
RAIRO-Oper. Res. 42 (2008) 199–213 RAIRO Operations Research

DOI: 10.1051/ro:2008009 www.rairo-ro.org

GENERIC PRIMAL-DUAL INTERIOR POINT METHODS
BASED ON A NEW KERNEL FUNCTION

M. EL Ghami
1
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2

Abstract. In this paper we present a generic primal-dual interior
point methods (IPMs) for linear optimization in which the search di-
rection depends on a univariate kernel function which is also used as
proximity measure in the analysis of the algorithm. The proposed ker-
nel function does not satisfy all the conditions proposed in [2]. We show
that the corresponding large-update algorithm improves the iteration

complexity with a factor n
1
6 when compared with the method based on

the use of the classical logarithmic barrier function. For small-update
interior point methods the iteration bound is O(

√
n log n

ε
), which is

currently the best-known bound for primal-dual IPMs.
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1. Introduction

The purpose of this work is to present a primal-dual interior-point method
(IPM) based on a new barrier function for solving the standard linear optimization
problem

(P ) min
{
cTx : Ax = b, x ≥ 0

}
,
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where A ∈ Rm×n is a real m×n matrix with rank m, and c, x ∈ Rn, b ∈ Rm. The
dual problem of (P ) is given by

(D) max
{
bT y : AT y + s = c, s ≥ 0

}
,

with y ∈ Rm and s ∈ Rn.
Without loss of generality [13] we assume that (P ) and (D) satisfy the interior-

point condition (IPC), i.e., there exist x0, y0, and s0 such that

Ax0 = b, x0 > 0, AT y0 + s0 = c, s0 > 0. (1)

It is well known that finding an optimal solution of (P ) and (D) is equivalent to
solving the non-linear system of equations

Ax = b, x ≥ 0,
AT y + s = c, s ≥ 0, (2)

xs = 0.

The first equation requires that x is feasible for (P ), and the second equation
that the pair (y, s) is feasible for (D), whereas the third equation is the so-called
complementarity condition for (P ) and (D); here and a long this paper xs denotes
the coordinatewise product of the vectors x and s. Similarly, this notation is
extended to quotients, for example x

s .
The basic idea underlying primal-dual IPMs is to replace the third equation in

(2) by the nonlinear equation xs = µ1, with parameter µ > 0 and with 1 denoting
the all-one vector (1, 1, ..., 1)T . The system (2) now becomes:

Ax = b, x ≥ 0,
AT y + s = c, s ≥ 0, (3)

xs = µ1.

If the IPC holds the parameterized system (3) has a unique solution (x(µ), y(µ)),
(s(µ)) for each µ > 0; x(µ) is called the µ-center of (P ) and (y(µ), s(µ)) is the
µ-center of (D). The set of µ-centers (with µ > 0) defines a homotopy path, which
is called the central path of (P ) and (D) [7,8,14]. If µ → 0, then the limit of the
central path exists (limµ−→0 x(µ), limµ−→0 y(µ), limµ−→0 s(µ), exist) and since
the limit points satisfy the complementarity condition, the limit yields optimal
solutions for (P ) and (D) [13].

Let (x, s) ∈ R2n be a fixed primal-dual solution. We define the vector

v :=
√
xs

µ
· (4)

Note that the pair (x, s) coincides with the µ-center (x(µ), s(µ)) if and only if
v = 1.
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Let Ψ : Rn
++ −→ R+ be a smooth, strictly convex function, which is minimal

at v = 1, with Ψ(1) = 0. Following [2–4,10,11] we define search directions from a
given primal-dual feasible solution ∆x, ∆y, ∆s by

A∆x = 0,
AT∆y + ∆s = 0, (5)
s∆x+ x∆s = −µv∇Ψ(v).

Because A has full row rank, the system (5) uniquely defines (∆x,∆s,∆y) for any
feasible x > 0 and s > 0. Note that ∆x = 0, ∆s = 0, ∆y = 0 if and only if
v = 1, because the right-hand sides in (5) vanish if and only if ∇Ψ(v) = 0, and
this occurs if and only if v = 1. Introducing the notations

Ā :=
1
µ
AV −1X = AS−1V, where V := diag (v), X := diag (x), S := diag (s),

(6)
and

dx :=
v∆x
x

, ds :=
v∆s
s
, (7)

system (5) can be reformulated as

Ādx = 0,

ĀT∆y + ds = 0,

dx + ds = −∇Ψ(v).

