.1. COMBINATION ALGEBRA

The first step, to perform meta-heuristic combination and synthesis, is to use
the algebraic modeling of hybrid algorithms that was proposed in [1]. We use a
term algebra that is generated by the following operators [3]:

LDS (f,h,N,d) applies the LDS algorithm to build a solution, using a
heuristic choice function represented by the integer f, an explicit control
of the size of the search tree that is represented by h, a maximal number
of branching for a given solution (the k parameter from Sect. 2.3) and a
parameter for the LDS branching condition d.

FORALL (f,h,N,d,O) is a variant from the previous LDS algorithm,
where the optimization algorithm represented by the sub-term O is applied
for each solution that is produced by the LDS algorithm. Note that capital
letters are used here to represent sub-terms (i.e., N is a term that denotes
an integer).

LNS (h,N,d,L) applies one iteration of the LNS algorithm that was pre-
sented in the Section 2.4. The integer h represents the heuristic that must
be used to select the removed fragment (hence we can experiment with
various heuristics and compare them). N represents the desired size for
the removed fragment, d is the level of randomization and L is a LDS
sub-term which is used to re-build a new solution once the fragment is
removed.

DO (B, O) is used to compose a term B which builds a first solution
(a LDS or a FORALL) and a term O that optimizes a current solution.
THEN (01,02) is a sequential composition of two optimization sub-
terms O1 and O2.

LOOP (N,O1) applies N times the optimization algorithm represented
by O1.

e UNTIL (t,01) applies O1 until t seconds of run-time have elapsed.
e BEST (01,02) is a parallel composition of two optimization algorithms.

Each algorithm is applied to the current solution and the best of the two
new solutions is kept.

RANDOM (nl1,n2) represents the random selection of an integer be-
tween nl and n2.

For instance, the term that our tuning experiments finally produced and that we
used as our submission to the ROADEF challenge is:
DO(LDS(1,2,7,80)

THEN(UNTIL(180,LOOP(100, LNS(2,RANDOM)/(20,40),90,
LDS(4,1,7,80)))
UNTIL(100,THEN (LOOP(100, LNS(2,RANDOM(20,80),80,
LDS(1,2,7,80)))
LOOP(100, LNS(4,RANDOM{(80,160),80,LDS(4,0,7,80)))

CONSTRAINT PROPAGATION FOR MAX. WEIGHT HAMILTONIAN CHAIN

TABLE 3. Results with the first set of instances.

89

File value Best (*)
1 | instance_-2_9_36 10423440 10423440
2 | instance_2_9_66 115710959 | 115710959
3 | instance_2_.9_170 | 191358231 | 191858231
4 | instance_2_13_111 | 558385351 | 563597071
5 | instance_2_15_170 | 708993780 | 717239040
6 | instance_2.26.96 | 970771000 | 1005301900
7 | instance_2_27_22 | 940337410 | 966056500
8 | instance_3_8_155 | 121680360 | 121680360
9 | instance 4_17_186 | 181302215 | 185406780
10 | instance_3_.2522 | 425971220 | 425983220

(*) The best solutions found during the first step of the challenge are reported in
the last column [10].

This term represents the following strategy:

(1) Build a solution with LDS (1,2,7,80). The integer 1 means that we use the
first heuristic function for selecting the task that must be inserted (among
a list of 4). The integer 2 sets up the maximal number of backtracks using
an exponential increment (the higher this number, the larger the search
tree).

(2) Apply for 180s an optimization algorithm defined by the iteration of a LNS
step that removes a fragment of size between 20 and 40 and uses LDS (4,
1, C (7), 80) to rebuild it (note the change of heuristic).

(3) Apply for 100s a sequential combination of two similar LNS terms, with
different fragment sizes (20 to 80 and 80 to 160) and different LDS tuning
(note that we use a “lighter” LDS for larger fragments).

This term is definitely more complex than the first term that we submitted for the
first phase of the challenge, which was tuned step-by-step in a classical manner. It
also produced an overall improvement of more than 2 % on the average solution
value, which is significant (on the first set of instances — ¢f. Table 3 — the difference
between our approach and the best known solution is less than 1%). This complex
term was generated using a learning process that is not fully automatic yet but
could be, using the techniques that are presented in [2]. We wrote scripts to
simulate each step of the learning “meta-algorithm” and performed the selection
of the best generated term manually.

The main contribution of this experiment to our long-term goal of automatic
synthesis and tuning of hybrid algorithm is that we found a method for solving
the run-time barrier that we had identified in a previous paper [2]. We select a
pattern such as:

DO(t1, THEN(UNTIL(a,t2), UNTIL(b,t3))),

90 Y. CASEAU

and we tune the various sub-terms t1, t2 and t3 separately using shorter run-
times. If we recall that the time that is necessary to produce an algorithm with
run-time X varies from 1000X (tuning) to 10 000X (generation), with our current
learning strategy, one may see that this decomposition approach is necessary to get
a feasible result. This requires the addition of a context to our initial design, since,
for instance, the term t3 must be found, once t2 is stable, as a post-optimization
of the solution produced by t2.

