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RESCALED PROXIMAL METHODS FOR LINEARLY
CONSTRAINED CONVEX PROBLEMS ∗

Paulo J.S. Silva
1

and Carlos Humes Jr.
1

Abstract. We present an inexact interior point proximal method to
solve linearly constrained convex problems. In fact, we derive a primal-
dual algorithm to solve the KKT conditions of the optimization prob-
lem using a modified version of the rescaled proximal method. We also
present a pure primal method. The proposed proximal method has as
distinctive feature the possibility of allowing inexact inner steps even for
Linear Programming. This is achieved by using an error criterion that
bounds the subgradient of the regularized function, instead of using ε-
subgradients of the original objective function. Quadratic convergence
for LP is also proved using a more stringent error criterion.

Keywords. Interior proximal methods, Linearly constrained convex
problems.
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1. Introduction

The idea of proximal methods can be traced back to Martinet [9, 10] and
Rockafellar [12]. In the context of optimization, the classical proximal method
replaces a minimization problem by a sequence of better behaved problems with
a quadratic regularization term added to the objective function.

Many generalizations of this classical proximal algorithm were proposed in the
last years. One of the main objectives was to replace the squared Euclidean norm
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by coercive regularizations that were able to implicitly deal with simple constraints,
giving raise to interior point proximal methods [2–5, 7, 8, 13–16]. This effort fol-
lowed the success of interior point methods for optimization, particularly Linear
Programming (LP). For a classical survey on interior point methods for LP see [6].

Initially, interior point proximal methods were formulated for box constrained
problems. More recently these methods were generalized for linearly constrained
problems [1, 7, 16, 19]. In particular, exact versions of the proximal algorithm
were applied to solve Linear Programming (LP) problems resulting on quadratic
convergent methods.

Our intent in this paper is to use the rescaled proximal method from [13, 14]
to linearly constrained optimization problems. This will be done in such a way
that allows for inexact proximal subproblems even for LP, maintaining quadratic
convergence. This objective is attained in four steps. First, we observe that the
Karush-Kuhn-Tucker (KKT) conditions of a linearly constrained problem have a
special structure that can be exploited by a specialized proximal method. Second,
we present the detailed proximal method and show its convergence. Next, we apply
the method to linearly constrained problems. Finally, we show a convergence rate
result.

From now on, we use the following notation: R
n denotes the set of all n-

dimensional vectors of real numbers, 〈·, ·〉 denotes the usual (Euclidean) inner
product, and ‖ · ‖2 is the induced (Euclidean) norm. If f : R

n �→ R ∪ {−∞, +∞}
is a function, we call the set dom f

.= {x | f(x) < ∞} its effective domain. We
say that f is proper if dom f �= ∅ and f(x) > −∞, ∀x ∈ R

n. If f is convex and
ε ≥ 0, we say that γ ∈ R

n is an ε-subgradient of f at x if, for all y ∈ R
n, f(y) ≥

f(x)+ 〈γ, y−x〉− ε. The set of all ε-subgradients at x is called ε-subdifferential at
x, and it is denoted by ∂εf(x). If ε = 0, we omit the ε and simply say subgradient,
subdiffential and use the symbol ∂f . Let {xk} be a sequence in R

n, we write
xk → x̄ to state that the sequence converge to the vector x̄. If K ⊆ N is an infinite
set of indexes, then {xk}K denote the subsequence of {xk} with indexes in K and
xk →K x̄ says that the subsequence converges to x̄.

2. Preliminaries

Consider the following convex problem constrained to a polyhedron in the stan-
dard form:

min f(x)
s.t. x ∈ F def= {x ∈ R

n | Ax = b, x ≥ 0}, (1)

where f is a proper lower semi-continuous convex function.
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The associated KKT conditions are:

0 ∈ ∂f(x) − A′y + u

Ax = b

x ≥ 0 (2)
u ≤ 0

〈u, x〉 = 0.