(8)

Knowing dx and ds, the vectors ∆x and ∆s can be computed from (7). The
algorithm considered in this paper is described in Figure 1.

The algorithm consists of inner iterations and outer iterations. Each outer
iteration performs an update of the barrier parameter and a sequence of inner
iterations. It is generally agreed that the total number of inner iterations required
by the algorithm is an appropriate measure for its efficiency. This number will be
referred to as the iteration complexity of the algorithm; it is usually described as a
function of the dimension n and the accuracy parameter ε. A crucial question is,
of course, how to choose the proximity function Ψ, the threshold parameter τ , the
barrier update parameter θ, and the step size α, so as to minimize the iteration
complexity of the algorithm. So far researchers have considered only separable
proximity functions:

Ψ(v) =
n∑
i=1

ψ(vi),

where ψ is called the kernel function of Ψ(v). Table 1 gives some examples of
kernel functions that have been analyzed in earlier papers, with the complexity
results for the corresponding algorithms. For ψ6 the bound is minimal if we choose
q = 1

2 logn. This gives the best bound known so far for large-update (θ = O(1),
τ = O(n)) interior-point methods: O

(√
n logn log n

ε

)
.
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Generic Primal-Dual Algorithm for LO

Input:
a proximity function Ψ(v);
a threshold parameter τ > 0;
an accuracy parameter ε > 0;
a barrier update parameter θ, 0 < θ < 1;

begin
x := 1; s := 1; µ := 1; v := 1;
while nµ ≥ ε do
begin
µ := (1 − θ)µ;
while Ψ(v) > τ do
begin

Solve (∆x,∆s,∆y) from (5)
x := x+ α∆x;
s := s+ α∆s;
y := y + α∆y;
v :=

√
xs
µ ;

end
end

end

Figure 1. The generic primal-dual interior-point algorithm or LO.

Recently Bai et al. [2] introduced a new class of kernel functions which is de-
fined by some simple conditions. However, an important question remained open,
namely whether there exists a kernel function that does not satisfy the conditions
that are needed in the analysis used in [2], and which gives rise to an efficient
primal-dual IPM. This paper offers a positive answer to that question.

In this paper we investigate the kernel function

ψ(t) = ψ7(t) = 8t2 − 11t+ 1 +
2√
t
− 4 log t. (9)

This kernel function is mentioned in [2], but it has not been analyzed there because
it does not satisfy the conditions that are needed in the analysis used in [2]. To
make this clear we proceed with the next lemma.

Lemma 1.1. Let ψ be as defined in (9). Then,

tψ′′(t) + ψ′(t) > 0, if t > 0, (10-a)
ψ′′′(t) < 0, if t > 0, (10-b)

tψ′′(t) − ψ′(t) > 0, if t > 0. (10-c)
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Table 1. Examples of kernel functions and its iteration bound
for large-update methods.

i Kernel functions ψi Iteration bound References

1 t2−1
2 − log t O

(
n log n

ε

)
[1,5,6,15]

2 t2−1
2 + (e−1)2

e
1

et−1 − e−1
e O

(
n

3
4

)
log n

ε [4]

3 1
2

(
t− 1

t

)2
O
(
n

2
3 log n

ε

)
[9]

4 t2−1
2 + e

1
t −1 − 1 O

(√
n log2 n log n

ε

)
[2]

5 t2−1
2 − ∫ t

1
e

1
ξ−1dξ O

(√
n log2 n log n

ε

)
[2]

6 t2−1
2 + t1−q−1

q−1 , q > 1 O
(
qn

q+1
2q log n

ε

)
[10,12]

7 8t2 − 11t+ 1 + 2√
t
− 4 log t O

(
n

5
6 log n

ε

)
New

Proof. The first three derivatives of ψ(t) with respect to t are given by

ψ′(t) = 16t− 11 − 1
t

3
2
− 4
t
, (11)

ψ
′′
(t) = 16 +

3
2t

5
2

+
4
t2
, (12)

ψ
′′′

(t) = − 15
4t

7
2
− 8
t3
· (13)

