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ON THE MINIMUM COST MULTIPLE-SOURCE
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Abstract. The minimum cost multiple-source unsplittable flow prob-
lem is studied in this paper. A simple necessary condition to get a
solution is proposed. It deals with capacities and demands and can
be seen as a generalization of the well-known semi-metric condition for
continuous multicommdity flows. A cutting plane algorithm is derived
using a superadditive approach. The inequalities considered here are
valid for single knapsack constraints. They are based on nondecreasing
superadditive functions and can be used to strengthen the relaxation
of any integer program with knapsack constraints. Some numerical ex-
periments confirm the efficiency of the inequalities introduced in the
paper.
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Introduction

The minimum cost multiple-source unsplittable flow problem is defined as fol-
lows: let R = (X,E, c) be an arc-capacitated network where X is the set of nodes,
E the set of arcs, and each arc ij has a capacity cij . Let K denote the set of
commodities. Each commodity k has an origin (source) o(k), a destination (sink)
s(k) and a requested flow value dk. Let us denote by P (k) the set of all possible
simple paths for commodity k. Assigning a commodity k to an arc ij costs wk

ijd
k,

where wk
ij is the unit flow cost for arc ij and commodity k. The problem consists
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in routing each commodity k through a single-path p ∈ P (k) such as the total flow
through any edge is at most its capacity and the cost function is minimized.

The problem is sometime called the minimum cost single-path routing problem.
Single-path routing is highly appreciated in communication networks. When

single-path routing is considered in a packet network, the arriving order of packets
is the same as their departure order. This means that we do not need to implement
any mechanism to support in-order packet delivery. Moreover, as we need only
one path per commodity, the routing tables will have a reasonable size. Finally,
the processing time needed to forward traffic will also be lower when single-path
routing is considered.

From a pure optimization point of view, there is no doubt that the most efficient
way to avoid congestion, for instance, by keeping the maximum load as low as
possible, would be to split the traffic freely over all the network. However, it is not
difficult to see that an optimal solution of a linear multi-commodity flow problem
with known capacities (at least if obtained by a simplex based method, which is
most often the case) will use a mean number of paths per demand ranging between
1 and 1+ |E|

|K| (see, e.g., [9]). For most real communication networks, the number of
edges is about 2n (two times the number of vertices) and the number of demands
is n(n − 1)/2. It follows that |E|

|K| is usually very small (from 0.2 for a 20 node
network up to 0.05 for a 80 node network) and almost all the demands are hence
routed on a single-path. Of course, it is possible to build examples for which the
difference between multi-path routing and single-path routing is very large (see
e.g. [9, 28]), but this situation seldom occurs in practical instances.

Unsplittable flow problems have been extensively studied during the last decade.
They are generally NP-hard problems. Many combinatorial problems can be easily
reformulated as a single-path routing problem (bin packing, the partition problem,
some scheduling problems, the knapsack problem, etc.) [17, 24, 35].

An important result related to single-path routing is given in [17]. It is shown
in this paper that any single-source multiple-path routing can be transformed into
a single-path routing with an increase in terms of link loads (flows) bounded by
the value of the maximum demand. Moreover, when the network is a ring, an
optimal multiple-source multiple-path routing can be transformed into a single-
path routing with an increase in terms of link loads bounded by 3/2 times the
maximum demand [35]. A generalization of the algorithm of [35] is provided
in [10].

In fact, many other problems related to unsplittable flow problems are defined
in [24]. If the network capacities are not sufficient to carry all commodities then
one may try to route only a subset of demands and choose them such that the
sum of the routed demands is maximum. One may also divide the set of demands
in a minimum number of subsets (rounds) such that each set of demands can
be routed through the network. This is called the minimum number of rounds
problem. A third problem consists in minimizing the network congestion which is
defined by the maximum through E of the ratios fij

cij
where fij is the traffic flowing

on the arc ij. Many approximation algorithms have been proposed for these
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three problems (see, e.g., [4,24–26,36]). Some bicriteria approximation algorithms
are also proposed in [25, 36] and other papers. For example, when single-source
problems are considered, [36] provides a polynomial time algorithm to find a single-
path routing such that the congestion is less than 3 + 2

√
2 times the optimal

congestion and the cost is less than the optimal cost.
A generalization of unsplittable flow problems is studied in [6] where t paths

can be used to satisfy a commodity.
Some simple heuristics are proposed in [4, 13, 37] to solve the minimum cost

multiple-source flow problem. Several Meta-heuristics are also used to handle the
problem [3, 27].

Cutting plane and column generation algorithms have also been used to solve
the problem in [2, 7, 18, 32, 33]. More details about these algorithms are given in
Section 1.

Our paper deals with exact solution methods. Two cutting plane algorithms
based on superadditive cuts are proposed. Notice that the inequalities introduced
in this paper are valid for single knapsack constraints. Thus, they can be used to
strengthen the relaxation of any integer program with knapsack constraints.

As mentioned above, two cutting plane algorithms are proposed: SCPA and
QSCPA. Compared to SCPA, QSCPA is basically a restriction to the special case
of step functions. We will prove that the inequalities generated by QSCPA are
equivalent to those of SCPA in terms of violation by the current solution.

To evaluate their performances, both algorithms are compared to the branch-
and-price-and-cut algorithm of [7]. The computational trials are ran on several
instances proposed by [34] and considered by [7]. These instances are arising from
a teleconferencing application.

The superadditive approach and the Superadditive Cutting Plane Algorithm
(SCPA) are introduced in Section 2. We will also recall some of the known results
related to superadditivity.