Or, using the variational inequalities notation,

0 ∈
[

∂f(x) − A′y
Ax − b

]
+
[

NR
n
+
(x)

0

]
. (3)

The variational inequality formulation opens up the opportunity to use a proximal
method based only on box constraints. In this paper, we are specially interested
on applying the Rescaling Proximal Method for Variational Inequalities (RPMVI)
described in [14]. However, a naive, direct application of this idea may raise
questions as:

(1) It is not clear why it is necessary to add a regularization term for the dual
variables, y, since they are unconstrained.

(2) Let {xk} be a proximal sequence computed by the RPMVI method pro-
posed in [14]. Let x̄ be a cluster point of such sequence, i.e., there is
an infinite set K ⊆ N such that xk →K x̄. The convergence theorem
in [14] depends on the technical assumption that, for each i = 1, . . . , n,
either xk−1

i →K x̄i, or we can easily show that 0 ∈ T (x̄)i, where T is the
operator that defines the variational inequality [14] Assumption 2.3.2.

This assumption is usually difficult to verify. In [14], the authors show
that it holds only for optimization problems or if they use a special stepsize
choice. The KKT Equation (3) can not be restated as a simple optimiza-
tion problem. Hence, to apply the results from [14], we would be forced to
apply the special stepsize selection, which is not completely satisfactory
due to its stringent character. We could also use double regularizations
methods [13], but this choice would constraint the class of admissible reg-
ularizations. It is not clear if such restrictions to the proximal methods
are really required.

Although there may be sensible answers to these points, we present below a detour
that is able to avoid such issues.

3. The partial rescaled proximal method

Let us consider a variational problem inspired by (3),

0 ∈ T (x, y) +
[

NB(x)
0

]
, (4)
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where T is a (possibly set-valued) maximal monotone operator on R
n+m and B is

a box, that is B
def= ([a1, b1] × . . . × [an, bn]) ∩ R

n, where −∞ ≤ ai < bi ≤ +∞ for
all i = 1, . . . , n.

As discussed above, we will present a variation of the RPMVI [14] that has as
distinctive feature the regularization of only the constrained variable x. Since we
are interested in coercive proximal methods, we must assume from now on that:

Assumption 3.1.
dom T ∩ intB × R

m �= ∅.
This condition also guarantees that the sum in (4) is a maximal monotone operator.

Before presenting the modified proximal algorithm, we introduce the class of
coercive distances it employes:

Definition 3.1. For i = 1, . . . , n, a function di : R× (ai, bi) → (−∞,∞] is called
a rescaled distance if it presents the following properties:
(3.1.1) For all zi ∈ (ai, bi), di(·, zi) is closed and strictly convex, with its minimum

at zi. Moreover, int dom di(·, zi) = (ai, bi).
(3.1.2) di is differentiable with respect to the first variable on (ai, bi) × (ai, bi),

and this partial derivative is continuous at all points of the form (xi, xi) ∈
(ai, bi) × (ai, bi). Moreover, we will use the notation

d′i(xi, zi)
def=

∂di

∂xi
(xi, zi).

(3.1.3) For all zi ∈ (ai, bi), di(·, zi) is essentially smooth [11] Chapter 26.
(3.1.4) There exist L, ε > 0 such that if either −∞ < ai < zi ≤ xi < ai + ε or

bi − ε < xi ≤ zi < bi < +∞, then |d′i(xi, zi)| ≤ L |xi − zi|.
This definition has appeared in [13] and is a slight generalization of [14] Assump-
tion 2.1, as it does not explicit require twice-differentiable distances. The relation
between both assumptions becomes clear if we identify the above distances with
the ones in [14] Assumption 2.1, divided by the convenient second derivative.
In particular, such distances encompasses second order homogeneous kernels and
rescaled Bregman distances, as described in [14] Section 2.2.

We can now present the modified proximal algorithm:

Partial Rescaling Proximal Method (PRPM)
(1) Initialization: Let k = 0. Choose a scalar α

¯
> 0, {βk} a positive real

sequence converging to zero, and an initial iterate (x0, y0) ∈ intB × R
m.