Using (11) and (12) we write

ψ′(t) + tψ
′′
(t) = 32t− 11 +

1
2t

3
2
,

and one my easily check that this is positive for all t > 0. Thus (10-a) follows.
Inequality (10-b) immediately follows from (13). By (11) and (12),

tψ′′(t) − ψ′(t) =
2
t

3
2

+
8
t

+ 11 > 0, t > 0,

which gives (10-c). �
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In [2] the authors imposed four conditions on the kernel functions, namely (10-a)–
(10-c) and one additional condition, namely:

2ψ′′(t)2 − ψ′(t)ψ′′′(t) > 0, t > 0. (14)

Taking t = 1
6 , the left hand side expression is less than −3734, showing that (9)

does not satisfy (14). The aim of this paper is to show that despite the fact that
ψ(t) as given by (9) does not satisfy the conditions used in [2], a slightly different
analysis makes clear that this kernel function is good enough to be the kernel
function of a polynomial-time interior-point algorithm.

It is worth mentioning that the properties in Lemma 1.1 admit a nice geometric
interpretation. Due to Lemma 1.6 in [11], (10-a) implies that ψ is e-convex, i.e.,
ψ(eξ), ξ ≥ 0, is convex, which is equivalent to ψ(

√
t1t2) ≤ 1

2 (ψ(t1) + ψ(t2)) for
all t1, t2 > 0. Also, (10-b) means that ψ′′(t) is decreasing and by Lemma 2.2
in [2], (10-c) implies that ψ(

√
ξ), ξ ≥ 0, is convex.

The paper is organized as follows. In Section 2 we start by deriving some
properties of the kernel function ψ(t), as well as the corresponding properties of
the barrier function Ψ(v). The estimate of the step size and the decrease behavior
of the barrier function are discussed in Section 3. The inner iteration bound and
the total iteration bound of the algorithm are derived in Section 4. Finally, some
concluding remarks follow in Section 5.

We use the following notational conventions. Throughout the paper, ‖·‖ denotes
the 2-norm of a vector. The nonnegative and the positive orthants are denoted
as Rn

+ and Rn
++, respectively. Finally, if z ∈ Rn

+ and f : R+ → R+, then f (z)
denotes the vector in Rn

+ whose ith component is f (zi), with 1 ≤ i ≤ n.

2. Properties of new kernel function

In this section, we focus on some properties of ψ(t) that will be used in the
analysis of the algorithm.

Since ψ(1) = ψ′(1) = 0 and ψ′′(t) ≥ 0, ψ(t) is determined by ψ′′(t):

ψ(t) =
∫ t

1

∫ ξ

1

ψ′′(ζ) dζdξ. (15)

Lemma 2.1 (Lemma 2.4 in [2]). If ψ(t) satisfies (10-b) and (10-c), then ψ(t)
satisfies

ψ′′(t)ψ′(βt) − βψ′(t)ψ′′(βt) > 0, if t > 1, β > 1. (16)

Lemma 2.2. One has

ψ(t) <
1
2
ψ′′(1) (t− 1)2 , t > 1.
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Proof. By using Taylor’s theorem and ψ(1) = ψ′(1) = 0, we obtain

ψ(t) =
1
2
ψ′′(1) (t− 1)2 +

1
6
ψ′′′(ξ) (ξ − 1)3 ,

where 1 < ξ < t if t > 1. Since ψ′′′(ξ) < 0, the lemma follows. �
Following [2], we introduce a norm-based proximity measure δ(v), according to

δ(v) :=
1
2
‖∇Ψ(v)‖ =

1
2

√√√√ n∑
i=1

(ψ′(vi))
2
, v ∈ Rn

++. (17)

2.1. Relation between Ψ(v) and δ(v)

For the analysis of the algorithm in Section 3 we need to establish the relation
between Ψ(v) and δ(v). The inverse function of ψ(t), for t ≥ 1, plays an important
role in this relation.

The next theorem, which is one of main results in [2], gives a lower bound on
δ(v) in term of Ψ(v). This is due to the fact that ψ(t) satisfies (10-b).

Theorem 2.3 (Theorem 4.9 in [2]). Let 
 : [0,∞) → [1,∞) be the inverse function
of ψ on [0,∞). One has

δ(v) ≥ 1
2ψ

′ (
 (Ψ(v)) .