3.2. RANDOMIZATION AND DE-RANDOMIZATION

It is striking that we use randomization in many places for these hybrid com-
binations. Because the run-time is relatively short compared with the size of the
problems, we tried to replace the random generators with pseudo-random (de-
terministic) generators that provide a better sampling (more uniform and more
systematic when called only a few times). Indeed, for selecting a fragment for
LNS, “true randomness” has no benefits: we use random selection as a cheap im-
plementation of a complex iteration loop that would generate all possible subsets,
while avoiding the “accumulation point” effect. We replaced the calls to the sys-
tem random functions with our own pseudo-random generators, while using one
generator for each separate usage in the algorithm. We have implemented a very
simple pseudo-random generator pattern, using a counter with variable increment
and a modulo operation.

The result is very positive: the pseudo-random generators provide better quality
results than the “true random” ones, when the run-times are kept short. Obviously,
as one might expect, the difference reduces as the run-time grows. However, in
the context of the ROADEF challenge, we found pseudo-randomization to offer a
dual benefit: it makes the hybrid algorithm a deterministic algorithm, which is
easier to evaluate (and much easier to manage with a learning approach [2]), and
it produces better quality results.

3.3. RESULTS

Table 3 gives the results that we obtained with the algorithm described in
Section 3.1, using a Pentium III at 800 MHz. Problems 1, 2, 3 and 8 are solved
optimally by the branch-and-bound step. The target run-time is approximately
300s, and the quality of the results is sensitive to the speed of the machine (a
machine with a faster memory cache produce betters results !). These results are
within 1% of the best algorithms in the challenge.

If the algorithm is decomposed as DO(T1,THEN(UNTIL(180,T2), UNTIL(200,
THEN(T3,T4))), it is interesting to compare the values obtained at different stages
of the computation: T1 (after 20 s), T1 + T2 (after 200 s). Table 4 also shows the
values that are obtained with a single LNS strategy: respectively T1+T2, T14+T3
and T1+T4 for 300 s.

These results show the benefits obtained with our “learning strategy”, since the
hybrid term which is produced outperforms what one could have obtained through

CONSTRAINT PROPAGATION FOR MAX. WEIGHT HAMILTONIAN CHAIN 91

TABLE 4. Partial Results (intermediate and alternate).

T1 (1 to 19s) T1+T2 | Full (300s) | T1+T2(300s) | T1+T3(300s) | T14+T4(300s)
1 10423440 10423440 10423440 10423440 10423440 10423440
2 115710959 115710959 | 115710959 115710959 115710959 115710959
3 191358231 191358231 | 191358231 191358231 191358231 191358231
4 480457811 555772970 | 558385351 555772970 547961000 532722200
5 508174928 708993780 | 708993780 708993780 700678000 664578000
6 428080475 970771000 | 970771000 970771000 935582000 930698000
7 420258660 940337410 | 947340350 940337410 959404000 855073000
8 116531810 121680360 | 121680360 121680360 121680360 121680360
9 155709805 181302215 | 181302215 181302215 181302215 184401220
10 323038406 425971220 | 425971220 425971220 425971220 420510000
TABLE 5. Results with another set of instances (base X).

Instance Solution Gap(Sol-Ref) /Ref(%) | Solution TNO-PEL
2.28_111 854994860 33.18 872246792
2.28.140 828074890 20.19 833061980
2.28_155 932454050 23.53 952267030
2.28_170 925772900 43.82 952144183
2.28.37 945617600 49.41 987649761
2_28_66 918358259 33.75 945737319

2287 965783840 35.09 977811340
22881 859021950 17.97 878847950
328155 450543180 18.41 457063785
3-28.96 458106682 15.48 458107362

Synthesis/total | 8138728211 29.08 8314937502

a manual tuning strategy. We get similar findings to what was observed in [6].
We also see that the algorithm converges pretty rapidly since the values obtained
after 200 s are almost as good as those obtained after 300 s. If the running time is
increased to 600s, the only improvement we get is with the 9th problem for which
we get a solution 185406 780 (same as the best known), but no other improvement
is found, even if the time limit is increased to 1200 s. We will discuss this absence
of improvement at the end of this section.

Table 5 shows the results that were obtained on the “hidden” set of instance
problems that was used by the challenge jury (from the result web site [10]). This
table shows a similar relative positioning (approx 1 to 2% from the best algorithms
in the challenge) and a true improvement (29%) compared to the reference solution
that was provided. To our knowledge, ours is the only approach that is heavily
based on constraint programming, whereas most other approaches were based on
Tabu algorithm or simulated annealing. We believe that the difficulties found by
other constraint-based approaches, including an alternate method developed in
our research lab, are due to the relevance of SCO for Hamiltonian chain problems.

