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Abstract Background One of the major challenges in pediatric intensive care is the detection
of life-threatening health conditions under acute time constraints and performance
pressure. This includes the assessment of pediatric organ dysfunction (OD) that
demands extraordinary clinical expertise and the clinician’s ability to derive a decision
based on multiple information and data sources. Clinical decision support systems
(CDSS) offer a solution to support medical staff in stressful routine work. Simulta-
neously, detection of OD by using computerized decision support approaches has been
scarcely investigated, especially not in pediatrics.
Objectives The aim of the study is to enhance an existing, interoperable, and rule-
based CDSS prototype for tracing the progression of sepsis in critically ill children by
augmenting it with the capability to detect SIRS/sepsis-associated hematologic OD,
and to determine its diagnostic accuracy.
Methods We reproduced an interoperable CDSS approach previously introduced by
our working group: (1) a knowledge model was designed by following the common-
KADS methodology, (2) routine care data was semantically standardized and harmo-
nized using openEHR as clinical information standard, (3) rules were formulated and
implemented in a business rule management system. Data from a prospective
diagnostic study, including 168 patients, was used to estimate the diagnostic accuracy
of the rule-based CDSS using the clinicians’ diagnoses as reference.

� ELISE study group members can be found in Supplementary
Appendix A (available in the online version)
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Background and Significance

Diagnosing organ dysfunction (OD) along the clinical pathway
of critically ill children suffering from systemic inflammatory
response syndrome (SIRS) or sepsis is a knowledge-intensive
and fault-prone task that clinicians have to solve under pro-
found urgency, due to its life-threatening character.1 SIRS can
progress to sepsis if there is an infection. As the name already
suggests, SIRS represents a systemic response of the entire
body often resulting in further suffering of affected organ
systems. OD and failures occur, leading to a decreased chance
of full recovery. Byearly initiationof antibiotic or symptomatic
treatment continuously along this pathway, fatal outcomes
might be preventable and mortality might be reduced. Thus,
besides detecting SIRS as the starting point, also the early
detection of associated OD along the path is important since it
allows timely assessment of the progression state of infection
in the patient.2 Additionally, by this separate analysis for the
presence of any OD, an early differentiation between SIRS and
severe SIRS ispossible. In2005,fieldexperts and researchers at
the International Pediatric Sepsis Consensus Conference
(IPSCC)3 agreed on a set of diagnostic criteria for sepsis and
associated ODs, including the multiple organ dysfunction
syndrome (MODS). Concerning pediatric OD, the criteria
comprise a list of laboratory parameters and thresholds for
each organ system (respiratory, cardiovascular, renal, hepatic,
hematologic, and neurological) potentially affected.3 For the
hematologic systemof children, two physiological parameters
are of great relevance: the platelet count and the international
normalized ratio (INR).3According toGoldsteinet al,3pediatric
hematologic OD is defined as:

• “Platelet count <80,000/mm3 or a decline of 50% in
platelet count from the highest value recorded over the
past 3 days (for chronic hematology/oncology patients).

• Or, an international normalized ratio >2.

Delayed diagnosis can increase mortality, either by in-
creasing the severity of OD or by increasing the number of
failing organs.4 Depending on the admission diagnosis, mor-
tality rates range from approximately 14.3 to 24.7%.5

Concomitant with a fast-growing amount of complex and
heterogeneous data, there is an increasing interest in clinical
decision support (CDS).6 However, for a CDSS to enhance its

usefulness at thepointofcare, itmustbewell integrated into the
clinical workflow. In related work, best practices and lessons
learned describe key aspects of a successful implementation,
focusing on user-friendly designs and evidence-based-driven
algorithms.7–10 To decide on the presence or absence of a
physiological abnormality,physicianshaveto interpretdifferent
physiological parameters from various information sources,
such as the laboratory information system, electronic health
record (EHR), or a ward-specific patient data management
system (PDMS). These data need to be analyzed for each patient
individually as normal ranges vary between age groups.11

Altogether, various aspects need to be considered in a short
period, requiring substantial practical experience. Taking these
unique conditions into account, clinical decision support sys-
tems (CDSS) could provide added value in reducing the work-
load of staff and enhancing a patient’s condition by providing
moreaccuratediagnoses.12–14Tomakesurethat thedecisionsof
the CDSS are reliable, a precise knowledge base is essential to
cover all clinical and patient-related details that are crucial for
making decisions fitting best to the patient’s health and well-
being.15 Furthermore, to allow broad applicability and sharing
of CDSS, semantic interoperability standards, interfaces, and
FAIR principles16 should be considered. This includes the reuse
of existing data in a standardized and semantically enriched
form rather than building yet another stand-alone system
(specifically designed for an institution), implementing a new
vendor locked-in PDMS, or relyingonspecific non-standardized
data representations from a primary source system. To avoid
this, various semantic interoperability or messaging standards
areavailable, suchasopenEHR,17HL7CDA/CCR,18orHL7FHIR.19

In our previous work, we successfully presented and
evaluated a holistic approach for designing an interoperable,
knowledge-based CDSS for early detection of SIRS in pediat-
ric intensive care units (PICU).20 In this work, we aim at
reproducing and enhancing this interoperable and rule-
based CDSS approach for the detection of pediatric,
SIRS/sepsis-associated, hematologic OD, thus also exploring
the transferability of our design approach.