QSCPA is described in Section 3. A generalization of the well known Japanese
theorem of [23,31] is proposed in Section 4 where a simple necessary condition to
the Minimum Cost Single-Path Routing Problem is provided. While this condition
was not really used in the derivation of the cutting plane algorithm, it is one of
the main contributions of the paper.

Computational experiments are reported in Section 5. Finally, a conclusion and
some further research directions are provided in Section 6.

1. Some column generation and cutting plane algorithms

First, let us give the problem formulation. The minimum cost multiple-source
unsplittable flow problem can be described using either a node-arc formulation or
a path formulation. In what follows, we recall both formulations (see, e.g., [1])
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Node-arc formulation

(NAF)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
∑

k∈K

∑
ij∈E w

k
ijd

kxk
ij∑

k∈K dkxk
ij ≤ cij ∀ij ∈ E∑

ij∈E x
k
ij −

∑
ji∈E x

k
ji = bki ∀i ∈ X, ∀k ∈ K

xk
ij ∈ {0, 1} ∀ij ∈ E, ∀k ∈ K

(1)

where xk
ij = 1 if the requested flow value dk is assigned to arc ij and equals 0

otherwise. The first set of inequalities are the capacity constraints. They express
the requirement that the total flow on each arc cannot exceed the arc capacity.
The second set of inequalities are flow conservation constraints for each node where
bki = 1 if i is the source of commodity k, bki = −1 if i is the destination node of
commodity k, and bki = 0 otherwise. The objective function is a linear function
representing the total cost to be minimized.

Path formulation

(PF)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

min
∑

k∈K

∑
p∈P (k) w

k
pd

kyk
p∑

k∈K

∑
p∈P (k) d

kyk
pδ

p
ij ≤ cij ∀ij ∈ E∑

p∈P (k) y
k
p = 1 ∀k ∈ K

yk
p ∈ {0, 1} ∀k ∈ K, ∀p ∈ P (k)

(2)

where yk
p = 1 if the requested flow value dk is assigned to path p and equals 0

otherwise. Notice that we used here δp
ij which is equal to 1 if and only if the path

p is using the arc ij. The constraints are quite straightforward and do not need
any comment. We only have to remember that this kind of formulation is solved
using column generation where columns correspond to paths. They are generated
by shortest path computations where the edge weights are the values of the dual
variables (see, e.g., [1, 7] for more details).

The node-arc formulation and the path formulation are equivalent: the costs
are positive so all the used paths do not contain cycles and any optimal solution of
(NAF) leads to an optimal solution of (PF) and vice-versa (see, e.g., [1]). Note
However that if we consider a fractional solution of (NAF) (corresponding to a
multiple-path routing), it is generally NP-hard to find exactly a minimum number
of paths to decompose the flow (see [12] for more details).
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Barnhart et al. [7] solved the minimum cost multiple-source unsplittable flow
problem using a branch-and-price-and-cut algorithm. They used a path formula-
tion. The cutting planes considered in [7,18] are lift and cover cuts. Given an arc
ij, if a set of demands C is such that

∑
k∈C

dk > cij then

∑
k∈C

xk
ij ≤ |C| − 1

is clearly a valid inequality. If the path formulation is used, the cover inequality can
be trivially expressed using the flow path variables. The cover inequalities that are
not dominated by other cover inequalities are called minimum cover inequalities.
In this case, in addition to

∑
k∈C

dk > cij , we should have
∑

k∈C′�C

dk ≤ cij for any

C′ � C. Cover inequalities can be generated by solving a knapsack problem [7].
They may be lifted in a classical way to get stronger inequalities and tighter
relaxations. However, as pointed out by the authors of [7] and analyzed in details
by Gu et al. [20, 21], generating these cuts and finding the best among them may
be very time consuming. Many details about the implementation of the branch-
and-price-and-cut are given in the paper [7]: how should we branch such that
the pricing problem remains easy to solve; how cuts are added to improve the
relaxation without destroying the nice feature of pricing.

Surveys about Branch-and-price-and-cut are given in [8, 29, 38]. Other cutting
plane algorithms have been proposed in [18,32]. They are based on the same kind
of cuts as those used in [7]. The branching strategies and the heuristics used to
generate cuts are the main differences between the papers [7, 18, 32].

A slightly different routing problem has been studied in [16]. The model of [16]
includes an intermediate layer and assumes that the traffic demand values are
equal to either 1 or a constant value B. A flow formulation is considered and a
polyhedral study is provided and used in a cutting plane algorithm.

A network design problem where single-path routing is considered and link ca-
pacities are integer valued, is studied in [5]. The sum of an installation cost and a
routing cost are minimized in this paper. Some families of valid inequalities incor-
porating the routing variables and the capacity variables (capacities are variables
in [5]) are provided and some separation algorithms are described.

Recently, another approach has been proposed in [2, 33]. It is based on a la-
grangian relaxation of the classical flow conservation constraints. The dual prob-
lem becomes a knapsack problem. In other terms, a particular Dantzig-Wolfe
decomposition called knapsack decomposition is used to solve the problem. To
be more precise, the convex hull of the 0 − 1 solutions of the knapsack problem∑

k∈K dkxk
ij ≤ cij ;xk

ij ∈ {0, 1}, ∀k ∈ K can be described using its extreme points
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denoted by zij1, zij2, .... Said another way,
∑

k∈K dkxk
ij ≤ cij can be replaced by

xij =
∑

t

λtzijt∑
t

λt = 1 , λt ≥ 0

where xij is the vector whose components are the xk
ij . The problem can be solved

if we have an efficient procedure to generate the extreme points zijt. One can
easily show that this can be done by solving a 0− 1-knapsack problem. While the
column generation problem is NP-hard, the computational results of [2, 33] seem
to be good. Notice that the knapsack decomposition has been previously used in
other papers (see, for instance, [14, 22]).