92 Y. CASEAU

The overall evaluation of our approach as a contribution to solve the ROADEF
2003 problem is, therefore, mixed. On the negative side, it is one of the worst final-
ist solutions, where the first three use local search approaches. We have included
in the previous table the values obtained by the challenge winner (TNO-PEL,
Kuipers [10]). On the positive side, the gap is small in comparison with the dif-
ferences that were observed earlier in the challenge.

Interestingly, we may now compare our approach with the state-of-the-art of
optimization heuristics for 4 problems: the vehicle routing problem with time
windows, which is a classical problem for which there is a rich literature, the
frequency allocation problem that was proposed as the 2001 ROADEF challenge,
this 2003 problem and the car sequencing problem which was proposed for the
2005 challenge. There are three distinct situations:

e The 2001 problem was a hard problem, from a satisfiability point of view.
The use of complex constraint propagation was a significant advantage and
the solution that we developed using the same approach that we described
in this paper did well from a competitive point of view (second in the
finalist stage). The constraint propagation algorithm was able to produce
interesting lower bounds.

e The 2003 problem and the VRPTW are similar: we obtain results that are
close to the state-of-the-art but the best solutions are found with a tabu
approach. The original paper about our algebraic/learning approach [6]
demonstrates results that are among the best and obtained with a short
computation time, but they are not as good as those obtained in [11].

e The 2005 problem is well suited to local optimization and the simple use
of two-opt move produces high quality results. Our approach did not do
well from a competitive standpoint since we did not qualify for the final
stage. It is interesting to notice, though, that the results that we obtained
were still much better than those obtained with the reference heuristic and
within a similar distance to the best ones (1 to 2%).

The set of local optimization moves that is explored with our LNS strategy is
always a superset of the moves that are implemented by the winning algorithms,
but the method is much slower than ad-hoc implementation. In the 2005 problem,
the speed in local move execution was found to be the most important performance
factor. However, this is not enough top explain the difference in performance, since
we do not get the same high quality solutions if we let the algorithm run for a
day. The obvious explanation is that the monotonic decreasing “hill-climbing”
meta-strategy that is used for LNS get stuck in local minimum. Even though
some “large neighborhood” moves are “wide enough” to escape them in early
parts of the search, the conclusion is that our algebra lacks a combinatory that
would implement a non-monotonic strategy. This is a step that we are currently
investigating on the 2005 problem set, and which should also prove useful for the
2003 problem.

CONSTRAINT PROPAGATION FOR MAX. WEIGHT HAMILTONIAN CHAIN 93
4. FUTURE DIRECTIONS

This work was implemented using the CLAIRE language [15], which is a pro-
gramming language that was developed especially for developing hybrid algorithms
to solve combinatorial optimization problems. CLAIRE is a high-level language,
which provides complex data structures such as sets in a declarative manner. Be-
sides, CLAIRE offers control structures that are designed to perform tree search,
making the implementation from the pseudo-code contained in this paper straight-
forward. CLAIRE is implemented itself as a C++ compiler which generates opti-
mized and efficient code, but also includes an interpreter which plays an important
role to make the tuning of the algorithm easier.

For this challenge, we also used a library of meta-heuristics that was developed
for our leaning experiments [2]. This library has already been used for various
problems, ranging from vehicle routing to constrained assignments. This library
contains generic algorithms for LDS or LNS, which themselves rely on insertion and
deletion methods that are problem-dependent. At this stage of development, it is
still a source-code library, which is used with a cut-and-paste approach. Therefore,
from a research perspective, the approach presented here is average from a solution
quality point of view (9th among the finalists) but interesting from the point of
view of simplicity and genericity (1000 lines of code only, most of which is re-usable
code, written by one person in a short amount of time — 3 weeks).

However, if we step back and look at the algorithm that we developed for
the ROADEF challenge from an industrial point of view, the conclusion is the
opposite. The performance of the algorithm is excellent, since it is close to the
state-of-the-art, and the development process is terrible, since:

e there are too many ad-hoc “smart” propagation techniques (which an av-
erage programmer would not know);

e there is too much “know-how” needed to make the LNS/LDS combination
work;

e the tuning takes too much time (much longer than the development of the
algorithm).

Our next step is to try to address these criticisms more efficiently with a research
project called CECILE, which is a framework for solving large-scale complex op-
timization problems, such as the ROADEF challenges, with a generic tool where
the problem-dependent part is reduced to the minimum. Figure 2 shows an ideal
vision of what CECILE could be like, where the light-colored boxes are the only
problem-dependant components. The main idea for CECILE is the principle that
objects should be used as foundation paradigm for integration, not constraints or
logic variables. This is a departure from the “global constraint” and the “solver
libraries” approach. The second idea is that there exists a catalog of branch-
ing schemas and associated choice heuristic functions that could be used with a
small amount of parameterization instead of re-inventing new heuristics for each
problem.

