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A NOTE ON TREE REALIZATIONS OF MATRICES*

ALAIN HERTZ! AND SACHA VARONE?

Abstract. It is well known that each tree metric M has a unique
realization as a tree, and that this realization minimizes the total length
of the edges among all other realizations of M. We extend this result to
the class of symmetric matrices M with zero diagonal, positive entries,
and such that ms; + mg < maz{m.x + mji, my +mji} for all distinct
1,7, k, L.
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INTRODUCTION

An n x n matrix M = (m,;) with zero diagonal is a tree metric if it satisfies the
following 4-point condition:
myj + mig < max{m, + mj;, my + mjg} Vi, j, k,lin {1,...,n}.
By denoting s; 5 = m; +myy, the 4-point condition is equivalent to imposing that
two of the three sums sz, Sikj1 and sy 5 are equal and not less than the third.
The 4-point condition entails the triangle inequality (for k¥ = [) and symmetry

(for i = k and j = 1). There is an extensive literature on tree metrics; see for
example [1-3,7-10].
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FIGURE 1. A tree realization of a tree metric.

It is well known that a tree metric M = (m;;) can be represented by an unrooted
tree T such that {1,...,n} is a subset of the vertex set of T', and the length of the
unique chain connecting two vertices ¢ and j in 7' (1 < i < j < n) is equal to m;;.

Let G = (V, E,d) be the graph with vertex set V', edge set E, and where d is a
function assigning a positive length d;; to each edge (4, j) of G. The length of the
shortest chain between two vertices ¢ and j in G is denoted dg

Definition 0.1. Let M be a symmetric n X n matrix with zero diagonal and such
that 0 < m;; < mgp +my; for all 4,5,k in {1,...,n}. Agraph G= (V,E,d)is a
realization of M = (m;;) if and only if {1,...,n} is a subset of V, and diGj = my;
for all 4,7 in {1,...,n}.

As mentioned above, tree metrics have a realization as a tree. A realization
G of a matrix M is said optimal if the total length of the edges in G is minimal
among all realizations of M. Hakimi and Yau [7] have proved that tree metrics
have a unique realization as a tree, and this realization is optimal. Culberson and
Rudnicki [4] have designed an O(n?) time algorithm for constructing a realization
as a tree of tree metrics.

We propose to extend the above definition to matrices whose entries do not
necessarily satisfy the triangle inequality. Given a symmetric n X n matrix M =
(my;) with zero diagonal and positive entries, let K denote the complete graph
on n vertices in which each edge (7, j) has length m;;.

Definition 0.2. Let M be a symmetric n X n matrix with zero diagonal and
positive entries. A graph G = (V, E,d) is a realization of M = (m;;) if and only
if {1,...,n} is a subset of V, and diGj = dfj(-M for all 4,5 in {1,...,n}.

Obviously, if M satisfies the triangle inequality, then dZK-M = m;;, and Defini-
tion 0.2 is then equivalent to Definition 0.1. Figure 1 illustrates this new definition.
Notice that the matrix in Figure 1 is not a tree metric, while it has a realization
as a tree.

Let M,, denote the set of symmetric n x n matrices M = (m;;) with zero
diagonal, positive entries, and such that m;; +mg < maz{m;, +m;;, my +m;i}
for all distinct points 4, j, k,l in {1,...,n}.
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FIGURE 2. A tree realization of a matrix that does not belong to M,,.

Since we only impose the 4-point condition on distinct points ¢, 7, k, [, the entries
of a matrix in M,, do not necessarily satisfy the triangle inequality. While all tree
metrics belong to M,,, the example in Figure 2 shows that a matrix having a
realization as a tree does not necessarily belong to M,,. However, we prove in this
paper that all matrices in M,, have a unique realization as a tree, and that this
realization is optimal.