2. A superadditive approach

Superadditive cuts

A function F : D ⊂ Rm → R is called superadditive over D if

F (v1) + F (v2) ≤ F (v1 + v2) ∀v1, v2, v1 + v2 ∈ D. (3)

Note that v1 = 0 yields F (0) + F (v2) ≤ F (v2) or F (0) ≤ 0. We assume in this
paper that F (0) = 0 and 0 ∈ D.

The functions considered in this paper to generate cuts are not only superad-
ditive but also nondecreasing. In other terms,

v1 ≥ v2 ⇒ F (v1) ≥ F (v2) ∀v1, v2 ∈ D. (4)

Proposition 2.1 (see, e.g., [30]). If F : Rm → R is superadditive and nonde-
creasing then

j=n∑
j=1

F (aj)xj ≤ F (b) (5)

is a valid inequality for S = Zn ∩ {x ∈ Rn
+ : Ax ≤ b}, for any (A, b), aj is the jth

column of A.

The inequality given by (5) is called superadditive valid inequality or superaddi-
tive cut for short.

Theorem 2.2 (see, e.g., [11, 30]). Every valid inequality for a nonempty S =
Zn ∩ {x ∈ Rn

+ : Ax ≤ b} is equivalent to or dominated by a superadditive cut.
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Generation of superadditive cuts (Gomory theorem)

Let S = {x ∈ Zn
+, Ax ≤ b} such that all coefficients of (A, b) are nonnegative

integers and let D(b) = {v ∈ Zm
+ : v ≤ b}. We assume that bi ≥ max{aij

for all j} implying that the columns of the matrix A are in D(b). All maximal
valid inequalities of S (other than x ≥ 0) can be obtained by a superadditive
nondecreasing function F : D(b) → [0, 1] satisfying the linear inequalities of the
polytope (P ).

(P )

⎧⎨⎩
F (v1) + F (v2) − F (v1 + v2) ≤ 0 ∀v1, v2 ∈ D(b), v1 + v2 ≤ b
F (v) ≥ 0 ∀v ∈ D(b)
F (b) = 1.

(6)

Any function F satisfying the constraints (6) will produce a valid inequality for
the set conv(S). Notice that the functions defined by (P ) will be nondecreasing
on D(b).

Many other results related to superadditivity and duality are reported in [30].
Most of these results focus on general integer programs. Wolsey provided in [39]
some results related to 0−1 integer programs where he showed that valid inequal-
ities can be characterized by two underlying functions, one of which is superaddi-
tive. More recent results are given in [19].

The aim of this paper is to use the Gomory theorem to build an efficient cut-
ting plane algorithm to solve the minimum cost multiple-source unsplittable flow
problem. The inequalities that will be generated are generally not facets of the
corresponding polyhedron.

The superadditive cutting plane algorithm (SCPA)

The heart of SCPA is to derive superadditive cuts from knapsack constraints.
Given a single capacity constraint

∑
r arxr ≤ b and an optimal fractional solution

x∗ for the relaxed single-path routing problem, we intend to find a nondecreasing
superadditive function F̄ belonging to (P ) and maximizing

∑
r x

∗
rF̄ (ar) − F̄ (b).

This program is noted (LP ). Using an optimal function F̄ and the single capacity
constraint

∑
r arxr ≤ b, we get the superadditive cut

∑
r F̄ (ar)xr ≤ F̄ (b).

The algorithm SCPA aims to generate cutting planes using each single knapsack
constraint

∑
j aijxij ≤ bi of the node arc formulation NAF .

SCPA is sketched below.

Algorithm 1 SCPA

Step 0: Let NAFr be the linear relaxation of the node arc formulation
NAF .

Step 1: Solve NAFr. Let x∗ be the current optimal solution of NAFr .
Step 2: If x∗ is fractional go to Step 3. Otherwise stop.
Step 3: For each capacity constraint of NAF (let i be its line number)
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Step 3.1: Consider the polytope (Pi) obtained from (P ) when b reduces
to bi.

Step 3.2: Find an optimal solution F̄ and the optimal value δ̄ to the
linear program (LP ) given by: Maximize

∑
j x

∗
jF (aij)−F (bi) on the

polyhedron (Pi)
Step 3.3: If δ̄ > 0, then add the violated superadditive cut∑

j

F̄ (aij)xj ≤ F̄ (bi)

to NAFr and NAF .
Step 4: If no superadditive cuts were generated, then stop and apply Branch

& Bound to NAF . Otherwise go to Step 1.

To speed up SCPA, Step 1 can be carried out using column generation applied
to the path formulation PF . The solution y∗ of the relaxed path program PFr

can be translated to x∗ (needed to define (LP )) using the following equations:

xk
ij =

∑
p∈P (k) y

k
pδ

p
ij ∀ij ∈ E. (7)

Equations (7) can also be used to translate superadditive cuts from node-arc for-
mulation to path formulation in Step 3.3. Column generation is based on reduced
cost consideration and is done in a classical way by shortest path calculations.
However, if the solution is not integral, we switch to the node-arc formulation
before starting the Branch&Bound. We can of course keep the path formulation
during the Branch&Bound but the pricing problem should be handled as done
in [7].