Note that at the start of each inner iteration we have Ψ(v) ≥ τ . By Theorem 2.3
this implies that δ(v) ≥ 1

2ψ
′ (
 (τ)). We always assume that τ ≥ 1, to ensure that

δ(v) ≥ 2
5 .

Theorem 2.4. If Ψ(v) ≥ 1, then

δ(v) ≥ 2
5
Ψ(v)

1
2 . (18)

Proof. The inverse function of ψ(t) for t ∈ [1,∞) is obtained by solving t from the
equation

ψ(t) = 8t2 − 11t+ 1 +
2√
t
− 4 log t = s, t ≥ 1.

Since it is hard to solve this equation explicitly, we derive a lower bound for t, as
this suffices for our goal. One has

8t2 = s− 1 − 2√
t

+ 11t+ 4 log t ≥ s− 1 − 2 + 11 ≥ s+ 8,

whence


(s) = t ≥
(
1 +

s

8

) 1
2 ·

We have


(Ψ(v)) ≥
(

1 +
Ψ(v)

8

) 1
2

·
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Now using that δ(v) ≥ 1
2ψ

′(
(Ψ(v))), and assuming Ψ(v) ≥ τ ≥ 1, we obtain

δ ≥ 1
2

⎛⎜⎝16
(

1 +
Ψ(v)

8

) 1
2

− 11 − 1(
1 + Ψ(v)

8

) 3
2
− 4(

1 + Ψ(v)
8

)
⎞⎟⎠

≥ 8

((
1 +

Ψ(v)
8

) 1
2

− 1

)
=

Ψ(v)(
1 + Ψ(v)

8

) 1
2

+ 1
≥ 2

√
2Ψ(v)

1
2

3 + 2
√

2
≥ 2

5
Ψ(v)

1
2 .

This proves the theorem. �
Note that if Ψ(v) ≥ 1, substitution in (18) gives

δ(v) ≥ 2
5
· (19)

2.2. Growth behavior of the barrier function

Note that at the start of each outer iteration of the algorithm, just before the
update of µ with the factor 1 − θ, we have Ψ(v) ≤ τ. Due to the update of µ the
vector v is divided by the factor

√
1 − θ, with 0 < θ < 1, which in general leads

to an increase in the value of Ψ(v). Then, during the subsequent inner iterations,
Ψ(v) decreases until it passes the threshold τ again. Hence, during the course of
the algorithm the largest values of Ψ(v) occur just after the updates of µ. That is
why in this section we derive an estimate for the effect of a µ-update on the value
of Ψ(v). We start with an important theorem. This is due to the fact that ψ(t)
satisfies (16).

Theorem 2.5 (cf. [2]). With 
 as defined in Theorem 2.3, we have for any positive
vector v and any β > 1,

Ψ(βv) ≤ nψ

(
β


(
Ψ(v)
n

))
·

Corollary 2.6. One has

Ψ(βv) ≤ 43n
4

(
β


(
Ψ(v)
n

)
− 1
)2

. (20)

Proof. Since β > 1 and 

(

Ψ(v)
n

)
≥ 1, the corollary follows from Lemma 2.2,

Theorem 2.5 and ψ′′(1) = 43
2 . �

Corollary 2.7. Let 0 ≤ θ ≤ 1 and v+ = v√
1−θ . If Ψ(v) ≤ τ, then

Ψ(v+) ≤ 43n
4

(


(
τ
n

)
√

1 − θ
− 1

)2

. (21)
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Proof. Set β = 1√
1−θ in relation (20) and use the fact that Ψ(v) ≤ τ . �

Suppose that the barrier update parameter θ and threshold value τ are given.
According to the algorithm, at the start of each outer iteration we have Ψ(v) ≤
τ. By Corollary 2.7, after each µ-update the growth of Ψ(v) is limited by (21).
Therefore, we define

L(n, θ, τ) :=
43n
4

(


(
τ
n

)
√

1 − θ
− 1

)2

, (22)

L(n, θ, τ) is an upper bound of Ψ(v+), the value of Ψ(v) after the µ-update.

3. Analysis of the algorithm

In this section, we determine a default step size which not only keeps the it-
erations feasible but also gives rise to a sufficiently large decrease of the barrier
function Ψ(v) in each inner iteration. Apart from the necessary adaptations to
the present context and some simplifications, the analysis below follows the same
line of arguments that was used first in [12], and later in [2,3].

