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Abstract Objective To develop a risk score for the real-time prediction of readmissions for
patients using patient specific information captured in electronic medical records
(EMR) in Singapore to enable the prospective identification of high-risk patients for
enrolment in timely interventions.
Methods Machine-learning models were built to estimate the probability of a patient
being readmitted within 30 days of discharge. EMR of 25,472 patients discharged from
themedicine department at Ng Teng Fong General Hospital between January 2016 and
December 2016 were extracted retrospectively for training and internal validation of
the models. We developed and implemented a real-time 30-day readmission risk score
generation in the EMR system, which enabled the flagging of high-risk patients to care
providers in the hospital. Based on the daily high-risk patient list, the various interfaces
and flow sheets in the EMR were configured according to the information needs of the
various stakeholders such as the inpatient medical, nursing, case management,
emergency department, and postdischarge care teams.
Results Overall, the machine-learning models achieved good performance with area
under the receiver operating characteristic ranging from 0.77 to 0.81. Themodels were
used to proactively identify and attend to patients who are at risk of readmission before
an actual readmission occurs. This approach successfully reduced the 30-day readmis-
sion rate for patients admitted to the medicine department from 11.7% in 2017 to
10.1% in 2019 (p<0.01) after risk adjustment.
Conclusion Machine-learning models can be deployed in the EMR system to provide
real-time forecasts for amore comprehensive outlook in the aspects of decision-making
and care provision.
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Background and Significance

Hospital readmissions are commonly associated with in-
creasing health care costs. This poses additional burden on
the health care system and exerts pressure on finite health
care resources.1–3 Patients who are frequently admitted to
the hospital contribute to bed shortage and may also experi-
ence significant psychological stress and financial burden.4

Tuso et al posited two key reasons for multiple readmissions:
complex underlying medical conditions and complex social
issues.5

Studies suggest that up to a third of readmissions were
preventable, thus offering a significant opportunity for the
application of effective interventions.6–12 Inadequate prepa-
ration for discharge and insufficient follow-up after dis-
charge were among the reasons contributing to
preventable readmissions.13,14 Thus, the identification of
high-risk patients for proactive transitional care interven-
tions across hospital and community settings may help to
reduce readmissions.15,16 The results of a systematic review
and meta-analysis of randomized trials by Leppin et al
showed that such interventions had a consistent and benefi-
cial effect on 30-day readmissions, with those consisting of
multiple components being more effective.17 A systematic
review conducted by Hansen et al corroborated with this
viewpoint as he posited that isolated interventions showed
limited efficacy.18

With the implementation of electronic medical records
(EMR) systems, patient data and temporal clinical informa-
tion are available at the point of care. The volume of data
available in EMR has grown exponentially in recent years.
Many machine learning algorithms had been developed to
identify patterns and associations to aid in predictions and
make useful sense of the wealth of data.19–27 These technol-
ogies serve as drivers for clinical decision support systems
that enable informed data-driven decision-making, support
clinical research, and improve quality of care.28,29 Many
health systems have developed 30-day readmission models
to identify patients with high risk of readmissions for risk
stratification and predictive modeling.30–35 These tools re-
lied on retrospective or real-time administrative data, with c-
statistics ranging from 0.55 to 0.72.30 However, very few
models have incorporated social determinants, although it is
well known that such variables may disproportionately
influence the risk of readmissions in socioeconomically
disadvantaged populations.30,35–44

While existing models perform well, few studies have
considered the impact of deploying a real-time model in
tandem with risk stratified interventions. By adopting the
Canadian LACE score (c-statistic: 0.68) together with a tran-
sitional care bundle, Kaiser Permanente had shown signifi-
cant reduction in their 30-day readmission rates.5,33 The
LACE model had been validated with a c-statistic of 0.70 in
Singapore.45 The aim of this work was to develop and
implement a model by using patient specific information
captured in EMR,which can be updated systematically in real
time to prospectively identify high-risk patients and address
their needs early during their hospitalization.45–47

Methods

Study Design
The key to reducing readmission was developing a system
that determines high-risk patients during the index admis-
sion that could be standardized and integrated into our EMR
system. Patient health recordswere retrieved retrospectively
from the hospital EMR to construct a “reference standard”
dataset by using our national standard as a reference.48 A
split-sample designwas then used for themodel training and
internal validation. The developed model was transformed
into a risk score and embedded into the hospital EMR with
automated generation of the 30-day readmission risk score
in September 2017. Using data derived from the EMR, the
tool automatically generates a “readmission risk score”based
on patient information by day 2 of the patient’s index
admission. To determine the accuracy, a case manager man-
ually reviewed the patients’ data and readmissions for
6 months after deployment of the model.