Objectives

Our long-term goal is the development of a CDSS able to
assess patients with respect to sepsis. Therefore, we need to

Results We successfully enhanced an existing interoperable CDSS concept with the
new task of detecting SIRS/sepsis-associated hematologic OD. We modeled openEHR
templates, integrated and standardized routine data, developed a rule-based, interop-
erablemodel, and demonstrated its accuracy. The CDSS detected hematologic ODwith
a sensitivity of 0.821 (95% CI: 0.708–0.904) and a specificity of 0.970 (95% CI: 0.942–
0.987).
Conclusion We could confirm our approach for designing an interoperable CDSS as
reproducible and transferable to other critical diseases. Our findings are of direct
practical relevance, as they present one of the first interoperable CDSS modules that
detect pediatric SIRS/sepsis-associated hematologic OD.
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be able to identify pathological states that are clinically
relevant for the clinical pathway of the patient along
SIRS/sepsis progression, starting with initial SIRS detec-
tion20,21 and going on with abnormal events related to
SIRS/sepsis such as associated OD. In this paper, we follow
our research path by focusing on the computerized detection
of SIRS/sepsis-associated hematologic OD.

1. To enhance an existing, interoperable, and rule-based
CDSS prototype for tracing the progression in critically
ill children by augmenting it with the capability to detect
SIRS/sepsis-associated hematologic dysfunction.

2. To determine diagnostic accuracy (i.e., sensitivity and
specificity) of the CDSS for detecting pediatric hemato-
logic dysfunction by analyzing real-world data as a proof-
of-concept (PoC) study.

Methods

Interoperability in CDSS
We have reproduced an interoperable CDSS approach previ-
ously introduced by our working group for computerized
detection of SIRS in PICU. A key characteristic of this concept
is the use of openEHR as a clinical information standard.20

OpenEHR specifies an open platform architecture for EHR
systems and outmatches traditional approaches by ensuring
semantic interoperability for collecting and exchanging clin-
ical data.22,23 This is assured as long as the exchanging
institutions use the same standardized clinical information
models, the so-called archetypes. Archetypes are used to
define the clinical information to be represented (e.g., a
laboratory test result) in a uniform, machine-readable as
well as machine-actionable, and standardized form.24 Thus,
they are rich and computable metadata models of clinical
information. Archetypes rely on the reuse of standardized and
internationally agreed-upon data items but simultaneously
encapsulate this technical content from the domain-specific
aspects.25 For example, for representing a laboratory test
result, a standardized model, agreed upon internationally by
various experts fromdifferentdomains, canbeused to capture
and/or integrate routine laboratory test data.26 Nesting and
restrictingdifferent archetypes, theoutcome is a template that
usually refers to an entire document or form (e.g., laboratory
report) that requires various archetypes to meet the local
needs of an institution.22 Terminology bindings (e.g.,
SNOMED-CT27 or LOINC28) are possible on both archetype
and template levels.29 Throughout the modeling process and
subsequently, archetypes and templates can be uploaded,
managed, reviewed, and accessed via aweb-based data repos-
itory, the Clinical KnowledgeManager (CKM).30 Cross-institu-
tional data transfer does not depend on local infrastructures,
applications, and vendors, but rather on a common reference
model (RM) which does not rely on elusive clinical knowl-
edge.22 Instead, the RM represents the basis upon which
software applications can be built. Thus, decision logic in
software applications is separated from clinical data, ensuring
vendor independence and interoperability on the application
level.23 For the use case of hematologic OD, appropriate
templates, consistingof international agreed-uponarchetypes

available in theCKM,need tobemodeled tomapthediagnostic
criteria.

Step-wise Implementation Strategy
►Fig. 1 shows an overview of the existing CDSS architecture
and the necessary modeling and implementation steps
adapted for our new use case. For more information on the
existing CDSS architecture, we refer to Wulff et al.20

Step 1: Data Extraction and Integration
Data used in the CDSS is routinely captured by the PDMS m.
lifea by medisite (version 11.2.4) of the PICU at Hannover
Medical School (HMH). After the extraction of routine data
from primary source systems, data were transformed and
loaded into an openEHRdata repository by using standardized
data models. Currently, our data extraction and integration
processes are performed only on demand. However, it is
possible to adjust those processes to be performed every time
a new value comes in. The openEHR data repository used was
based on the Better platform by Marand.31

Step 2: Data Querying
For retrieving data stored in archetypes, the model-based
ArchetypeQueryLanguage (AQL)wasused.32AQL-constructed
queries retrieve data from the openEHR data repository via a
REST API and were – in contrast to SQL or similar query
languages – independent of underlying primary source data-
base structures and system vendors. This means that they
work on any openEHR platform that implements the above-
mentioned, internationally agreed-upon archetypes.

Step 3: Knowledge Modeling
We adopted our previously designed approach for knowl-
edge acquisition and representation that comprises the use
of commonKADS as awell-documented and comprehensible
methodology for acquiring,modeling, and processing knowl-
edge.33 In addition to literature research, we performed
structured interviews to exchange information with two
experienced intensive care pediatricians. The clinical ques-
tion and methodology have been raised directly from the
clinical context and worked out together with computer
specialists. Knowledge transfer was the focus at the begin-
ning. For this purpose, the pediatricians received a question-
naire tailored to the clinical picture of sepsis-associated
hematological dysfunction. Based on these knowledge assets
provided in the answers and additional expert discussions
during rule development, the human-readable rules were
jointly designed and translated into machine-readable rules
by computer scientists (during step 4, see below). During the
evaluation, pediatricians reviewed false positive and false
negative alarms so that either the gold standard or the rule
base could be optimized.We used commonKADS as amodel-
driven approach to conceptualize three knowledge models
for each knowledge category including domain, inference,
and task knowledge.33 When knowledge was revealed at a

a https://medisite.de/mlife/.Protection of Human and Animal Sub-
jects
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later stage in the knowledge engineering process (e.g., during
evaluation), the knowledge base was adapted iteratively.15

Step 4: Rule Development
For transferring expert knowledge into computable prob-
lem-solving steps, we implemented rules by using the Busi-
ness Rules Management System Drools by JBoss (Red Hat),34

which provides techniques to embed reasoning structures.