3.1. Decrease of the proximity during a (damped) Newton step

After a damped step, with step size α, using (4) we have

x+ = x+ α∆x =
x

v
(v + αdx) , y+ = y + α∆y, s+ = s+ α∆s =

s

v
(v + αds) .

Thus we obtain
v2
+ =

x+s+
µ

= (v + αdx) (v + αds) . (23)

Since ψ satisfies (10-a), it is e-convex as introduced in [11]. This implies

Ψ (v+) = Ψ
(√

(v + αdx) (v + αds)
)
≤ 1

2 [Ψ (v + αdx) + Ψ (v + αds)] .

Thus we have f(α) := Ψ (v+) − Ψ (v) ≤ f1(α), where

f1(α) := 1
2 [Ψ (v + αdx) + Ψ (v + αds)] − Ψ (v)

is a convex function of α, since Ψ(v) is convex.
Obviously, f(0) = f1(0) = 0. The derivative of f is

f ′
1(α) = 1

2

n∑
i=1

(ψ′ (vi + αdxi) dxi + ψ′ (vi + αdsi) dsi) .

This gives, using last equation in (8) and (17),

f ′
1(0) = 1

2∇Ψ(v)T (dx + ds) = − 1
2∇Ψ(v)T∇Ψ(v) = −2δ(v)2. (24)
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Differentiating once more, we obtain

f ′′
1 (α) = 1

2

n∑
i=1

(
ψ′′ (vi + αdxi) dx

2
i + ψ′′ (vi + αdsi) ds

2
i

)
. (25)

Below we use the following notation:

v1 := min(v).

Lemma 3.1. One has

f ′′
1 (α) ≤ 2δ(v)2 ψ′′ (v1 − 2αδ(v)) .

Proof. The last equation in (8) and (17) imply that ‖(dx, ds)‖ = 2δ(v). Since dx
and ds are orthogonal, we have ‖dx‖ ≤ 2δ(v) and ‖ds‖ ≤ 2δ(v). Therefore,

vi + αdxi ≥ v1 − 2αδ(v), vi + αdsi ≥ v1 − 2αδ(v), 1 ≤ i ≤ n.

Recall from (10-b) that ψ′′ is monotonically decreasing, so using the above in-
equalities and (25) we obtain

f ′′
1 (α) ≤ 1

2 ψ
′′ (v1 − 2αδ(v))

n∑
i=1

(
dx

2
i + ds

2
i

)
= 2δ(v)2 ψ′′ (v1(v) − 2αδ(v)) .

This proves the lemma. �
Since f1(α) is convex, we will have f ′

1(α) ≤ 0 for all α less than or equal to the
value where f1(α) is minimal, and vice versa. In this respect the next result is
important.

Lemma 3.2. One has f ′
1(α) ≤ 0 if α satisfies the inequality

− ψ′ (v1 − 2αδ(v)) + ψ′ (v1) ≤ 2δ(v). (26)

Proof. We may write, using Lemma 3.1, and also (24),

f ′
1(α) = f ′

1(0) +
∫ α

0

f ′′
1 (ξ) dξ ≤ −2δ(v)2 + 2δ(v)2

∫ α

0

ψ′′ (v1 − 2ξδ(v)) dξ

= −2δ(v)2 − δ(v) (ψ′ (v1 − 2αδ(v)) − ψ′ (v1)) ≤ 0,

which proves the lemma. �
Lemma 3.3. Let ρ : [0,∞) → (0, 1] denote the inverse function of − 1

2ψ
′(t) re-

stricted to the interval (0, 1]. Then, in the worst case, the step size

ᾱ :=
1
2δ

[ρ (δ(v)) − ρ (2δ(v))] (27)

is the largest possible solution of inequality (26).
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Proof. Given δ(v), we want to find the largest possible α such that (26) holds,
irrespective the value of v1. Since ψ′′ is decreasing, the derivative to v1 of the
expression at the left in (26) (i.e. −ψ′′ (v1 − 2αδ(v))+ψ′′ (v1)) is negative. Hence,
the smaller v1 is, the smaller α will be. One has

δ = 1
2 ‖∇Ψ(v)‖ ≥ 1

2 |ψ′ (v1)| ≥ − 1
2ψ

′ (v1) .