Notice that the problem (LP ) related to a knapsack constraint
∑

j aijxj ≤ bi
contains about bi variables and O(b2i ) constraints. This clearly means that the
separation procedure is generally not polynomial. In other words, SCPA can be
time consuming when the right hand sides (the numbers bi) are large. This led us
to propose some improvements.

3. Some improvements

The aim of this section is to introduce the Quick Superadditive Cutting Plane
Algorithm (QSCPA).

QSCPA is derived from SCPA. It is based on the following observation: one of
the most expensive steps of the algorithm SCPA is the definition of the polyhedron
(Pi) (Step 3.1 of the algorithm SCPA).

One way to avoid the description of the polyhedron (Pi) is to focus on some
families of superadditive funtions. Some of them are described in the next section.
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3.1. Superadditive families

First, let us recall the concept of step functions.
A function Fl : [0, b] → [0, 1] defined by

Fl(x) =
{
ui If αi ≤ x < αi+1 and 0 ≤ i ≤ l − 1
ul If x = αl

(8)

is a step function where (αi)0≤i≤l−1 is a nondecreasing sequence with α0 = 0 and
αl = b. A step function Fl can also be noted (αi, ui)0≤i≤l.

The first family φl of superadditive functions that we propose presents the
following advantages: (i) it may be described using linear constraints; (ii) the
complexity to construct the corresponding polyhedron is O(l2) (l may be chosen
very small even though b is large); (iii) any nondecreasing subadditive sequence
(αi) can be used to generate this kind of functions.

The family φl is the set of all step functions Fl : [0, b] → [0, 1] where

α0 = 0, αl = b, u0 = 0, ul = 1 (9)
αi + αj ≥ αi+j , 0 ≤ i ≤ l, 0 ≤ j ≤ l, 0 ≤ i+ j ≤ l (10)
ui + uj ≤ ui+j , 0 ≤ i ≤ l, 0 ≤ j ≤ l, 0 ≤ i+ j ≤ l (11)
αi − αi−1 ≥ 0, 1 ≤ i ≤ l (12)

ui ≥ 0, 0 ≤ i ≤ l. (13)

Notice that if αi = αi−1, then we impose that ui = ui−1 to make sense. In this
case, we will necessarily have u1 = 0.

The next propositions states all the functions defined in this way are super-
additive.

Proposition 3.1. All the functions in φl are superadditive and nondecreasing.

Proof. Fl ∈ φl is clearly nondecreasing. Let x and y be two reals in [0, b] such
that x + y ≤ b and let i and j be the greatest integers such that x ≥ αi and
y ≥ αj . Thus αi + αj ≤ x + y ≤ b. Moreover, b = αl ≤ αi + αl−i. This leads to
αj ≤ αl−i. �

Two cases will be studied: j > l − i and j ≤ l − i.
Suppose that j > l − i. Since α is a non decreasing sequence, we must have

αj = αl−i and uj = ul−i. This leads to x = αi and y = αj = αl−i = b − αi.
Using (11) we get Fl(x+ y) = Fl(b) ≥ ui + ul−i = Fl(x) + Fl(y).

Let us now focus on the second case: j ≤ l − i. We can use again (11) to
deduce that ui+j ≥ ui + uj = Fl(x) + Fl(y). x+ y ≥ αi + αj ≥ αi+j implies that
Fl(x+ y) ≥ ui+j (we use again the fact that Fl is nondecreasing). Combining the
previous two inequalities leads to Fl(x+ y) ≥ Fl(x) + Fl(y).
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Remark

• Links with Gomory Theorem: observe that all functions F that satisfy the
inequalities of (P ) belong also to the family φl=b. We only have to take:

l = b, αi = i, ui = F (i) ∀i ∈ D(b). (14)

A second family ψl of superadditive functions is proposed below. It presents the
following advantages: (i) it is more general than the previous family φl;(ii) it
is partially described using linear constraints; (iii) it can be easily generated by
choosing any increasing sequence α.
ψl is the set of step functions Fl : [0, b] → [0, 1] where

α0 = 0, αl = b, u0 = 0, ul = 1 (15)
αi+1 − αi ≥ 0, 0 ≤ i ≤ l − 1 (16)
ui+1 − ui ≥ 0, 0 ≤ i ≤ l − 1 (17)

ui ≥ 0, 0 ≤ i ≤ l (18)

αi + αj ≤ b⇒ ∃k/
{
αi + αj ≥ αk

ui + uj ≤ uk
0 ≤ i ≤ l, 0 ≤ j ≤ l. (19)

Notice that if αi = αi−1, then we impose that ui = ui−1 to make sense.

Proposition 3.2. The functions in ψl are superadditive and nondecreasing.

Proof. Let x and y be two reals such that x+ y ≤ b and let i and j be the greatest
integers such that x ≥ αi and y ≥ αj . Thus x + y ≥ αi + αj . Using (19) we
get x + y ≥ αk. It follows from the definition of a step function, equations (17)
and (18), that Fl is nondecreasing. Thus Fl(x + y) ≥ uk. Using (19) we obtain
that Fl(x + y) ≥ ui + uj. Since Fl(x) = ui and Fl(y) = uj , we get Fl(x + y) ≥
Fl(x) + Fl(y). �

Remark

• The family of superadditive functions ψl is more general than the family
of superadditive functions φl. Indeed, let F be a superadditive function
of the family φl. For each couple i, j we define i + j = ki,j . It follows
αi+j = αki,j and ui + uj ≤ uki,j . Thus F ∈ ψl.