Step 5: Graphical User Interface Design
For the visualization of vital signs series, laboratory value
courses, and warnings, a graphical user interface based on
JavaFX – a framework for developing applications built on
Java35–was designed. We concentrated on making decisions
explainable and visually easy to catch. The graphical user
interface visualizes also parameters that are not directly
relevant to hematologic dysfunction but all together are
required to provide information about the clinical progres-
sion of SIRS/sepsis.

Clinical Evaluation and Statistical Analysis
We used data from the prospective, monocentric, double-
blinded, diagnostic CADDIE2 study to estimate diagnostic
accuracy (sensitivity and specificity) of the rule-based CDSS
(index test). Simultaneously, two experienced pediatricians
defined the reference standard by blinded, retrospective
digital chart review, and analysis based on the IPSCC criteria.

The CADDIE2 study included 168 consecutively sampled
patients (0–18 years) from the interdisciplinary PICU of the
MHH, who stayed for at least 12hours with valid informed
consent, between August 2018 to September 2019. These
168 patients reflected the intended sample size for the
evaluation of the diagnostic accuracy of SIRS detection. For
details on the study population and recruited patients, we
refer to Wulff et al.21

Wedivided the PICU stay of a patient into blocks that were
then labeled as “true positive,” “false negative,” “true nega-
tive,” or “false positive” (for details see ►Supplementary

Material S1, available in the online version). The blocks

Fig. 1 Bottom-up implementation plan to enrich the existing CDSS. CDSS, clinical decision support systems.
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were generated dependent on a change in the diagnostic
status (OD present vs. no OD) of either the CDSS, the
reference standard, or both simultaneously. Missing values
or indeterminate results were not possible. However, the
labeling was slightly modified by using a�4-hour window
around the onset and end of the reference standard episode
(exact timestamps defined by clinicians) as well as merging
diagnoses with less than 24hours between episodes. The
period from the onset to the end of an episode is referred to
as the diagnostic episode, i.e., the patient is diseased (for
details see ►Supplementary Material S1, available in the
online version). Based on the labels, sensitivity and
specificity with their Wald 95% confidence intervals (CI)
were estimated using the approach by Brunner and Zapf,36

Lange,37 and Rooney,38 which accounts for the longitudinal
data format (several blocks per patient). The analysis was
performed in R version 4.1.2 (November 01, 2021). A
subgroup or sensitivity analysis was not conducted.

Results

Conceptualized Knowledge Model for Hematologic
Organ Dysfunction
The preparation of a problem- and application-specific
knowledge base is of great importance. Therefore, we con-

ceptualized a knowledgemodel (►Fig. 2) composed of a task,
domain, and inference model. The inference model is re-
quired to perform problem-solving steps under the use of
static expert knowledge (domain model) to complete the
task of recognizing hematologic OD (task model). First, the
normal range for each laboratory parameter must be speci-
fied (inference: specify). Depending on the underlying pa-
rameter, the correct normal range needs to be selected
(inference: select), thereby in the next step, the respective
laboratory result can be evaluated by comparing it to the
normal range (inference: evaluate). Afterward, it can be
inferred whether the value is within or outside the normal
range, resulting in the actual decision if a hematologic OD
episode is present or absent due to an off-limit condition.

Data Models and Querying
For this work, already existing archetypes could be reused to
model three templates: (1) laboratory report, (2) diagnosis
report, and (3) procedure report. The “laboratory report”
(►Fig. 3) contains data related to laboratory findings. The
“diagnosis report” stores the diagnoses of a patient, and the
“procedure report” holds data about the performed
procedures.

Since a “laboratory report” can store many test results,
each instance of the cluster archetype “laboratory test result”

Fig. 2 Simplified knowledge model and its dependencies of all three commonKADS knowledge categories.

Fig. 3 openEHR template for storing laboratory results (ID: ELISE Laboratory Report).
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stores, in addition to the laboratory value and its correspond-
ing specimen collection timestamp, the terminology ID
“LOINC” and its actual LOINC codes (platelets: “777–3,”
INR: “6301–6”) in the corresponding data element of type
DV_CODED_TEXT. The enrichment of LOINC terminology
bindings ensures standardized data retrieval across different
institutions, preconditioned that the AQL query is restricted
to the same LOINC code (e.g., /name/defining_code/code_-
string¼ “777–3”).

Based on the template structure, we defined AQL queries
to load data into the CDSS. In thefirst step, these querieswere
assigned to a variable in the CDSS, storing the query in a
string format. Second, a REST API processed this string into a
result set. Third, a loop iterated through each line of the
result set and instantiates objects for each value of the
patient (Patient State). Further, these facts could be inserted
into Drools streams where rules enriched the attributes of
the objects before transferring the generated knowledge into
a target database.

Implemented Knowledge Base, Reasoning
Mechanisms, and User Interface
IPSCC diagnostic criteria serve as the foundation of the
implemented rules (explicit knowledge).3 However, some
institution-specific adaptions to these internationally de-
fined criteria were realized due to special characteristics of
the patient collective of MHH. The first criterion was modi-
fied by using the first value after patient admission (here:
baseline) as a comparator instead of the highest value
recorded over the past 3 days to prevent adulterations
associated with platelet transfusions or bleeding complica-
tions due to surgery. To decide whether a patient meets the
baseline criterion, our domain experts identified diagnoses
(►Supplementary Appendix B, available in the online ver-
sion) to recognize if a patient suffers from a chronic
hematological/oncological illness associated with thrombo-
cytopenia. If the patient was diagnosed with at least one of
the diagnoses, hematologic ODwould be present if either the
platelet count would be below a threshold of 80,000/mm3 or
if there would be a decline of 50% in platelet count compared
with the first value recorded. Therefore, the latter criterion
only applies to patients where at least one of these diagnoses
was documented to catch the patients that might have
platelet counts above 80,000/mm3, however, their count in
platelets significantly dropped due to a possible hematologic
OD.