We engaged the various user groups for feedback on their
day-to-day use of the EMR system to determine the optimal
placement of the risk flag. A real-time high-risk flag was
configured in EMR storyboards and flow sheets to meet the
needs of the inpatient medical, nursing, case management,
ED, and postdischarge care teams.5,29 The list of 30-day
readmission high-risk patients was flagged to clinicians
and casemanagers in real time for early interventions during
the patients’ stay and postdischarge (►Fig. 1C). In addition to
the stratified predicted risk of 30-day all-cause hospital
readmission, the report also includes other important infor-
mation, including other predictive variables that can facili-
tate the care team’s workup for each patient. The 30-day
readmission rates were risk-adjusted based on patient’s
characteristics, and we compared the risk-adjusted rates
between pre- and postimplementation of the risk score
generation in the hospital EMR.

Patient Settings
Singapore’spublic health care systemwasorganized into three
integrated clusters, namely National University Health System
(NUHS), National Healthcare Group (NHG), and Singapore
Health Services.49 Ng Teng Fong General Hospital (NTFGH) is
a 700-bedded hospital on the western side of Singapore
residing under NUHS which started operations in June 2015.
In April 2017, our hospital’s 30-day readmission rate was as
high as 15%, which was noticeably higher than the national
average. Thus, we were tasked to develop and validate the
readmissionpredictivemodel and choseour studyperiod tobe
January 2016 toDecember 2016 for themodel development to
provide sufficient runway to ensure a robust validation of the
model’s performance for year 2017 and onwards. Our cohort
consisted of 25,472 patients discharged from the medicine
department in NTFGH during this study period.

The patient health records were retrospectively extracted
from the hospital EMR based on inpatient, outpatient, and
emergency department (ED) settings. Patients were exclud-
ed if they were transferred to other acute hospitals, continu-
ing care facilities or if they died during their inpatient stay.
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Predictor Variables
In the development of the model, we aimed to include
predictors with clinical significancewhichwere either based
on advice from local clinicians or from the literature to
generate actionable insights for the local setting. As we
sought to build a model to identify high-risk patients by
day 2 of their admission, we chose variables which would be
available at the time of admission. To construct a compre-
hensive range of possible variables, we researched predictors
included in literature such as the Canadian LACE score,33

obtained inputs from clinicians and conducted feature engi-
neering.50–54 The selected variables comprising of patient
demographics, medical conditions, socioeconomic status,
functional scores, and health care utilization data obtained
from the EMR (►Fig. 1A) are described in ►Supplementary

Table S1 (available in the online version).
Socioeconomic predictors were chosen based on locally

known socioeconomic determinants. Public rental housing,
which is heavily subsidized to cater to lower income house-
holds, had been validated as a sensitive indicator of
area-level socioeconomic status in Singapore.52 Admission
ward classes A, B1, B2, and C are categorized according to
different levels of government subsidies.7,55 Medical social
referral is a proxy predictor indicating the presence of
unresolved social issues that may influence health care
utilization, which includes the aspects of casework
management, counseling and therapy, financial assistance,

suicide assessment and intervention, interpersonal violence
intervention, psychological trauma support, home visits,
and support groups.56

Statistical Methods
Supervisedmachine learningmodels for binary classification
were built to estimate the probability of readmission within
30 days (►Fig. 1B). Multivariable logistic regressionwas used
to measure the effect of predictors associated with 30-day
readmission.57 Gradient boosting machines method builds
the model in a stage-wise boosting method and generalizes
them by allowing optimization of an arbitrary differentiable
loss function.58 Conditional decision trees and generalized
linear model trees are decision tree methods by recursive
partitioning of dependent variables.59–61 Random Forest is
an ensemble learner that generates many decision trees and
uses majority “voting” of all the trees’ outcomes to decide on
the binary classification.62,63 Goodness-of-fit tests such as
Hosmer–Lemeshow test and out-of-bag crossvalidationwere
conducted to examine the model calibration of the corre-
sponding machine learning models.