• Observe that ψl �⊂ φl. Indeed, Let F6 be a step function defined as follows:
b = 60, (α0 = 0,α1 = 20,α2 = 25,α3 = 39,α4 = 43,α5 = 47,α6 = 60),
(u0 = 0, u1 = 0.33,u2 = 0.5,u3 = 0.67,u4 = 0.83,u5 = 1,u6 = 1). We have
F6 ∈ ψl. But F6 �∈ φl since u1 + u2 > u3.

3.2. Quick superadditive cutting plane algorithm (QSCPA)

QSCPA is based on the superadditive family ψl. A quadratic problem (QP l) is
dealt with by fixing some of the variables and solving a linear program.
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Separation problem

Given a single knapsack constraint
∑

r arxr ≤ b and an optimal solution x∗ of
the relaxed single-path routing problem, QSCPA aims to find a function F̄ from
the superadditive family ψl such that the objective function

∑
r x

∗
rF (ar)−F (b) is

maximized. This program is denoted by (QP l).

(QP l)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max
∑

j x
∗
jFl(aj) − Fl(b)

α0 = 0, αl = b, u0 = 0, ul = 1

αi + αj ≤ b⇒ ∃k/
{
αi + αj ≥ αk

ui + uj ≤ uk
0 ≤ i ≤ l 0 ≤ j ≤ l

αi+1 − αi ≥ 0 0 ≤ i ≤ l− 1
ui+1 − ui ≥ 0, 0 ≤ i ≤ l− 1
ui ≥ 0 0 ≤ i ≤ l
(ui − Fl(aj))(αi+1 − aj) ≥ 0 0 ≤ i ≤ l− 1 0 ≤ j ≤ l.

Observe that (QP l) contains the constraints defining the family (ψl) in addition
to constraints

(ui − Fl(aj))(αi+1 − aj) ≥ 0, 0 ≤ i ≤ l − 1, 0 ≤ j ≤ l. (20)

Constraints (20) clearly lead to Fl(aj) ≤ ui when αi ≤ aj < αi+1. Since x∗j ≥ 0,
we can assume that Fl(aj) = ui.

To solve (QP l), we linearize its non linear equations by fixing the value of the
finite series (sequence) {αi}0≤i≤l.

The series ᾱ that we propose is defined by Algorithm A:

Algorithm A Generation of the series ᾱ

Step 0: Let
∑n

r=1 arxr ≤ b be a knapsack inequality and x∗ an optimal
fractional solution to the relaxed node arc formulation NAF r.

Step 1: Let B(x∗) be the set of columns j associated to non zero values of
x∗. B(x∗) = {j ∈ N : 1 ≤ j ≤ n, x∗j �= 0}.

Step 2: Let D(x∗, b) be the set of all different integer values strictly smaller
than b which are linear combinations of {aj}, j ∈ B(x∗). D(x∗, b) =
{∑j∈B(x∗) njaj :

∑
j∈B(x∗) njaj < b, nj ∈ N}.

Step 3: Let l∗ = |D(x∗, b)| + 1. Define ᾱ = {ᾱi}0≤i≤l∗ as follows

ᾱi =
{
ith smallest value of D(x∗, b) if 0 ≤ i < l∗

αl∗ = b if i = l∗ (21)

The sequence ᾱ is chosen in this way to reduce the complexity of the separation
problem: instead of considering the whole set D(b) as done in SCPA, we take
only the subset D(x∗, b). We will prove in Proposition 3.3 that this is not really
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a restriction: the cut that will be generated using the sequence ᾱ has the same
violation as the best cut derived from (P ).

After fixing the value of the variables α to ᾱ defined by Algorithm A, the
program (QPl) reduces to the linear program (LPx∗(ᾱ)). Notice that ᾱ associates
with each couple (i, j) a unique value kij such that ᾱi+ᾱj = ᾱkij when ᾱi+ᾱj ≤ b.
The variables of (QPl) are {ui}0≤i≤l∗ . Each variable Fl∗(aj) is replaced by its
corresponding variable in {ui}0≤i≤l∗ using the definition of the step function Fl∗ =
(ᾱi, ui)0≤i≤l∗ .

(LPx∗(ᾱ))

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
max

∑
r x

∗
rFl∗(ar) − Fl∗(b)

u0 = 0, ul∗ = 1
ui + uj ≤ ukij 0 ≤ i ≤ l∗, 0 ≤ j ≤ l∗, ᾱi + ᾱj ≤ b
ui+1 − ui ≥ 0 0 ≤ i ≤ l∗ − 1
ui ≥ 0 0 ≤ i ≤ l∗.

Let ū = {ūi}0≤i≤l∗ be the optimal solution of (LPx∗(ᾱ)). Using ᾱ and ū we define
the superadditive function F̄l∗ = (ᾱi, ūi)0≤i≤l∗ .

We already noticed that Algorithm A defines a sequence ᾱ that allows to reduce
the complexity of the separation problem. The next proposition states that using
this sequence to get a superadditive cut does not introduce any degradation in
terms of violation. In other words, given a single knapsack constraint

∑
r arxr ≤ b

and an optimal fractional solution to the relaxed node arc formulation NAF r,
let F̄l∗ be the superadditive function defined using ᾱ and ū, where ᾱ is defined
by Algorithm A and ū is an optimal solution of LPx∗(ᾱ). Then the violation is
given by δ̄ =

∑
r x

∗
r F̄l∗(ar) − F̄l∗(b). We also define δ = max

F∈(P )

∑
r x

∗
rF (ar) − F (b)

representing the maximum violation that we can get if we take any superadditive
function derived from (P ). We will show that δ̄ = δ.