Primary diseases associated with an increase in INR
(►Supplementary Appendix B, available in the online ver-
sion) have been identified, e.g., hereditary deficiencies.
Analogous to the platelet count criterion, if the patient’s
diagnoses match with one of the ICD-10-GM codes (German
Modification of the International Classification of Diseases)
39 listed in ►Supplementary Appendix B (available in the
online version), an increased INR will not be taken into
account for the application of further rules.

Additionally, our domain experts decided to distinguish
between patients who need extracorporeal membrane oxy-
genation (ECMO) and patients who do not need ECMO, since

the CDSS and the physician in charge should incorporate that
informationwhen diagnosing thrombocytopenia. To circum-
vent false positives associated with ECMO (e.g., due to the
administration of heparin or after pains of ECMO), a time
span of 2 hours pre-ECMO and 12hours post-ECMO has been
added to the duration of ECMO.

►Fig. 4 shows the reasoning process for the hematologic
OD including all adoptions. The left branch indicates under
which circumstances an alarm is elicited, caused by a lack in
platelet count. The right branch encompasses the conditions
leading to an alarm caused by an offset limit violation of INR.
If the alarms occur simultaneously, they are being
concatenated to one hematologic OD caused by both abnor-
mal platelets and INR values.

Drools decision tables are suitable for equally structured
rules, in which each row represents a separate rule, whereas
drools rule files encompass more specific rules. Each infer-
ence is associated with a set of rules which fire simulta-
neously. The rule engine ensures that another set of rules of
the next inference can only fire until the previous inference
step has been completed. First, a decision table makes sure
that the incoming value is assigned to the corresponding
normal range (parameter norm model). If every condition of
a rule ismet, the actions arebeing triggered. In this particular
ruleset, the attributes maximum and minimum of the con-
cept norm obtain a value, as shown in ►Fig. 5. Note that the
diagnostic criteria only suggest a minimum value for platelet
count and a maximum value for INR. The respective other
boundary value is based on clinically reasonable values
provided by domain experts.

Subsequently, rules of three decision tables fire simulta-
neously using the knowledge generated by the specify-infer-
ence (alarm model). Depending on the parameter type and
the presence of a limit value violation, at least one condition
among all the rules of all three tables (distinguished by their
alarm category) is met. In case the value exceeds the maxi-
mum (alarm category¼ “too high”) or falls below the mini-
mum (alarm category¼ “too low”), this results in a so-called
alarm event. Unlike these scenarios, the value can also be
within the normal range (alarm category¼ “normal,” no
alarm event is fired).

Based on the output of the decision tables, this newly
generated knowledge can be used for further rules imple-
mented via rule files. The ongoing inference mechanism is
based on the stepwhere alarm events of the same parameter
type and alarm category merge if the events occur simulta-
neously. The resulting united alarm event has the starting
point of the first alarm event and the ending point of the last
overlapping alarm event.

►Fig. 6 gives an example of the Drools syntax of a rule in
which an INR alarm (when-condition) results in an OD event
being of the type “hematologic-inr” (then-condition).

To visualize the process of constantly changing the knowl-
edge base throughout the reasoning process, ►Fig. 7 dem-
onstrates which attributes of the concepts within the
knowledge base are being enriched (right hand side) and
how the knowledge base alters during application runtime
(left hand side).
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The final decision of the CDSS is delineated in a clear and
precise manner so that medical staff can retrace and com-
prehend the CDSS decision (explanation facility). Charts
visualize alarms by illustrating the time course of the pa-
rameter values as well as emphasizing the presence of an OD
episode in red color. Next to each chart, the normative values

for the patient are visible to explain CDSS decisions. A table at
the bottom summarizes relevant information of the alarm
such as duration, parameter type, start and end time point.
To align with the existing CDSS design, presented by Wulff
et al,20 the graphical user interface has the same appearance
(►Fig. 8).

Fig. 4 Reasoning process based on explicit and tacit knowledge assets.

Fig. 5 Extract of decision table for assigning the correct normal range to the patient’s parameter value.
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Estimation of Diagnostic Accuracy
The data for PoC included 168 patients (0–18 years) with
1.998 admission days and 337 blocks. Overall, 67 episodes of
hematologic OD in 35 patients (10 patients with �two
episodes) were recorded by the clinicians. The rule-based
CDSS detected the onset of the hematologic dysfunctionwith
a sensitivity of 0.821 (95% CI: 0.708–0.904) and a specificity
of 0.970 (95% CI:0.942–0.987) (►Table 1). The research did
not cause any adverse events for patients, because the index
test was applied retrospectively (►Fig. 9).

Discussion

Strengths and Limitations
We have shown that our interoperable CDSS concept, first
introduced for SIRS detection in children, is transferrable to
other relevant clinical use cases. Addressing some false
positives, one limitation of the CDSS is its inability to recog-
nize pre-analytical errors, e.g., improper sample collection,
or post-analytical errors such as mismatched laboratory
specimens. However, this limitation could be addressed in

Fig. 6 Example for eliciting an alarm due to increased INR implemented with Drools rule. INR, international normalized ratio.