A split-sample design was applied to derive and internally
validate the predictive model. The dataset was randomly split
into two 70% for model derivation and 30% for model valida-
tion.We used area under the receiver operating characteristic
(AUC) with bootstrap method to evaluate the effectiveness of
each prediction model.64 AUC was determined by setting

Fig. 1 Development and usage of risk score.
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thresholds according to the probability for prediction of
readmission within 30 days calculated from the test data,
then calculating truepositive (TP), and falsepositive (FP) ratios
sequentially while shifting the threshold level serially. Where
the threshold level at which was minimal, the presence/
absence of readmission within 30 days was labeled, followed
by calculation of accuracy, precision, recall, and f1-measure.
We decided to use bootstrap validation over k-fold cross-
validation as the latter tends to overestimate the extra-sample
error for regression tree algorithms.65

The readmission rates were risk-adjusted by using our
nationally adopted methodology for the Public Hospital
Performance Report.48 The risk adjustment factors used
were age, gender, Charlson Comorbidity Index, diagnosis-
related group type, number of hospitalizations in the past
year, admission type, and principal diagnosis group of the
initial episode. The reference population was all public
health care institutions discharges in Singapore for the
year 2012. All statistical analyses were conducted by using
SPSS version 21 (SPSS Inc, Chicago III) and R 3.5.

Model Deployment
We used the Epic EMR storyboard interface tool to configure
various interfaces and flow sheets to meet the differing
information needs of the different health care professionals
in their day-to-day work. There are eight major types of
storyboards, namely inpatient, ED/urgent care, outpatient,
operating room/procedure areas, therapy, link, patient access,
and revenue,withvariants that target specialty, role, andother
contexts.We implemented the risk scoreflag intothe inpatient
and ED/urgent care storyboards, ensuring that they could see
key information pertinent both to the encounter and to the
user’s specialty or role in an easy-to-navigate, centralized
location. By hovering over the high-risk flag, additional infor-
mation isprovided anddetailed informationon the risk factors
can be easily accessed simply through the use of clicks of a
button66 (►Fig. 1D).

Bundled Interventions According to Risk Stratification
Intervention care bundle elements were developed based on
identified gaps and evidence pertaining to readmission
reduction through a review of the literature.67–75 These
evidence-based care elements were then refined for imple-
mentation in NTFGH. The 30-day readmission project work-
group reviews and approves the bundle elements for
implementation in consideration of the intervention’s effec-
tiveness and our resource limitations. Eight care elements
were implemented according to patients’ risk stratification
as shown in ►Table 1. The details of these elements are
described in ►Supplementary Table S2 (available in the
online version). Other interventions were also considered
but excluded due to resource limitations, for example, “24-
hour posthospital discharge hotline”was excluded as we did
not have the resources to man a 24-hour hotline. Instead the
discharge nurse’s phone number or the ward’s phone num-
ber would be provided to high-risk patients upon discharge.

Results

The model development cohort consisted of 25,472 patients
index discharged from the medicine department in NTFGH
from January 2016 to December 2016, and 15.2% of them
were readmitted within 30 days of discharge. Their baseline
characteristics are shown in ►Table 2.

We evaluated five machine learning models for this classi-
fication problem, and ►Table 3 shows the mean � standard
deviation for the bootstrap yielded from evaluationwith each
technique.45 Random forest exhibited the best performance
(AUC: 0.806), but we chose logistic regression (AUC: 0.783) as
the final model in consideration of the advantages of compar-
atively easy implementation, computational efficiency, trans-
parency, and easy interpretability.75,76

Stepwise eliminationwas conducted by using Akaike Infor-
mation Criterion to retain the significant predictors.We noted
that penalized regression methods are used extensively in

Table 1 Intervention bundle elements

S/N Intervention bundle elements Risk score

Low High

1 Risk stratification with high-risk flag in EMR X X

2 Comprehensive and accurate discharge summary (to improve
communication between hospital and primary care settings)

X X

3 Medication reconciliation (to eliminate outdated
medications)

X X

4 Postdischarge phone call within 72 h of discharge X

5 Posthospital visits at specialist clinic or polyclinic within 1 wk X

6 Posthospital home visit X

7 Initialization of Advance Care Planning (to assess patients’
wishes regarding the future health care options)

X

8 Complex-case conference with multidisciplinary teams for
patients staying more than 14 days and high risk of
readmission

X

Abbreviation: EMR, electronic medical record.
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Table 2 Baseline characteristics of model development cohort

Characteristics Overall cohort Derivation cohort Validation cohort

n¼ 25,472 n¼ 17,830 n¼ 7,642

Age (y), mean (SD) 63.2 (18.4) 63.4 (18.4) 62.8 (18.4)

Race, n (%)

Chinese 15,940 (62.6) 11,180 (62.7) 4,760 (62.2)

Indian 2,767 (10.9) 1,937 (10.9) 830 (10.9)

Malay 4,178 (16.4) 2,882 (16.2) 1,296 (17.0)

Other 2,587 (10.1) 1,831 (10.2) 756 (9.9)