Finally, let D be a separable distance defined by

D(x, xk)
def
=

n∑
i=1

di(xi, x
k
i ), (5)

where each di is a rescaled distance.
(2) Iteration:

(a) Choose αk such that each αk
i ∈ [α

¯
,∞), i = 1, . . . , n.
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(b) Find xk+1 and ek+1 such that[
ek+1

0

]
∈ T (xk+1, yk+1) +

[
diag(αk)−1∇1D(xk+1, xk)

0

]
, (6)

where ∇1D(·, ·) denotes the partial derivative of D with respect to the
first variable, and

∣∣ek
i

∣∣ ≤ 1
αk

i

∣∣d′i(xk+1, xk)
∣∣+ βk. (7)

(c) Let k = k + 1, and repeat the iteration.

The algorithm above takes into account that a component of the original varia-
tional inequality may be an easily solvable equation. In such cases, it dismisses
the need for a regularization in the respective variables. This structure appears in
(3), where the lower part of the system is linear. We will further explore this fact
in the next section.

However, let us first turn our attention to analyze the algorithm convergence.
The first step is to adapt [14] Assumption 2.3.2, to our present context.

Assumption 3.2. Define

γk =
[

γk
x

γk
y

]
def
=
[

ek − diag(αk−1)−1∇1D(xk, xk−1)
0

]
. (8)

Let x̄ be an accumulation point of the x component in a sequence computed by the
PRPM, i.e., there is an infinite set K ⊆ N such that xk →K x̄. Denote by γk

xi
the

i-th component of γk
x . Then, either γk

xi
→K 0 or there is an infinite set K′ ⊆ K

such that xk−1
i →K′ x̄i.

Using the above definitions, we can easily show that the PRPM is a special in-
stance of the RPMVI from [14] that explores its permissive error criterion. There-
fore its convergence results still hold.

Theorem 3.2. Let {(xk, yk)} be a sequence computed by the PRPM with Assump-
tions 3.1 and 3.2 holding, then all of its limit points are solutions to the variational
inequality problem (4).

Proof. Let us extend the PRPM to regularize also the dual variables using the
classical distance dn+i(yi, zi)

def= 1
2 (yi − zi)2 applied to the dual variables y. Con-

sider also the dual stepsizes αk
n+i

def= 1 for all k and the dual error vectors
ek+1

n+i = yk+1
i − yk

i . Now it is easy to see that PRPM is a special instance of
RPMVI and that the proposed result is only a special case Theorem 2.6 from
[14]. �
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4. Application to linearly constrained convex

programming

We turn back our attention to the original problem (1). We will derive a primal-
dual interior proximal method to solve its KKT conditions based on the PRPM.
Afterwards, we will show how to derive a pure primal method for a problem with
special constraint structure.

4.1. A primal-dual method

In order to apply the results above to solve the linearly constrained problem (1),
we define L as its Lagrangian considering only the equality constraints. Identifying
T (x, y) with

(
∂xL(x, y),−∂yL(x, y)

)
, the KKT conditions for (1) are clearly a

particular case of the variational inequality (4). Additionally, it is a well known
result that such operator is maximal monotone, see Corollary 37.5.2 from [11].

Applying the PRPM to find KKT pairs, each iteration needs to find (xk+1, yk+1)
such that

ek+1 ∈ ∂f(xk+1) − A′yk+1 + diag(αk)−1∇1D(xk+1, xk) (9)

Axk+1 = b,

where, ∣∣ek+1
i

∣∣ ≤ 1
αk

i

∣∣d′i(xk+1
i , xk

i )
∣∣ . (10)

Note that the error criterion above is equivalent to (7) with βk identically zero. It
is also possible to choose more permissive {βk} [14], however it would clutter the
proofs without presenting any particular advantage in the present context.

It is easy to recognize the above iteration as a variation of a classical primal-
dual interior point method for convex programming under linear constraints[18].
However, the above algorithm presents the following important distinctions:

(1) The barrier is replaced by the coercive generalized distance D.
(2) The update of the barrier parameter is replaced by the update of the

distance center, typical of proximal methods and, possibly, αk.
(3) The error criterion that must be achieved to change centers is now con-

trolled by (10) instead of using a measure of the distance to the central
path.