Fig. 7 Iterative knowledge base alteration during reasoning.
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a rule that compares each abnormal value with the previous
and following value within a pre-defined timeframe. The
timeframe should be selected in a way that would indicate
that the clinician suspects an analytical error, hence ordering
a new laboratory test immediately. Therefore, if the following
value is not pathological and significantly differs from the
current, pathological value, it is likely to be an erroneous
value that does not fit the constitution of the patient. Other
false positives are due to other procedures, especially if the
patient has lost high volumes of blood during surgery,
resulting in low platelet counts. The false negatives are
related to the ECMO rules. In specific cases, for example,
when the patient takes a relatively long time to achieve

normal platelet levels after ECMO or achieves it only with
repeated administration of platelets, clinicians suspect a
hematologic dysfunction, deviating from the criteria. Anoth-
er reasonwhy sensitivity on the patient levelwas not as good
as expected could be the quality of the primary source data.
Overall, several strategies will be developed to optimize the
CDSS before further steps are taken.

We are aware that our sample size of 168 patients is
relatively small, which is related to the fact that, first,
pediatric cohorts are generally smaller and, second, no
reference standard with episodes of SIRS/sepsis and associ-
ated OD is available. The reason why we have not evaluated
our approach on other wards is that a continuous, digitalized
documentation of vital signs, laboratory values, and other
values is a rarity in German wards. Without these data in
other settings, it is simply not possible to use such a
computerized clinical decision support approach for
SIRS/sepsis and associated ODs. Consequently, we were not
able to evaluate the transferability of our system to other
wards. Nevertheless, wewill integratemeasured values from
the intermediate care units shortly. This will be the first step
to test our system also for other patient cohorts with other
characteristics.

Rather than simply detecting abnormal laboratory values
similar to what laboratory reporting systems are capable of,
our goal was to detect SIRS/sepsis-associated hematologic

Fig. 8 Graphical user interface for the recognition of hematologic dysfunction.

Table 1 Cross-tabulation of time blocks among 168 patients

Clinician’s diagnosis

CDSS Hematologic
dysfunction
Positive

Hematologic
dysfunction
Negative

Total

Alarm 55 8 63

No alarm 12 262 274

Total 67 270 337

Abbreviation: CDSS, clinical decision support systems.
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dysfunction according to the IPSCC criteria, since such de-
pendencies are not implemented in our laboratory informa-
tion system. Additionally, some diagnostic criteria were
modified due to specifics in MHH diagnostics and data
capture. Consequently, these criteria differ from the consen-
sus criteria defined by multiple experts from the IPSCC. To
address this, the CDSS could be enhanced by user input fields
to be able to choose from different available criteria to adapt
to site-specific conditions. Further adaptions before the CDSS
will be implemented in the PDMS, include, for example,
integrating warnings when ECMO is present in the patient.
In this case, the system should warn the pediatrician about
abnormal values to prevent any fatal missing conditions of
the patient on ECMO but will not label it as a dysfunction,
unless the pediatrician determines otherwise. In general, the
CDSS would have to be enriched with further knowledge to

create alerts with clinical relevance as just described, but
which do not lead to a diagnosis.

Relying on open standards (e.g., openEHR) is a clear
advantage since it is vendor-neutral and openly specified.
Another strength of the CDSS is its ability to produce high-
quality labeled datasets useful to train machine-learning
models. Once the CDSS can detect dysfunction of other organ
systems, it provides data scientists with an efficient and fast-
processing tool for data annotation concerning the multi-
class problem of MODS. Since the prototypical approach had
proven beneficial, it will serve as a role model for future
implementations of dysfunction or failure of other organ
systems along the pathway of SIRS/sepsis. These future
implementations also include implementation into routine
work, once our approach was proven beneficial in a multi-
center study. For this, we are working closely together with a

Fig. 9 Flow diagram for recruited patients including their overall hematologic OD label (for details on the overall label see ►Supplementary

Material S1 (available in the online version).
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certified manufacturer to implement our results to comply
with regulations of the European Medical Device Regulation
(MDR). Thus, this work is intended to share early results with
interested scientists. However, it is worthwhile to mention
that our algorithm was applied to real clinical routine data.

As explained, our work is primarily about detecting
SIRS/sepsis-associated hematologic dysfunctions. To differ-
entiate between SIRS/sepsis-associated pathologic states
and underlying diseases also resulting in abnormal IPSCC
parameters, we implemented ICD-10-based measures. In-
deed, since we decided to focus SIRS/sepsis progression, our
approach is limited because detection of OD from other
causes is not integrated.

Future Directions
We were able to present promising findings for data-driven
hematologic OD detection by reusing an interoperable CDSS
approach. In oneof thenext steps,wealsoaimat evaluatingour
approach in other,more general pediatricwards bymaking use
ofour labelingmechanism. In this context, we focus on labeling
a large dataset of pediatric intensive care patients (approxi-
mately5,000encounters from2015 to2021) touse it as training
and test data for data-driven approaches, whichwill also allow
evaluatingalgorithmsonabroaderbasis. Formore information,
wewould like to refer to the publication server ofour dataset.40

We are currently in the process of further enriching the
knowledge base with rules regarding more complex OD such
as hepatic, renal, cardiovascular, and respiratory OD, dealing
with more parameters and age-specific differences. In parallel,
the PDMSmanufacturer ofMHH is implementing the rules that
have already been evaluated in their certified medical device.
Thereafter, we can make a definite statement on whether the
diagnostic accuracy yields similar results to what we yielded
with our CDSS in one of thefirst steps of CDSS implementation.