Proposition 3.3.
δ̄ = δ

Proof. Let F be a function belonging to (P ) such that
∑

r x
∗
rF (ar) − F (b) is

maximum over (P ). Thus, we have δ =
∑

r x
∗
rF (ar) − F (b). �

Let F̂ : D(x∗, b) ∪ {b} → [0, 1] be the restriction of F to D(x∗, b) ∪ {b} (ie.
F̂ (v) = F (v), ∀v ∈ D(x∗, b) ∪ {b}). Since F is superadditive, F̂ is superadditive.

Let δ̂ =
∑

r x
∗
r F̂ (ar) − F̂ (b). We have δ = δ̂.

We associate to F̂ a step function F̂l, where l = |D(x∗, b)| + 1.

F̂l(x) =

{
F̂ (ᾱi) If ᾱi ≤ x < ᾱi+1 and 0 ≤ i ≤ l − 1
F̂ (ᾱl) If x = ᾱl.

The step function F̂l ∈ ψl. Thus F̂l is superadditive.
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Let δ̂l =
∑

r x
∗
r F̂l(ar)− F̂l(b). We have δ̂l = δ̂. By ᾱ definition, one can deduce

that δ̄ ≥ δ̂l. Using the previous equalities we obtain δ̄ ≥ δ. Moreover, since the
restriction on D(b) of any function of ψl is in (P ), we have δ̄ ≤ δ.

We can now describe the algorithm QSCPA.

QSCPA description

The description of QSCPA is given by Algorithm 2. As pointed out before, the
only difference between SCPA and QSCPA is Step 3. Therefore, only Step 3 is
described in what follows.

Algorithm 2 QSCPA Description of Step 3

Step 3: Let x∗ be the optimal fractional solution the relaxed node arc for-
mulation NAF r. For each capacity constraint of NAF (let i be its line
number)

Step 3.1: Generate the series ᾱ using Algorithm A.
Step 3.2: Find an optimal solution ū and the optimal value δ̄ to the

linear program (LPx∗(ᾱ))
Step 3.3: If δ̄ > 0, then define F̄l∗ using ᾱ and ū and add the violated

superadditive cut∑
j

F̄l∗(aij)xj ≤ F̄l∗(bi)

to NAFr and NAF .

Observe that for each column r such that x∗r = 0 and ar �∈ D(x∗, b), the value
F̄l∗(ar) is not given by the linear program (LPx∗(ᾱ)), but is deduced from the
definition of the step function F̄l.

Remarks

The algorithm QSCPA proposed in this section is not the only method that can
be used to efficiently generate superadditive cuts. We believe that other superad-
ditive families can be defined and used to accelerate the cutting plane algorithm.

Even if we focus on the first superadditive family, one can easily see that the
violation

∑
r x

∗
rFl(ar) − Fl(b) can be maximized using a simple enumeration al-

gorithm to decide to which interval each ar belongs followed by a linear program
with O(l) variables and O(l2) constraints. This can be useful if l is small.

We can also choose any increasing subadditive series α and solve the corre-
sponding linear program to maximize

∑
r x

∗
rFl(ar) − Fl(b).

Similarly, any increasing sequence α can be chosen and a simple linear program
can be solved to find a violated superadditive function belonging to the second
family defined in this section. In other words, the set D(x∗, b) used to build the
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sequence ᾱ is only an example. One can choose any other increasing sequence.
We only have to guarantee that the size of the linear separation problem LPx∗(α)
remains reasonable.

4. A semi-metric condition for the multiple-source

unsplittable flow problem

Let λ = (λ1, ..., λ|E|) ∈ R
|E|
+ and πk(λ) be the length of the shortest path joining

the source to the sink of commodity k in (X,E), when a length λij ≥ 0 is assigned
to each arc ij ∈ E. A well known result [23,31] states that when the traffic can be
split, the multiple-path routing problem has a solution if and only if the following
semi-metric conditions are satisfied:∑

ij∈E λijcij ≥ ∑
k∈K πk(λ)dk. (22)

Recall that cij is the value of the capacity of ij and dk is the demand of commodity
k. This result obtained by duality is sometimes called the Japanese Theorem.

We give here a simple necessary condition for single-path routing.

Theorem 4.1. The minimum cost multiple-source unsplittable flow problem has
a solution only if the following superadditive semi-metric cuts are satisfied:∑

ij∈E λijF (cij) ≥
∑

k∈K πk(λ)F (dk) (23)

where λ = (λ1, ..., λ|E|) ∈ R
|E|
+ and πk(λ) are defined as above and F is any

nondecreasing superadditive function.

Inequality (23) is directly derived from the validity of the inequalities∑
k∈K

F (dk)xk
ij ≤ F (cij).

In fact, these inequalities imply that we can route the demands F (dk) on the
capacities F (cij) for any superadditive nondecreasing function F . Then we can
apply the Japanese theorem to say that

∑
ij∈E λijF (cij) ≥

∑
k∈K πk(λ)F (dk).

Let us mention that this result is valid even when the values of the demands
and the capacities are fractional.

Inequalities (23) are a generalization of the metric inequalities (22): if the
function F is the identity function we get inequalities (22). Since F can be any
superadditive function, there are more constraints to be satisfied by capacites and
demands to allow feasibility of the single-path routing problem.