Let us verify the conditions required by Theorem 3.2, the convergence theorem
for the PRPM. First, considering (3), it can be easily seen that Assumption 3.1
is implied by a Slater type constraint qualification, that is obligatory in interior
point methods:

Assumption 4.1.

∃x ∈ ri dom f, such that Ax = b, x > 0.
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Since the constraint set is a polyhedron, this assumption also asserts that the
KKT conditions are necessary and sufficient for optimality, see Corollary 28.3.1
from [11].

On the other hand, Assumption 3.2 automatically holds for linearly constrained
optimization problems. We prove this fact with the following three lemmas.

Lemma 4.1. For all feasible x and for all iterations of the PRPM,

f(x) ≥ f(xk) + 〈γk
x , x − xk〉,

i.e., γk
x can be seen as a subgradient of the objective function among the feasible

points.

Proof. Remembering (8), the definition of γk, we see that γk
x ∈ ∂

(
f−〈A′yk, ·〉)(xk).

Therefore

f(x) = f(x) + 〈yk, b − Ax〉 [Ax = b]

= f(x) − 〈A′yk, x〉 + 〈b, yk〉
≥ f(xk) − 〈A′yk, xk〉 + 〈γk

x , x − xk〉 + 〈b, yk〉
= f(xk) + 〈yk, b − Axk〉 + 〈γk

x , x − xk〉
= f(xk) + 〈γk

x , x − xk〉. [Axk = b] �

This allow us to prove the following extensions Lemmas 3.4 and 3.6 from [14].

Lemma 4.2. In all iterations of the PRPM, γk
xi

(xk−1
i − xk

i ) ≥ 0.

Proof. We have

γk
xi

(xk−1
i − xk

i ) =

(
ek

i − 1
αk−1

i

d′i(x
k
i , xk−1

i )

)
(xk−1

i − xk
i )

≥ − 1
αk−1

i

d′i(x
k
i , xk−1

i )(xk−1
i − xk

i )︸ ︷︷ ︸
≥0

− ∣∣ek
i

∣∣ ∣∣xk−1
i − xk

i

∣∣

=
1

αk−1
i

(∣∣d′i(xk
i , xk−1

i )
∣∣− αk−1

i

∣∣ek
i

∣∣) ∣∣xk−1
i − xk

i

∣∣
≥ 1

αk−1
i

|0| ∣∣xk−1
i − xk

i

∣∣ [Due to (10)]

= 0. �

Lemma 4.3. {f(xk)} is non-increasing and hence convergent if f is bounded below
on F . In this case, we also have∣∣γk

xi

∣∣ ∣∣xk−1
i − xk

i

∣∣→ 0 ∀i = 1, . . . , n.
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Proof. From Lemma 4.1,

f(xk−1) ≥ f(xk) + 〈γk
x , xk−1 − xk〉 = f(xk) +

n∑
i=1

γk
xi

(xk−1
i − xk

i ),

whence the result follows from the non-negativity of γk
xi

(xk−1
i − xk

i ). �

Note that, if f is bounded below on F , Assumption 3.2 is direct a consequence
of the last lemma. Thus, Theorem 3.2 implies the optimality of all accumulation
points of the sequence {(xk, yk)} defined by (9)-(10). Actually, we can strength
this result as:

Theorem 4.4. Suppose that the problem (1) conforms Assumption 4.1 and that
f is bounded below on the feasible set F . Let {(xk, yk)} be a sequence computed by
(9)-(10). Then, if {xk} has a limit point, {f(xk)} converges to the optimal value
and all its limit points will be minimizers of (1). A condition that ensures the
boundedness of {xk} is the boundedness of the solution set, or any other level set
of f restricted to F .

Proof. Let x̄ be a limit point of {xk}, i.e. xk →K x̄, for some infinite set K ⊆ N.
Since the PRPM is a special instance of the RPMVI, we may apply [14] Lemma 2.5,
to see that {γk} is bounded. Then, we may assume without loss of generality, that
there is γ̄x ∈ R

n such that γk
x →K γ̄x.