Gender (male), n (%) 13,638 (53.5) 9,513 (53.4) 4,125 (54.0)

Staying at rental flat, n (%) 1,308 (5.1) 922 (5.2) 386 (5.1)

Healthcare utilization history, mean (SD)

Hospital admission previous 1 y 0.98 (2.1) 0.98 (2.1) 0.97 (2.1)

Emergency attendance previous half year 0.24 (1.4) 0.25 (1.4) 0.24 (1.4)

Medical social referral previous 1 y, n (%) 5,011 (19.7) 3,554 (19.9) 1,457 (19.1)

Subspecialty, n (%)

Acute medicine 6,198 (24.3) 4,320 (24.2) 1,878 (24.6)

Endocrinology 1,180 (4.6) 817 (4.6) 363 (4.7)

Gastroenterology and hepatology 1,508 (5.9) 1,065 (6.0) 443 (5.8)

General cardiology 2,899 (11.4) 1,998 (11.2) 901 (11.8)

General medicine 4,419 (17.4) 3,107 (17.4) 1,312 (17.2)

Geriatric medicine 1,136 (4.5) 828 (4.6) 308 (4.0)

Hematology 1 (0.0) 1 (0.0) 0 (0.0)

Infectious diseases 1,829 (7.2) 1,310 (7.4) 519 (6.8)

Medical oncology 139 (0.5) 97 (0.5) 42 (0.5)

Neurology 1,912 (7.5) 1,322 (7.4) 590 (7.7)

Rehabilitation medicine 147 (0.6) 103 (0.6) 44 (0.6)

Renal medicine 1,150 (4.5) 816 (4.6) 334 (4.4)

Respiratory medicine 2,953 (11.6) 2,045 (11.5) 908 (11.9)

Rheumatology 1 (0.0) 1 (0.0) 0 (0.0)

Functional components, n (%)

Dependent 1,433 (8.0) 632 (8.3) 2,065 (8.1)

Needs assistance 10,289 (57.7) 4,406 (57.6) 14,695(57.7)

Independent 6,108 (34.3) 2,604 (34.1) 8,712 (34.2)

Emergency admission, n (%) 24,821 (97.4) 17,393 (97.6) 7,428 (97.2)

Admission or transfer to ICU in previous half year, mean (%) 951 (3.7) 662 (3.7) 289 (3.8)

Length of stay at index admission, mean (SD) 4.4 (6.9) 4.4 (6.3) 4.5 (8.0)

Total length of stay of previous 1-year admissions, n (%)

0 d 15,637 (61.4) 10,946 (61.4) 4,691 (61.4)

1–10 d 6,180 (24.3) 4,301 (24.1) 1,879 (24.6)

11–20 d 1,847 (7.2) 1,298 (7.3) 549 (7.2)

21–30 d 805 (3.2) 574 (3.2) 231 (3.0)

31–40 d 419 (1.6) 292 (1.6) 127 (1.7)

41–50 d 233 (0.9) 169 (1.0) 64 (0.8)

51 d and above 351 (1.4) 250 (1.4) 101 (1.3)
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high-dimensional model selection problems. However, they
are less interpretable than stepwise selection for their predic-
tive performance in low-dimensional problems.76,77 Thus, we
chose stepwise selection over penalized regression. Eight
predictors were selected for the final logistic model, which

was transformed into a risk score by using the β coefficients
(►Table 4). For operational implementation with consider-
ation of case management manpower, we focused on the top
15% of the cohort and set the cutoff of high-risk patients at risk
score of 30 and above.

Table 2 (Continued)

Characteristics Overall cohort Derivation cohort Validation cohort

n¼ 25,472 n¼ 17,830 n¼ 7,642

Charlson Comorbidity Index, n (%)

0 10,022 (39.4) 7,036 (39.5) 2,986 (39.1)

1 3,308 (13.0) 2,266 (12.7) 1,042 (13.6)

2þ 12,142 (47.6) 8,528 (47.8) 3,614 (47.3)

Preadmission chronic medication, n (%)

0 5,758 (22.6) 4,043 (22.7) 1,715 (22.4)

1–5 9,310 (36.6) 6,524 (36.6) 2,786 (36.5)

6þ 10,404 (40.8) 7,263 (40.7) 3,141 (41.1)

Index discharge class, n (%)

Class A 2,276 (8.9) 1,585 (8.9) 691 (9.0)

Class B1 1,098 (4.3) 765 (4.3) 333 (4.4)

Class B2 6,118 (24.0) 4,330 (24.3) 1,788 (23.4)

Class C 15,980 (62.8) 11,150 (62.5) 4,830 (63.2)

Abbreviations: ICU, intensive care unit; SD, standard deviation.