Let us consider, for example, a vector λ = (λ1, ..., λ|E|) ∈ R
|E|
+ induced by a cut

(B,X \ B) (i.e., the set of edges having one end in B and another end in X \B)
where B ⊂ X . In other terms, λij = 1 if i ∈ B and j ∈ X \B, and λij = 0 other-
wise. We already know that the inequality

∑
i∈B,j∈X\B cij ≥ ∑

o(k)∈B,s(k)∈X\B d
k
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Figure 1. A violated superadditive semi-metric cut.

is a necessary condition for the multiple-path routing problem. According to The-
orem 23, we should also have

∑
i∈B,j∈X\B(cij)2 ≥ ∑

o(k)∈B,s(k)∈X\B(dk)2 and∑
i∈B,j∈X\B cij × ln(cij) ≥

∑
o(k)∈B,s(k)∈X\B d

k × ln(dk).

Example

The following example illustrates the necessary condition for single-path routing
(Fig. 1). Let R = (X,E, d) be a capacitated network, where X = {1, 2, 3, 4, 5, 6}
is the set of nodes. E = {(1, 2), (3, 4), (5, 6), (1, 3), (3, 5), (5, 1), (2, 4), (4, 6), (6, 2)}
is the set of arcs. The capacity values are c12 = 9, c34 = 5, c56 = 1. All other
capacity values are fixed to 11. Commodity 1 sends 8 units from node 1 to node
6. Commodity 2 sends 7 units from node 3 to node 4.

There exist a nondecreasing and superadditive function F and a cut (B,X \
B) such that

∑
i∈B,j∈X\B F (cij) <

∑
o(k)∈B,s(k)∈X\B F (dk). Indeed for B =

{1, 3, 5} and F (x) = x2, we have
∑

i∈B,j∈X\B F (cij) = 92 + 52 + 12 = 107 <∑
o(k)∈B,s(k)∈X\B F (dk) = 72 + 82 = 113. In other terms, there is no way to route

all demands using only one path.
Notice that this problem has a multiple-path routing solution. Commodity 1

sends 8 units through the path 1-2-4-6. Commodity 2 sends 5 units through the
path 3-4, 1 unit through the path 3-5-6-2-4 and 1 unit through the path 3-1-2-
4. Therefore the necessary condition for multiple-path routing

∑
i∈E,j∈X\E cij ≥∑

o(k)∈B,s(k)∈X\B d
k is satisfied for each cut (B,X \B).

Remarks

• As claimed by Theorem 4.1, superadditive semi-metric cuts are necessary
to get an unsplittable feasible flow. However, they are generally not suffi-
cient. Even if all the computational experiments of the next section will
show that the gap between the linear relaxation and the integer problem
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Table 1. Description of minimum cost single-path routing instances.

Instance 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Commodities 35 68 70 58 47 93 93 41 87 41 23 81 52 46
Nodes 14 24 29 18 19 27 23 28 24 19 14 26 29 20
Arcs 16 24 61 29 25 37 29 31 42 19 16 36 31 23

will be 0 after the addition of the superadditive cuts, this is due to the
particular characteristics of the problem instances considered in this paper
(taken from [7, 34]). The gap may be different from 0 for some other in-
stances. Then, an interesting open question consists in determining some
general classes of instances for which the superadditive semi-metric con-
dition is sufficient to get a single-path routing.

• Theorem 4.1 can be strengthened in a trivial way using again duality. Let
us consider r superadditive nondecreasing functions F1,...,Fr . For each arc
ij and each function Fu, consider a nonnegative variable λu

ij . Constraint
23 becomes

r∑
u=1

∑
ij∈E

λu
ijFu(cij) ≥

∑
k∈K

πk(λ)

while πk(λ) should satisfy

πk(λ) ≤
∑
e∈p

r∑
u=1

λu
eFu(dk)

for each path p ∈ P (k).

5. Preliminary computational experiments

We compare our cutting plane algorithms based on superadditive cuts (SCPA)
and (QSCPA) to the algorithm proposed by Barnhart et al. [7] to solve the mini-
mum cost single-path routing problem.

Barnhart et al. used an IBM RS6000/590 with CPLEX 3.0. They applied
a branch-and-price-and-cut algorithm during 1 hour. In this paper, we use an
Ultrasparc10 - 333 Mhz/128 Mo with CPLEX 7.1 [15].

The instances used in the experiments are described in Table 1. These instances
were proposed by Parker and Ryan [34] and used by Barnhart et al. [7] to evaluate
their algorithm. The number of commodities, the number of nodes and the number
of arcs are reported for each instance.

Before presenting the results, let us give more details about our implementation.
Before applying either SCPA or QSCPA, some simple preprocessing is done.

Indeed, if a demand value dk is larger than the capacity value of a link ce, then
we know that commodity k can not use this link (xk

e = 0).
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As mentioned at the end of Section 2, instead of using the node-arc formulation,
we will use a path formulation. This was also done in [7]. Columns are generated
in a classical way by solving some shortest path problems (see, e.g., [1, 7]).

Before starting the cutting plane algorithm, one path is initially associated with
each commodity. Then, we generate columns to make the continuous relaxation of
the problem feasible. When no more columns with negative reduced costs can be
generated, we start our cutting plane algorithm. Given a current solution, we try to
generate a superadditve cut for each knapsack constraint (each link). Then all the
cuts are added to the linear relaxation which is solved again by column generation
until no new columns can be generated. The same process is repeated until neither
cuts nor paths can be generated. If the solution is not integer, a Branch&Bound
should be used to find an integer solution. However, this will never be the case for
all the instances of this paper: the solution was always integer at the end of the
cutting plane algorithm.