Using Lemma 4.1 we have that

∀x ∈ F , f(x) ≥ f(xk) + 〈γk
x , x − xk〉.

Taking limits, and remembering that f is l.s.c. we have:

∀x ∈ F , f(x) ≥ lim
k→∞, k∈K

f(xk) + 〈γ̄x, x − x̄〉
≥ f(x̄),

where the last inequality comes from the signal structure for γ̄ given in [14]
Lemma 2.4. Therefore, x̄ is a minimizer of f in F . Letting x = x̄ above, it
also follows that, f(xk) → f(x̄).

Finally, as Lemma 4.3 states that {f(xk)} is non-increasing, {xk} is included
in a level set of f plus the indicator function of {x ≥ 0 | Ax = b}. Since the
boundedness of this set, or any other level set of the sum, is equivalent to the
boundedness of the optimal solution set, the result follows. �

We end this section addressing an important issue. The theorems that guarantee
that the proximal iterations are well defined are usually based on the fact that all
variables are being regularized. This is not the case in the PRPM. Therefore
we must prove that the PRPM iterations can be done, at least in the linearly
constrained optimization case:
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Proposition 4.5. Suppose that (1) conforms to Assumption 4.1. Let (x̄, ȳ) be a
KKT pair of

min f(x) +
∑n

i=1
1

αk
i

di(xi, x
k
i )

s.t. Ax = b.
(11)

Then, (x̄, ȳ) solves (9) with zero error. Moreover, such KKT pairs always exist if
f is bounded below on F .

Proof. If we write down the KKT conditions for (11) we immediately recognize
(9).

Moreover, since the constraints are all affine and Assumption 4.1, asserts that
there is a point in ri dom(f(·)+∑n

i=1
1

αk
i

di(·, xk
i )) that is feasible, KKT is necessary

and sufficient for optimality [11].
Now, let l be a lower bound of f on F . Since each di is only finite at the positive

orthant for a give ζ ∈ R the level set:{
x ∈ R

n | Ax = b, f(x) +
n∑

i=1

1
αk

i

di(xi, x
k
i ) ≤ ζ

}
={

x ≥ 0 | Ax = b, f(x) +
n∑

i=1

1
αk

i

di(xi, x
k
i ) ≤ ζ

}

⊂
{

x ≥ 0 | Ax = b,
n∑

i=1

1
αk

i

di(xi, x
k
i ) ≤ ζ − l

}
.

The last level set is a level set of
∑n

i=1
1

αk
i

di(xi, x
k
i ) which is bounded as this

function attains unique minimum at xk by Definition 3.1.1. Therefore (11) admits
solutions and hence KKT pairs. �

4.2. A pure primal method

Using the primal-dual method it is also possible derive a pure primal method
for problem with a special constraint structure. Let us consider a problem in the
form.

min f(x)
s.t. Ax ≥ b

x ≥ 0.
(12)

Adding slack variables, s, the above problem is equivalent to

min f(x)
s.t. Ax − s = b

x ≥ 0
s ≥ 0,

which is constrained by a standard polyhedron and therefore is in the form de-
scribed by (1). We may then apply the primal-dual method described in the last
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section. The respective iteration asks to solve approximately

0 ∈
⎡⎣ ∂f(xk+1) −A′yk+1 + diag(αk

x)−1∇D(xk+1, xk)
0 +yk+1 + diag(αk

s)−1∇D̃(sk+1, sk)
b − Axk+1 + sk+1

⎤⎦ ,

where D regularizes the original variables and D̃ the slack variables. It is in-
teresting to note that the last two groups of equations can be forced to hold by
defining sk+1 def= Axk+1 − b and yk+1 def= diag(αk

s )−1∇D̃(sk+1, sk). Substituting
this definitions back in the first group, we need to solve approximately

0 ∈ ∂f(xk+1)+diag(αk
s )−1A′∇D̃(Axk+1 − b, Axk − b)+diag(αk

x)−1∇D(xk+1, xk).