1. THE MAIN RESULT

Let M = (my;) be any matrix in My, and consider the matrix M’ = (mj;)
obtained from M by setting mgj equal to the length df;M of the shortest chain
between ¢ and j in Kjp;. Notice that the elements in M’ satisfy the triangle
inequality. In order to prove that M has a realization as a tree, it is sufficient
to prove that M’ is a tree metric. The proof is based on Floyd’s O(n?) time

algorithm [6] for the computation of M’.

Floyd’s algorithm [6]
Set M° equal to M;
For r:=1ton do
For all ¢ and j in {1,...,n} do
Set m;; equal to min{m;'j_l, T m:j_l};
Set M’ equal to M™.

We shall prove that each matrix M" (1 < r <n) is in M,,. Since the entries of
M' = M™ satisfy the triangle inequality, we will be able to conclude that M’ is a
tree metric.

Theorem 1.1. Let M = (mi;) be a matriz in M, and let M" = (mj;) be the
n x n matriz obtained from M by setting mj; = df;M foralli and j in {1,...,n}.
Then M’ is a tree metric.

Proof. Following Floyd’s algorithm, define M° = M and let M" be the matrix

obtained from M"™! by setting mi; = min{mfj_l,m:fl + m:J_l} for all 4 and j
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in {1,...,n}. Given four distinct points ,j,k,l in {1,...,n}, we denote Siik =
m;; + my,. We prove by induction that each M" (r = 1,...,n) is in M,. By
hypothesis, M° = M is in M,,, so assume M"~' € M,,. It is sufficient to show
that si;;, < maz{sj;,sj;} for all distinet 4, j, k,lin {1,...,n}, or equivalently,
that two of the three sums Siint> ik and sj . are equal and not less than the
third.

Notice that m”, = m/;* and mi; < mf{l for all 1 <4 < j <n. Consider any
four distinct points 4,7,k and [. Since r is possibly one of these four points, we
divide the proof into two cases.

Case A: r e {i,j,k,1},sayr=1.
Since M™~! € M,,, we may assume, Without loss of generality (wlog) that

r—1 r—1 _ _r—1 _ r—1

Spigk < Spjik = Spkije If m}, = m“€ I and mw = my; , then smk <
T — T

Syiik = Spki; and we are done. So, we can assume wlog mj < mik It

r— _ rfl r—1 r—1 r—1 .
then follows that m,; Ty szk =My + Sppy < My +my; which
oo r—1 r—1 r—1 r
means that mi; = My +my < myi. We therefore have Syijk <
r—1 r—1 r—1 _ r _
My My + My = S = Sip-

Case B: r ¢ {i,j,k,1}.
ro_ =1 . _ -1 r _ r—1 . .
If 8350 = Siikl> Sikjt = Sikjl and Siijk = SiyK» there is nothing to prove. So
assume Wlog that mj; < m; i Notice that if mf, = m/ ', m}, = m}; ',

mi, = j,; and m]l = j , then we are done. Indeed, since M"~1 ¢
’r
M, and sy, < Tkij, while s7;, = szk and sy, = Smkv we know from
_ 1 r—1 _ _r—1
case A that szk = sm.jk. In a similar way, we also have szl = Syl
Hence, smlC + sml = smk + szlv which means that szkﬂ = lek Since
r—1 —1 ST 7‘—
M™= e M,, s} ikjl = Sig1s Sitje = Sige and sy < s”kl we conclude that
r r r— 1
Siint < Sikjt = Siljk- Wlog, we can therefore assume mj, < m;,
The rest of the proof is divided into four subcases.
r—1 'r—l r—1 r—1 r—1 r—1
Case B1: My <My myy and my > My
1 r—1
Since sTkjl = mrk + m +m,; > srl]k, we know from case A that