94 Y. CASEAU

Declarative
Assermbly
Language

Give:
FRelations
Constraints

FicUure 2. CECILE, a generic framework for hybrid problem solving.

CECILE is a long-term project. The first iteration will not include a “declar-
ative assembly language” but is rather a framework made of generic source-code
libraries. The main difference with what is presented in this paper is the library
of component objects that come with their propagation and search methods. We
are now re-implementing an algorithm similar to the one described in this paper
with this framework. The goal is to trade-off a very small degradation in the solu-
tion quality for a very significant improvement in the development time (including
tuning).

5. CONCLUSION

This paper presented a hybrid approach for solving the ROADEF 2003 chal-
lenge problem, using a mix of constraint programming and meta heuristics. We
believe that this work contains an interesting contribution for the constraint pro-
gramming community with its “Sub-Chain Ordering” (SCO) redundant constraint
propagation. This method changed dramatically the results of our approach, and
our algorithm would never have made it to the final stage of the challenge using a
more classical constraint propagation pattern.

We also presented an interesting variation on the “limited discrepancy search”
theme and showed its efficiency for the challenge problems. Last we presented a
revised version of our hybrid algorithm algebra, which is both simpler and more
complex, since we introduce pseudo-randomization and parallel composition. Par-
allel composition was not used for this problem but is notoriously useful for prob-
lems such as MAXSAT. On the other hand, we showed that de-randomization is a
simple but effective improvement for our overall design. We also showed how the
idea of a hybrid pattern may be used to generate hybrid algorithms for large-scale
problems.

(1]
2]

(3]

(4]
(5]

[6]

[12]
[13]
[14]

[15]

CONSTRAINT PROPAGATION FOR MAX. WEIGHT HAMILTONIAN CHAIN 95

REFERENCES

F. Laburthe and Y. Caseau, SALSA: A Language for Search Algorithms, in Proc. of CP’98,
edited by M. Maher, J.-F. Puget, Springer. Lect. Notes Comput. Sci. 1520 (1998) 310-324.
Y. Caseau, G. Silverstein and F. Laburthe, Learning Hybrid Algorithms for Vehicle Routing
Problems. TPLP 1 (2001) 779-806.

S. Minton, Configurable Solvers: Tailoring General Methods to Specific Applications, in
Proc. of CP’97, edited by G. Smolka, Springer. Lect. Notes Comput. Sci. 1330 (1997)
372-374.

Y. Caseau and F. Laburthe, Solving small TSPs with Constraints, in Proc. of the 14th
International Conference on Logic Programming. The MIT Press (1997).

F. Focacci, M. Milano and A. Lodi, Solving T'SP with Time Windows with Constraints.
ICLP 515-529W (1999).

Y. Caseau, G. Silverstein and F. Laburthe, A Meta-Heuristic Factory for Vehicle Routing
Problems, in Proc. of CP’99, Lect. Notes Comput. Sci. 1713 (1999).

Harvey and M. Ginsberg, Limited Discrepancy Search, in Proc. of the 14th IJCAI Morgan
Kaufmann (1995) 607-615.

P. Shaw, Using Constraint Programming and Local Search Methods to Solve Vehicle Routing
Problems, in Proc. of CP’98, Lect. Notes Comput. Sci. 1520 (1998).

T. Benoist and B. Rottembourg, Upper Bounds of the Mazimal Revenue of an Earth Ob-
servation Satellite, in 40R: Quart. J. Belgian, French and Italian Oper. Res. Soc., Vol. 2,
Issue 3, Oct. 2004.

2003 ROADEF Challenge: http://www.prism.uvsq.fr/~vdc/ROADEF/CHALLENGES/2003.

E. Taillard, P. Badeau, M. Gendreau, F. Guertin and J.-Y. Potvin, A Tabu Search Heuris-
tic for the Vehicle Routing Problem with Soft Time Windows, Transportation Science 31
(1997).

D. Martin and P. Shmoys, A time-based approach to the Jobshop problem, in Proc. of
IPCO’5, edited by M. Queyranne, Lect. Comput. Notes Sci. 1084 (1996).

Y. Caseau and F. Laburthe, Improving Branch and Bound for Jobshop Scheduling with
Constraint Propagation. Combin. Comput. Sci. 1995 (1995) 129-149.

D. Applegate and B. Cook. A Computational Study of the Job Shop Scheduling Problem.
Oper. Res. Soci. Amer. 3 (1991).

Y. Caseau, F.X. Josset and F. Laburthe, CLAIRE: Combining sets, search and rules to
better express algorithms. TPLP 2 (2002) 769-805.