This is equivalent to minimize approximately

fk(x) def= f(x) +
m∑

j=1

1
(αk

s )j
d̃j

(
(Ax − b)j , (Axk − b)j

)
+

n∑
i=1

1
(αk

x)i
di(xi, x

k
i ).

The acceptance criteria (10) turns out to be

∣∣(∂fk(xk+1))i

∣∣ ≤ 1
(αk

x)i

∣∣d′i(xk+1
i , xk

i )
∣∣ . (13)

The method above can be viewed as a variation of the algorithm proposed in [2]
Section 4. This is not the case as its error criterion is based on the subgradient of f
and not in ε-subgradients. Error criteria based on ε-subgradients are particularly
useful in situations where it is difficult to compute f or its subgradients. Good
examples are multiplier methods or situations where f is non-smooth. On the
other hand, if the subgradients of the objective function are readily available, a
criterion based on the subdifferential itself may be preferable. This is clearly the
case in Linear Programming, as the only ε-subgradient of f is actually its gradient.
Under such conditions, a criterion as in [2], Section 4, would require exact solutions
of the proximal subproblems, while (10) or (13) still allow for approximate steps.

Finally, it should be clear that any Linear Programming problem can be reduced
to the form (12) using standard textbook techniques.

5. Rate of convergence for Linear Programming

The convergence rate of proximal methods for LP has been studied by many
authors. Rockafellar proved in [12], that a classical proximal algorithm, based on
the squared Euclidean norm, converges in finite many steps. Tseng and Bert-
sekas showed in [17] that the exponential multiplier method with rescaling is
super-linearly convergent. This last result was somewhat extended for general ϕ-
divergences by Iusem and Teboulle [7]. In [1,16], Auslender, Haddou, and Teboulle
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have proved that methods based on a special ϕ-divergence may be quadratically
convergent if the stepsizes converge fast enough to zero. In [2], Section 6, Auslen-
der et al. proved quadratic convergence if the regularizations used are based on
second order homogeneous kernels with an extra quadratic term. Finally, Silva and
Eckstein [13] generalized the quadratic convergence for double regularizations, en-
compassing kernels based on Bregman distances. All these results required the
exact solution of the proximal subproblems.

In this section, we demonstrate that the primal-dual method described by (9)-
(10) is also quadratic convergent for Linear Programming even with inexact prox-
imal steps. In order to do this, we will use two extra assumptions. The first one
limits the class of generalized distances, imposing an upper bound on their value.
The second strengths the acceptance criterion (10), but still allows for inexact
subproblems.

We assume from now on that problem (1) have the form

min 〈c, x〉
s.t. Ax = b

x ≥ 0.
(14)

Assumption 5.1. For i = 1, . . . , n, let di be a rescaled distance. There must be
C > 0 such that for all xi, zi > 0,

di(xi, yi) ≤ C(xi − yi)2.

Two examples of distances that obey the above condition, with C equal 1 and 2
respectively, are the rescaled Bregman distances [14, Section 2.2.1] based on the
kernels x log(x) and x −√

x.
The second assumption aims to enforce that at each iteration the objective

function decreases “enough”. As stated in Proposition 4.5, if (9) is solved exactly,
xk+1 would minimize

f(x) +
n∑

i=1

1
αk

i

di(xi, x
k
i )

among all the feasible solutions. Hence, between iterations the objective func-
tion would decrease

∑n
i=1

1
αk

i

di(xk+1
i , xk

i ). Assumption 5.2 requires that at least a
fraction of this bound should be attained in any inexact iteration.

Assumption 5.2. Let β ∈ [0, 1). For a given k, define εk(x)
def
= β

∑
i 1/αk

i di(xi, x
k
i ).

The pair (xk+1, yk+1) computed by the primal dual method (9)-(10) should also
conform to

0 ∈ c − A′yk+1 + diag(αk)−1∂εD(xk+1, xk), ε ≤ εk(xk+1). (15)

Note that in the above assumption the ε-subgradient operator is applied to the
generalized distance, rather than to the objective function. Thus inexact proximal
steps are allowed.
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We proceed to prove quadratic convergence rate for Linear Programming. We
begin stating an auxiliary lemma.