In addition, we aim at publishing a completely open accessi-
ble demonstrator, whichwill be published in a couple of weeks,
so that the source code can be optimized by each interested
researcher.41 The next stage of our research will be the imple-
mentation of combination rules to detect MODS. Additional
workon acquiring knowledge for organ failurewould help us to
implement rules for the detection of organ failure in critically ill
children. Research into developing machine-learning algo-
rithms using the labeled dataset by our CDSS is also underway,
as questions about a potential refinement of the diagnostic
criteria canbe raised.Moreover, a usability study is planned and
will be conducted in the upcoming months. We will assess the
usability of our system by using quantitative and qualitative
assessments, amongst others, resulting in a final SUS score.42

Conclusion

The authors have shown that our interoperable CDSS concept
is transferrable to other clinical use cases. Using a stepwise
approach,we augmented our CDSSwith the capability for the
detection of pediatric hematologic OD. The results of our
evaluation show that the CDSSwill correctly diagnose 82% of
the patients who have a hematologic OD, but the CDSS will
also issue a diagnosis for 3% of the patientswho do not have a

hematologic OD. The practicability concerning more com-
plex OD will be addressed in future work.

Clinical Relevance Statement

Health care professionals will benefit from CDSS if these
systems consolidate information from different source sys-
tems, analyze a large amount of heterogeneous data, present
the most important pieces of information, and enable accu-
rate, fast, and informed decision-making even in time-criti-
cal and high-risk situations. The ability of CDSS to detect OD
can have a direct impact on the workload of pediatric
intensive care physicians, including lower stress levels and
error prevention, as well as it can support inexperienced
physicians and close knowledge gaps. With CDSS for early
detection of OD, the physician will be able to quickly assess
the patient’s condition and decide on further treatments that
would better match the patient’s risk status.

Multiple Choice Questions

1. Which of the following is awell-knownbottleneckof CDSS
adoption?
a. The design of new CDSS as standalone systems.
b. The use of semantic and syntactic interoperability

standards.
c. The design of new CDSS with interfaces to EHRs or

further primary source systems in the information
system landscape of the institution.

d. The reuse of existing routine data captured in primary
source documentation or monitoring systems.

Correct Answer: The correct answer is option a. Stand-
alone CDSS lacks interoperability and can disrupt the
physician’sworkflowwhen not connected to the systems
used in daily routine.

2. Which of the following aspects is decisive in the applica-
tion of the openEHR approach for semantic modeling and
structured representation of clinical concepts?
a. A deep technical understanding of the underlying

database structure.
b. The reuse of existing archetypes that already have been

published in freely accessible repositories.
c. Advanced knowledge of a programming language (e.g.,

Java, Cþþ).
d. The use of a specific vendor-dependent commercial

archetype designer.

Correct Answer: The correct answer is option b. Many
clinical concepts are already available in international
archetype repositories (e.g., Clinical Knowledge Manag-
er, CKM, www.openehr.org/ckm). These archetypes are
used in other openEHR-projects and have been devel-
oped in collaborationwith various international experts.
Reusing such archetypes not only preserves internation-
al interoperability but also saves resources. In addition,
modeling is not limited to a specific commercial tool, as
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various products, including open source solutions, exist.
Finally, openEHR realizes two-level modeling so that no
deep understanding of technical problems such as the
underlying database structure or advanced knowledge in
a programming language is required.

Statement of Ethics
All study participants, their parents, or legal guardians
gave written informed consent. The study has been ap-
proved by the Ethics Committee of Hannover Medical
School (No. 7804_BO_S_2018 and No. 9819_BO_S_2021).
The study was performed in compliance with the World
Medical Association Declaration of Helsinki on Ethical
Principles for Medical Research Involving Human Sub-
jects, and was reviewed by the Ethics Committee of
Hannover Medical School.

Author Contributions
All authors including thestudygroupmemberscontributed to
the manuscript according to the ICMJE (International Com-
mittee of Medical Journal Editors) recommendations and
were involved in data, knowledge, and rule acquisition as
well as manuscript reviewing. L.B. was responsible for orga-
nizing the drafting process and manuscript writing, develop-
ing the OD rules, and outlining the manuscript. A.W. was
responsible for thedesign and implementationof the interop-
erable CDSS approach, enhancement of the database, and
support of knowledge acquisition and rule development. S.S.
and T.J. provided clinical expertise and data, independently
evaluated the patients to define ground truth decisions and to
discuss evaluation results, and co-drafted themanuscript. J.B.
was responsible for conducting thestatistical analysis andPoC
evaluation and drafting the correspondingmethod and result
sections. The ELISE study group includes all researchers
participating in the ELISE project discussions of data models,
data extraction and integration, CDSS design, rules, and
evaluation. O.J.B. supervised the work, critically revised the
manuscript, and gave further methodological advice. M.M.
critically revised the manuscript. All authors approved the
final manuscript version.

Funding
This work is fully funded by the Federal Ministry of
Health; Grant No. 2520DAT66A. This work was also partly
supported by the Lower Saxony “Vorab” of the Volkswa-
gen Foundation and assisted by the Center for Digital
Innovations (ZDIN) as well as the Ministry for Science and
Culture of Lower Saxony; Grant No. ZN3491.

Conflict of Interest
None declared.

Acknowledgments
Wewould like to thank the ELISE Study group for its input.
Moreover, the assistance provided by the MHH Informa-
tion Technology was greatly appreciated.