Equality holds if and only if v1 is the only coordinate in v that differs from 1, and
v1 ≤ 1 (in which case ψ′ (v1) ≤ 0). Hence, the worst situation for the step size
occurs when v1 satisfies

− 1
2ψ

′ (v1) = δ(v). (28)
The derivative to α of the expression at the left in (26) equals
2δψ′′ (v1 − 2αδ(v)) ≥ 0, and hence the left hand side is increasing in α. So the
largest possible value of α satisfying (26), satisfies

− 1
2ψ

′ (v1 − 2αδ(v)) = 2δ(v). (29)

Due to the definition of ρ, Equations (28) and (29) can be written as

v1 = ρ (δ(v)) , v1 − 2αδ(v) = ρ (2δ(v)) ,

proving the lemma. �
Lemma 3.4. Let ρ and ᾱ be as defined in Lemma 3.3. Then, in the worst case
situation (where v1 = ρ(δ(v))),

1
ψ′′ (ρ (2δ(v)))

≤ ᾱ ≤ 1
ψ′′ (ρ (δ(v)))

· (30)

Proof. As − 1
2ψ

′ is monotonically decreasing, on [0, 1], its inverse ρ has the same
property.

An immediate consequence of (27) is

ᾱ =
1

2δ(v)

∫ δ(v)

2δ(v)

ρ′(σ) d(v)σ =
1
δ(v)

∫ 2δ(v)

δ(v)

dσ

ψ′′ (ρ(σ))
· (31)

Since ψ′′ and ρ are monotonically decreasing, the argument of the last integral is
maximal if σ = δ and minimal if σ = 2δ(v). Hence the inequalities in the lemma
immediately follow. �

In the sequel we use

α̃ =
1

ψ′′ (ρ(2δ(v)))
(32)

as the default step size. By Lemma 3.4 we have α̃ ≤ ᾱ.

Lemma 3.5 (Lem. 3.12 in [11]). Let h be a twice differentiable convex function
with h(0) = 0, h′(0) < 0, which attains its minimum at t∗ > 0. If h′′ is increasing
for t ∈ [0, t∗] then

h(t) ≤ 1
2 th

′(0), 0 ≤ t ≤ t∗.
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Lemma 3.6. If the step size α is such that α ≤ ᾱ then

f(α) ≤ −α δ(v)2. (33)

Proof. Let the univariate function h be such that

h(0) = f1(0) = 0, h′(0) = f ′
1(0) = −2δ2, h′′(α) = 2δ2 ψ′′ (v1 − 2αδ) .

Due to Lemma 3.1, f ′′
1 (α) ≤ h′′(α). As a consequence, f ′

1(α) ≤ h′(α) and f1(α) ≤
h(α). We may write

h′(α) = −2δ(v)2 + 2δ(v)2
∫ α

0

ψ′′ (v1 − 2ξδ(v)) dξ

= −2δ2 − δ(v) (ψ′ (v1 − 2αδ(v)) − ψ′ (v1)) .

Since α ≤ ᾱ, lemma:estimate alpha 1, we have inequality (26) is certainly satisfied.
Thus it follows that h′(α) ≤ 0, for all α ≤ ᾱ. Since ψ′′ is decreasing, as a function
of t, h′′ is increasing in α. Hence Lemma 3.5 applies and we obtain

f(α) ≤ f1(α) ≤ h(α) ≤ 1
2αh

′(0) = −αδ(v)2. �

Theorem 3.7. Let ρ be as defined in Lemma 3.3 and α̃ as in (32) and Ψ(v) ≥ 1.
Then

f(α̃) ≤ − δ(v)2

ψ′′ (ρ(2δ(v)))
≤ −δ(v)

1
3

662
· (34)

Proof. Since α̃ ≤ ᾱ, Lemma 3.6 gives f(ᾱ) ≤ −α̃ δ(v)2, where α̃ = 1
ψ′′(ρ(2δ(v))) .

Thus the first inequality follows. To obtain the inverse function t = ρ(s) of − 1
2ψ

′(t)
for t ∈ (0, 1] we need to solve t from the equation

−
(

16t− 11 − 1
t

3
2
− 4
t

)
= 2s.