Lemma 5.1. Let x∗ be any solution of (14). Let {(xk, yk)} be a sequence computed
by the primal-dual method (9)-(10) with Assumptions 4.1, 5.1, and 5.2 holding.
Then,

〈c, xk+1〉 + (1 − β)
∑

i

1
αk

i

di(xk+1
i , xk

i ) ≤ 〈c, x∗〉 +
∑

i

1
αk

i

di(x∗
i , x

k
i ).

Proof. Equation (15) states that xk+1 is at least an εk(xk+1)-minimum of h(x) def=
〈c, x〉 − 〈A′yk+1, x〉 +

∑
i

1
αk

i

di(x, xk
i ), therefore:

〈c, xk+1〉 − 〈A′yk+1, xk+1〉 +
∑

i

1
αk

i

di(xk+1, xk
i ) ≤

〈c, x∗〉 − 〈A′yk+1, x∗〉 +
∑

i

1
αk

i

di(x∗
i , x

k
i ) + εk(xk+1).

As x∗ and xk+1 are both feasible, 〈A′yk+1, x∗〉 = 〈A′yk+1, xk+1〉, and so

〈c, xk+1〉 +
n∑

i=1

1
αk

i

di(xk+1
i , xk

i ) ≤

〈c, x∗〉 +
n∑

i=1

1
αk

i

di(x∗
i , x

k
i ) + εk(xk+1)

= 〈c, x∗〉 +
n∑

i=1

1
αk

i

di(x∗
i , x

k
i ) + β

n∑
i=1

1
αk

i

di(xk+1
i , xk

i ). �

We can now prove the following convergence rate result:

Theorem 5.2. Let X∗ �= ∅ be the solution set of (14) and f∗ the optimal value.
Let {(xk, yk)} a sequence computed by the primal-dual method (9)-(10) with As-
sumptions 4.1, 5.1, and 5.2 holding. If {xk} has a limit point, then the distance of
xk to the solution set converges at least quadratically to zero and 〈c, xk〉 converges
at least quadratically to f∗.

Proof. Theorem 4.4 already proves convergence. We need to focus only on the
convergence rate estimates. Let D(x, X∗) denote the distance between a point
x ∈ R

n and the solution set X∗.
Lemma 6.1 from [2] shows that there is a µ > 0, depending only on the problem

data, such that

D(xk, X∗) ≤ µ
(〈c, xk〉 − f∗), ∀k = 1, 2, . . . (16)
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Let x̄k be the point in X∗ that achieves the minimum in the definition of
D(xk, X∗). Lemma 5.1 asserts that

〈c, xk+1〉 ≤ 〈c, xk+1〉 + (1 − β)
n∑

i=1

1
αk

i

di(xk+1
i , xk

i )

≤ f∗ +
n∑

i=1

1
αk

i

di(x̄k
i , xk

i )

≤ f∗ +
n∑

i=1

1
α
¯

di(x̄k
i , xk

i ),

where α
¯

is the lower bound to αk
i presented in PRPM. Using Assumption 5.1 and

(16), it follows that:

〈c, xk+1〉 − f∗ ≤ C

α
¯

∑
i

(xk
i − x̄k

i )2

≤ µ2C

α
¯

(〈c, xk〉 − f∗)2. (17)

Therefore 〈c, xk〉 converges to f∗ at least quadratically. Moreover, as for any
x ∈ X∗ we have

〈c, xk〉 − f∗ = 〈c, xk − x〉 ≤ ‖c‖2‖xk − x‖2.

We may then combine (16) and (17) to conclude that:

D(xk+1, X∗) ≤ µ3C

α
¯

‖c‖2
2D(xk, X∗)

2
. �

This new result on the quadratic convergence of an inexact proximal method in-
duces future computational experiments. Particularly, the search for efficient prac-
tical procedures to ensure Assumption 5.2 should be investigated.
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