References
1 Zavala AM, Day GE, Plummer D, Bamford-Wade A. Decision-

making under pressure: medical errors in uncertain and dynamic
environments. Aust Health Rev 2018;42(04):395–402

2 Bone RC, Balk RA, Cerra FB, et al; The ACCP/SCCM Consensus
Conference Committee. American College of Chest Physicians/
Society of Critical Care Medicine. Definitions for sepsis and organ
failure and guidelines for the use of innovative therapies in sepsis.
Chest 1992;101(06):1644–1655

3 Goldstein B, Giroir B, Randolph AInternational Consensus Confer-
ence on Pediatric Sepsis. International pediatric sepsis consensus
conference: definitions for sepsis and organ dysfunction in pedi-
atrics. Pediatr Crit Care Med 2005;6(01):2–8

4 Marshall JC. The multiple organ dysfunction syndrome. In: Mar-
shall JC, ed. Surgical Treatment: Evidence-Based and Problem-
Oriented. Zuckschwerdt; 2001

5 Williamson DR, Lesur O, Tétrault J-P, Nault V, Pilon D. Throm-
bocytopenia in the critically ill: prevalence, incidence, risk
factors, and clinical outcomes. Can J Anaesth 2013;60(07):
641–651

6 Denekamp Y. Clinical decision support systems for addressing
information needs of physicians. Isr Med Assoc J 2007;9(11):
771–776

7 Abdel-Rahman SM, Gill H, Carpenter SL, et al. Design and usability
of an electronic health record-integrated, point-of-care, clinical
decision support tool for modeling and simulation of antihemo-
philic factors. Appl Clin Inform 2020;11(02):253–264

8 Ikoma S, FurukawaM, Busuttil A, et al. Optimizing inpatient blood
utilization using real-time clinical decision support. Appl Clin
Inform 2021;12(01):49–56

9 Mack EH, Wheeler DS, Embi PJ. Clinical decision support systems
in the pediatric intensive care unit. Pediatr Crit CareMed 2009;10
(01):23–28

10 Robert L, Rousseliere C, Beuscart J-B, et al. Integration of explicit
criteria in a clinical decision support system through evaluation
of acute kidney injury events. Stud Health Technol Inform 2021;
281:640–644

11 Williams CN, Bratton SL, Hirshberg EL. Computerized decision
support in adult and pediatric critical care. World J Crit Care Med
2013;2(04):21–28

12 Berner ES, Osheroff JA. Tamblyn Robyn. Clinical Decision Support
Systems: State of the Art. AHRQ Publication No. 09–0069-EF;
2009

13 Miller RA. Medical diagnostic decision support systems–past,
present, and future: a threaded bibliography and brief commen-
tary. J Am Med Inform Assoc 1994;1(01):8–27

14 Pearson S-A, Moxey A, Robertson J, et al. Do computerised clinical
decision support systems for prescribing change practice? A
systematic review of the literature (1990-2007). BMC Health
Serv Res 2009;9:154

15 Spreckelsen C, Spitzer K. Wissensbasen und Expertensysteme
in der Medizin: Kl-Ansätze zwischen klinischer Entscheidung-
sunterstützung und medizinischem Wissensmanagement.
ViewegþTeubner Verlag/GWV Fachverlage GmbH Wiesbaden;
2009

16 Wilkinson MD, Dumontier M, Aalbersberg IJJ, et al. The FAIR
Guiding Principles for scientific data management and steward-
ship. Sci Data 2016;3:160018

17 Beale T. Archetypes: Constraint-based Domain Models for
Future-proof Information Systems. Paper presented at: Elev-
enth OOPSLA workshop on behavioral semantics; 2002:
16–32

18 HL7 International. CDA® Release 2: HL7 Standards Product Brief.
Published October 14, 2021. Accessed October 14, 2021 at: http://
www.hl7.org/implement/standards/product_brief.cfm?
product_id¼7

Applied Clinical Informatics Vol. 13 No. 5/2022 © 2022. The Author(s).

CDSS to Detect Pediatric Hematologic Dysfunction Bode et al. 1013

http://www.hl7.org/implement/standards/product_brief.cfm&x003F;product_id&x003D;7
http://www.hl7.org/implement/standards/product_brief.cfm&x003F;product_id&x003D;7
http://www.hl7.org/implement/standards/product_brief.cfm&x003F;product_id&x003D;7


19 HL7 International. Welcome to FHIR v4.0.1. Published Novem-
ber 25, 2019. Accessed October 14, 2021 at: http://hl7.org/fhir/
index.html

20 Wulff A, Haarbrandt B, Tute E, Marschollek M, Beerbaum P, Jack T.
An interoperable clinical decision-support system for early de-
tection of SIRS in pediatric intensive care using openEHR. Artif
Intell Med 2018;89:10–23

21 Wulff A, Montag S, Steiner B, et al. CADDIE2-evaluation of a
clinical decision-support system for early detection of systemic
inflammatory response syndrome in paediatric intensive care:
study protocol for a diagnostic study. BMJ Open 2019;9(06):
e028953

22 Leslie H. openEHR-the World’s Record. 2015. Doi: 10.13140/
RG.2.1.1398.0321

23 Garde S, Knaup P, Hovenga E, Heard S. Towards semantic inter-
operability for electronic health records. Methods Inf Med 2007;
46(03):332–343

24 Wulff A, Sommer KK, Ballout S, Haarbrandt B, GietzeltMHiGHmed
Consortium. A report on archetype modelling in a nationwide
data infrastructure project. Stud Health Technol Inform 2019;
258:146–150

25 Beale T. Archetype Technology Overview. Published May 14,
2022. Accessed June 3, 2022 at: https://specifications.openehr.
org/releases/AM/latest/Overview.
html#_archetype_technology_overview

26 Garde S.OceanHealth Systems. Clinical KnowledgeManager: ELISE
Laboratory Report. Published October 21, 2021. Accessed June 3,
2022 at: https://ckm.highmed.org/ckm/templates/1246.169.1671

27 SNOMED International. The value of SNOMED CT. Accessed
October 14, 2021 at: https://www.snomed.org/snomed-ct/why-
snomed-ct