First, let us focus on the results of SCPA and Barnhart et al. algorithm. The
results are given in Table 2. For each instance, a first line gives the results of
Barnhart et al. algorithm. Then follows a line that gives the results of SCPA
(bold numbers). For each instance four values are provided. Column 2 gives the
number of columns generated by each algorithm (including the number of paths
that are initially included in the path-formulation). Column 3 reports the number
of rows (inequalities) generated by each algorithm. The LP-IP gap is given in
Column 4. Column 5 presents the running time.

The results can be divided into two categories. The first category includes
instances 3, 6 and 9. The instances of this category are distinguished by a star.
They are considered as being difficult by Barnhart et al. algorithm. Indeed the
integer solution was not found in the allowed time (1 h). The second category
contains all the other instances. They are considered as easy by Barnhart et al.
algorithm. Indeed the integer solution was found in less than one hour.

Let us consider first the results for category 1. For instances 3, 6 and 9, SCPA
generates a smaller number of columns and a smaller number of rows than Barnhart
et al. algorithm.

We also notice that SCPA finds the optimal integer solution. The running time
is quite small.

However, when comparing the branch-and-price-and-cut algorithm of [7] and
SCPA, we should not focus on the computing time: the platforms used for com-
putational experiments are different and the cplex version is more recent with
SCPA.

Regarding the results for category 2, one can see again that SCPA generates a
smaller number of columns and cuts than Barnhart et al. algorithm. Both SCPA
and Barnhart’s algorithm find the optimal integer solution in few seconds. Notice
that the number of generated cuts is sometimes equal to 0. This means that the
preprocessing combined with column generation are sufficient to find an optimal
integer solution.

In conclusion, this first set of experiments shows the effectiveness of superaddi-
tive cuts to solve the single-path routing problem.
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Table 2. Comparison between Barnhart’s algorithm and SCPA
(bolded numbers) on Parker and Ryan instances.

Instance Columns Rows Gap (%) CPU time (s)
1 180 7 0 0.5
1 74 0 0 0.03
2 295 3 0 0.88
2 136 0 0 0.11
3* 7378 835 3.63 3600
3* 199 6 0 300
4 418 88 0 7.41
4 127 0 0 1.85
5 232 9 0 0.63
5 94 0 0 0.06
6* 4345 728 2.16 3600
6* 196 1 0 3.56
7 493 154 0 23.11
7 203 4 0 5.95
8 206 8 0 0.84
8 85 1 0 0.84
9* 8186 751 1.16 3600
9* 98 5 0 5.42
10 190 23 0 1.11
10 83 0 0 0.54
11 106 7 0 0.31
11 51 2 0 0.3
12 430 54 0 4.25
12 171 3 0 3.44
13 253 7 0 0.74
13 104 0 0 0.1
14 248 37 0 2.36
14 94 0 0 0.99

The aim of the next experiments is to show that QSCPA can outperform SCPA.
We focus again on Parker and Ryan instances. Results are given in Table 3. We
give the results obtained when QSCPA is applied. For each instance, two values
are provided: Column 2 gives the IP-LP gap and Column 3 presents the running
time in seconds.

QSCPA was also able to find integer solutions for Parker and Ryan instances,
including instances 3, 6 and 9. The running time is significantly improved for one
of the most difficult instances. Indeed the running time on instance 3 decreases
from 300 seconds with SCPA to 16 seconds with QSCPA. For other instances the
running time is almost the same.
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Table 3. Comparison between SCPA and QSCPA (bolded num-
bers) on Parker and Ryan instances.

Instance GAP (%) CPU time (s)
1 0 0.05
2 0 0.11
3* 0 16.31
4 0 1.76
5 0 0.04
6* 0 3.55
7 0 5.28
8 0 0.76
9* 0 4.83
10 0 0.51
11 0 0.29
12 0 3.4
13 0 0.09
14 0 0.8

6. Conclusions and further directions

Two superadditive cutting plane algorithms (SCPA) and (QSCPA) have been
proposed in this paper to solve the minimum cost single-path routing problem.
The first algorithm SCPA is based on superadditive cuts derived from Gomory
theorem when applied to single knapsack constraints. Whereas the second al-
gorithm QSCPA is based on superadditive cuts derived from the superadditive
families proposed in the paper.

The running times and the quality of the solution obtained after the addition
of these cuts are very promising.

The second algorithm QSCPA can generate superadditive cuts in a more effi-
cient way without loosing too much in terms of constraints quality. The experi-
mental results show that QSCPA can significantly outperform SCPA.

While both algorithms were used to solve only 14 problem instances, we think
that the results obtained encourage the integration of these cuts into a branch-
and-cut framework.

Notice that the superadditive step functions defined in this paper are valid for
any knapsack problem. This clearly means that they can be tried to solve many
other integer problems. We should also remember that the algorithm QSCPA is
based on a very special kind of cuts. Many other superadditive functions can be
considered and may lead to better results.

This paper presents also a simple necessary condition for the single-path routing
problem. It is a generalization of the well known semi-metric condition of [23,31].
Moreover, we think that these conditions may be sufficient for some classes of
graphs and problem instances.



272 M. BELAIDOUNI AND W. BEN-AMEUR

Finally, we may also try to generate more efficient constraints. Indeed, the cuts
considered in this paper are sufficient to describe the convex hull of the integer
solutions of a knapsack constraint and not the 0 − 1 solutions. Said another way,
to improve our algorithm we may generate some superadditive cuts integrating
the fact that all variables must be in [0, 1]. One way to do that is to use multiple-
variable superadditive functions to define such cuts. Another possible direction is
to still use single-variable functions but with combination of different constraints,
in the spirit of Chvatal-Gomory rounding method.
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