This gives 1

t
3
2

= 2s+ 16t− 11 − 4
t ≤ 2s+ 5, whence

ρ(s) ≥ 1

(2s+ 5)
2
3
·

It follows that

α̃ =
1

ψ′′ (ρ(2δ(v)))
=

1
16 + 4

(ρ(2δ(v)))2 + 3

2(ρ(2δ(v)))
5
2

≥ 1

16 + 4 (4δ(v) + 5)
4
3 + 3

2 (4δ(v) + 5)
5
3
·
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Since (4δ(v) + 5)
4
3 ≤ (4δ(v) + 5)

5
3 , using (19) (i.e., 5

2δ(v) ≥ 1), it follows that

α̃ ≥ 1

16 + 11
2 (4δ(v) + 5)

5
3
≥ 1

662δ(v)
5
3
·

Hence

f(α̃) ≤ − δ(v)2

662δ(v)
5
3

= −δ(v)
1
3

662
·

Thus the theorem follows. �

Using (18), substitution gives

f (α̃) ≤ −Ψ(v)
1
6

1655
·

4. Iteration complexity

In this section we derive the complexity bounds for large-update methods and
small-update methods. An upper bound for the total number of iterations is
obtained by multiplying (the upper bound for) the number of inner iterations K
by the number of barrier parameter updates, which is bounded above by (cf. [13]
Lem. II.17, p. 116)

1
θ

log
n

ε
·

Lemma 4.1 (Prop. 2.2 in [9]). Let t0, t1, . . . , tK be a sequence of positive numbers
such that

tk+1 ≤ tk − κt1−γk , k = 0, 1, . . . ,K − 1, (35)

where κ > 0 and 0 < γ ≤ 1. Then K ≤
⌊
tγ0
κγ

⌋
.

Lemma 4.2. If K denotes the number of inner iterations, we have

K ≤ 1986Ψ
5
6
0 .

Proof. The definition of K implies ΨK−1 > τ and ΨK ≤ τ and

Ψk+1 ≤ Ψk − κ (Ψk)
1−γ

, k = 0, 1, · · · ,K − 1,

with κ = 1
1655 and γ = 5

6 . Application of Lemma 4.1, with tk = Ψk yields the
desired inequality. �

Let L = L(n, θ, τ), as defined in (22). Using ψ0 ≤ L, and Lemma 4.2 we obtain
the following upper bound on the total number of iterations:

1986L
5
6

θ
log

n

ε
· (36)
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4.1. Complexity for large-update and small-update methods

We finally have to estimate L, i.e., to derive an upper bound for Ψ(v) just after
a µ-update. To do this we need to estimate an upper bound for 
.

From (15) and ψ′′(t) ≥ 16, we have

s = ψ(t) =
∫ t

1

∫ ξ

1

ψ′′(ζ) dζdξ ≥
∫ t

1

∫ ξ

1

16dζdξ = 8(t− 1)2,

which implies

t = 
 (s) ≤ 1 +
√
s

8
·

Using Lemma 2.2, with ψ′′(1) = 43
2 , and (22), to estimate Ψ0 we obtain

Ψ0 ≤ L(n, θ, τ) =
43n
4

(


(
τ
n

)
√

1 − θ
− 1

)2

≤ 43n
4

(
1 +

√
τ
8n√

1 − θ
− 1

)2

.

Using 1 −√
1 − θ = θ

1+
√

1−θ ≤ θ, this leads to

ψ0 ≤ 43n
4 (1 − θ)

(
θ +

√
τ

8n

)2

=
43
(
θ
√
n+

√
τ
8

)2
4 (1 − θ)

·

We conclude that the total number of iterations is bounded above by

K

θ
log

n

ε
≤ 1986

θ

(
43
(
θ
√
n+

√
τ
8

)2
4 (1 − θ)

) 5
6

log
n

ε
·

A large-update methods uses τ = O(n) and θ = Θ(1). Then the right hand side
expression is O

(
n

5
6 log n

ε

)
.

For small-update methods use τ = Θ(1) and θ = Θ
(

1√
n

)
. Then the right hand

side expression is O
(√
n log n

ε

)
.

5. Concluding remarks

In this paper we prove that the iteration bound of a large-update interior-point
method based on the kernel function considered in this paper is O

(
n

5
6 log n

ε

)
,

which improves the classical iteration complexity with a factor n
1
6 . For small-

update methods we obtain the best know iteration bound, namely O
(√
n log n

ε

)
.
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