'r 1

which means that mj;, = m, L m, Hence, Siik <

rjkl = Tkjl’
T — T
Sijkl = Sik]l
r—1 r—1 r—1
Case B2: mk <m +mk andmjl §mrj +m,,
We can assume mkl = mkl , else we are in case B1, where the roles of
points j and k are exchanged. We can also assume m;; < m: +m,, !
r—1 r—1 mrT 1 s” T 1
Indeed ifm; " >my; +m ! then Sz-jkl +5,«]kla ikjl = My
Tkﬂ, and smk +smk and we are done since Mt € M,,.
J— T
But now, s7,,; > sﬂm, anld we krllow from case A that sl,,, = s/,..,
. ro_ T r— r T
which means that my; =m,,~+m,, . Hence, s_;; > sy, and we know
T — T 'r—l r—1
from case A that s;;; = sy Wthh means that m7, =m, ;" +m,, . We
T T J—
therefore have s, < si = iy
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Case B3: m§k1>m +m7k andm;l > my 1+m’“ !

It follows from cases B1 and B2 that ¢, 5, k and l satlsfy the 4-point con-
dition in M™ if mf; < mj; “oml, < m;'k_l, and mgk_l < m:j_l +mi
By permuting the roles of points ¢ and j as well as those of k£ and I,

we also know that 4,7,k and [ satisfy the 4—point condition in M" if

mi; <mr1 ’“<mr1andm” <mrfl+m Slncem <mr1
and m < mT*1 in case B3, we can assume m;; > m,. Lymre "l Hence7
:Jkl < Szk]l = szl]k
Case B4: m|; ' > m ;' +m; andmll<mr Ymi

Since Mt € M,,, and smll < Smg we know that s:ﬂll = sm], which
means that m[, < m} . If m’“ 1= =m,; 1+m ! then Stikt < Sikji = Siljk-
Else, mrfl < mT*1 +my, L wh1ch 1mphes Syijt < Spiji- We then know
from case A that s”kl = s,l]k, which means that mj;, = m,k +m,, 1
We therefore have szkﬂ < s”kl Zl]k

|

Corollary 1.2. FEach matriz in M,, has a unique realization as a tree, and this
realization is optimal.

Proof. Let M be any matrix in My, and let M" = (mj;) be the n x n matrix

obtained from M by setting m;j = df;M forall 1 <i < j < n. It follows from
Definition 0.2 that a graph is a realization of M if and only if it is a realization of
M'. We know from the above theorem that M’ is a tree metric. To conclude, it is
sufficient to observe that each tree metric has a unique tree realization, and this
realization is optimal. O

2. A RELATED PROBLEM

Given two nxn metrics L = (l;;) and U = (u;;), the matriz sandwich problem [5]
is to find (if possible) a tree metric M = (m;;) such that l;; < m;; < w;; for
all 4,5 € {1,...,n}. Typically, the information concerning the distance matrix
associated with a network may be inaccurate, and we are only given lower and
upper bound matrices L and U.

We prove here below that a solution to the matriz sandwich problem can be
obtained by first finding a matrix M € M, that lies between L and U, and then
constructing the tree metric M’ = (mj;) with mj; = dfj(-M. Finding a matrix
M € M,, that lies between L and U is possibly easier than finding a tree metric
with the same lower and upper bound matrices, the reason being that the triangle
inequality is not imposed on matrices in M,,.

Proposition 2.1. Let M = (mi;) be a matriz in M,,, and let M' = (m};) be the

n X n matriz obtained from M by setting m dKM for all i and j in {1 , M}
If lij < myj; < wgj foralli,je{1,... ,n}, then M' is a solution to the matmx
sandwich problem.
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Proof. Let M = (m;;) be a matrix in M,, such that l;; < m;; < u,; for all
i,j € {1,...,n}, and let M’ = (mj;) be the n x n matrix obtained from M by

setting mj; = df;M for all 1 < ¢ < 5 < n. We know from Theorem 1 that M’
is a tree metric. Moreover, since L is a metric, we have l;; < mgj < my; for all
i,7€{1,...,n}. a
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