28 Regenstrief Institute. LOINC: The international standard for iden-
tifying health measurements, observations, and documents.
Accessed October 14, 2021 at: https://loinc.org/

29 openEHR Foundation. Terminology in openEHR. Accessed No-
vember 09, 2020 at: https://specifications.openehr.org/releases/
1.0.2/html/architecture/overview/Output/terminology.html

30 Garde S. Clinical KnowledgeManager. Accessed April 03, 2021 at:
https://ckm.openehr.org/ckm/

31 Better Deutschland Gmb H. Better care: Helping medical teams
improve patient care. Accessed March 24, 2022 at: https://www.
better.care

32 openEHR Foundation. ArchetypeQuery Language (AQL). Accessed
October 12, 2020 at: https://specifications.openehr.org/releases/
QUERY/latest/AQL.html#_overview

33 Schreiber G. Knowledge Engineering and Management: The
CommonKADS Methodology. 3. printing. MIT Press; 2002

34 The JBoss Drools team. Drools Expert User Guide: Community Docu-
mentation. Accessed October 15, 2020 at: https://docs.jboss.org/
drools/release/5.4.0.Final/drools-expert-docs/html_single/#d0e128

35 Oracle. JavaFX Overview (Release 8). Accessed October 15, 2020
at: https://docs.oracle.com/javase/8/javafx/get-started-tutorial/
jfx-overview.htm#JFXST784

36 Brunner E, Zapf A. Nonparametric ROC analysis for diagnostic
trials. In: Balakrishnan N, ed. Methods and Applications of
Statistics in Clinical Trials: Volume 2–Planning, Analysis, and
Inferential Methods. Wiley; 2014:483–495

37 Lange K. Nichtparametrische Analyse Diagnostischer Gütemaße
Bei Clusterdaten. [dissertation]: University of Goettingen; 2011.
Accessed January 20, 2022 at: https://ediss.uni-goettingen.de/
bitstream/handle/11858/00-1735-0000-000D-F1D1-B/lange.
pdf?sequence¼1

38 Rooney D. Covariate Adjusted Nonparametric Estimation of Sen-
sitivity and Specificity in Clustered Data. [Master thesis]: Heidel-
berg University Hospital; 2017

39 Bundesinstitut für Arzneimittel und Medizinprodukte. ICD-10-
GM: Internationale statistische Klassifikation der Krankheiten
und verwandter Gesundheitsprobleme, German Modification.
Accessed March 24, 2022 at: https://www.bfarm.de/DE/Kodier-
systeme/Klassifikationen/ICD/ICD-10-GM/_node.html

40 Wulff A, Mast M, Bode L, et al. ELISE - an Open Pediatric Intensive
Care Data Set. [Data Set]. 2022

41 Mast M, Bode L, Wulff A. ELISE · GitLab: Open demonstrator.
Published June 3, 2022. Accessed June 3, 2022 at: https://gitlab.
com/marcelmast/elise

42 Brooke J. SUS: A “Quick and Dirty” Usability Scale. In: Jordan PW,
Thomas B, McClelland IL, Weerdmeester B, eds. Usability Evalua-
tion In Industry. CRC Press; 1996:207–212

Applied Clinical Informatics Vol. 13 No. 5/2022 © 2022. The Author(s).

CDSS to Detect Pediatric Hematologic Dysfunction Bode et al.1014

http://hl7.org/fhir/index.html
http://hl7.org/fhir/index.html
https://specifications.openehr.org/releases/AM/latest/Overview.html&x0023;_archetype_technology_overview
https://specifications.openehr.org/releases/AM/latest/Overview.html&x0023;_archetype_technology_overview
https://specifications.openehr.org/releases/AM/latest/Overview.html&x0023;_archetype_technology_overview
https://ckm.highmed.org/ckm/templates/1246.169.1671
https://www.snomed.org/snomed-ct/why-snomed-ct
https://www.snomed.org/snomed-ct/why-snomed-ct
https://loinc.org/
https://specifications.openehr.org/releases/1.0.2/html/architecture/overview/Output/terminology.html
https://specifications.openehr.org/releases/1.0.2/html/architecture/overview/Output/terminology.html
https://ckm.openehr.org/ckm/
https://www.better.care
https://www.better.care
https://specifications.openehr.org/releases/QUERY/latest/AQL.html&x0023;_overview
https://specifications.openehr.org/releases/QUERY/latest/AQL.html&x0023;_overview
https://docs.jboss.org/drools/release/5.4.0.Final/drools-expert-docs/html_single/&x0023;d0e128
https://docs.jboss.org/drools/release/5.4.0.Final/drools-expert-docs/html_single/&x0023;d0e128
https://docs.oracle.com/javase/8/javafx/get-started-tutorial/jfx-overview.htm&x0023;JFXST784
https://docs.oracle.com/javase/8/javafx/get-started-tutorial/jfx-overview.htm&x0023;JFXST784
https://ediss.uni-goettingen.de/bitstream/handle/11858/00-1735-0000-000D-F1D1-B/lange.pdf&x003F;sequence&x003D;1
https://ediss.uni-goettingen.de/bitstream/handle/11858/00-1735-0000-000D-F1D1-B/lange.pdf&x003F;sequence&x003D;1
https://ediss.uni-goettingen.de/bitstream/handle/11858/00-1735-0000-000D-F1D1-B/lange.pdf&x003F;sequence&x003D;1
https://www.bfarm.de/DE/Kodiersysteme/Klassifikationen/ICD/ICD-10-GM/_node.html
https://www.bfarm.de/DE/Kodiersysteme/Klassifikationen/ICD/ICD-10-GM/_node.html
https://gitlab.com/marcelmast/elise
https://gitlab.com/marcelmast/elise