Table 3 Machine learning model comparison

Machine learning model AUC
mean� SD

Accuracy
mean� SD

Precision
mean� SD

Recall
mean� SD

f1
mean� SD

Logistic regression 0.783� 0.019 0.803�0.012 0.392�0.014 0.422� 0.016 0.406� 0.022

Conditional decision trees 0.791� 0.016 0.805�0.011 0.378�0.018 0.413� 0.021 0.395� 0.020

Generalized linear model tree 0.774� 0.030 0.801�0.013 0.375�0.018 0.409� 0.018 0.391� 0.022

Random forest 0.806� 0.030 0.811�0.012 0.374�0.014 0.429� 0.016 0.401� 0.020

Gradient boosting 0.792� 0.026 0.804�0.011 0.395�0.015 0.425� 0.019 0.409� 0.016

Abbreviations: AUC, area under the receiver operating characteristic; SD, standard deviation.

Table 4 Final eight variables for 30-day readmission risk score real-time generation in electronic medical record

Variables β coefficient Odds ratio (95% CI)

Intercept �3.36

Patient’s age 0.01 1.02 (1.01–1.02)

Patient staying at 1-room flat, institution or homeless 0.24 1.39 (1.09–1.76)

Number of hospital admissions in previous 1 y 0.24 1.07 (1.01–1.14)

Number of emergency attendances in previous half year 0.08 1.16 (1.08–1.24)

Medical social referral in previous 1 y 0.28 1.96 (1.56–2.45)

Functional components:

Dependent 0.39 1.50 (1.45–1.54)

Needs assistance 0.19 1.17 (1.09–1.24)

Charlson Comorbidities Index 0.07 1.11 (1.05–1.18)

Number of preadmission chronic medication 0.05 1.05 (1.03–1.07)
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30-Day Readmission Intervention Results
Since the deployment of our risk score and implementation of
our readmission interventions during the last quarter of 2018,
there has been significant improvements in both our crude and
risk-adjusted readmission rates. Themedicine 30-day readmis-
sion crude rate improved from16.6 to 14.8% (p<0.01), and the
risk-adjusted rate improved from 11.7 to 10.1% (p<0.01)
between 2017 to 2019 (►Fig. 2). Being able to identify patients
with high risk for readmission based on the risk score enabled
clinicians to address these risksduring admissionand toordera
postdischarge care bundle for these at risk patients upon
discharge. After implementation, these cumulative actions
were associatedwith a 1.6% reduction in the readmission rates,
which translates into3,200 inpatientbeddays savingsannually.

Discussion

Our study presents a simple validated risk score for estimating
the probability that a hospitalized patient would be readmit-
ted within 30 days, with (1) good discriminative power for
predicting the risk of 30-day readmission45 and (2) interven-
tion bundle care elements according to risk stratification. This
score was successfully implemented in NTFGH’s EMR system.
Themodelwas initially developed for themedicine cohort and
showed good performance when expanded to include ortho-
pedics and surgery patient cohorts.

Similar toother studies,78,79 the risk scorewasbuilt toallow
for the provision of continuously updated information inde-
pendentofdisease typeor reasons for admission, using patient
history, social, and clinical information available in real time

fromthe EMRsystem. This provides a longitudinal view,which
may aid with earlier detection of acute events, discharge
planning, and continuity of care.79 Logistic regression models
are easy to implement, computationally efficient, transparent,
andeasy to interpret. Thus, theyarepopular inclinical decision
makingandhighlyapplicable inclinicalpractice.76,77Using the
eight predictors, the risk score flagged the top 15% of patients
as high risk, which represents 40% risk of readmission within
30 days of discharge.

We found that significant reduction in 30-day readmis-
sion rates could be achieved with the risk score deployment
and intervention care bundle elements.1 On the ground,
clinicians focus on the biological aspect of care and may
not be as aware of the psychological and social aspects. The
high-riskflag in the EMR systemprovides an early alert to the
clinicians, as well as a view of the individual risk factors
which are contributing to an individual patient’s high-risk
score. This enables early detection of patients at risk of
readmission, for early referrals to the appropriate care
team, such as medical social workers, case managers, phar-
macists, or other allied health professionals. These patients
would then be enrolled in tailored interventions to address
the individual risk factors accordingly.5 Various interven-
tions were identified for reducing readmissions at several
fronts which have been assigned to either low or high-risk
scores (►Table 1). The results suggest that appropriate
allocation of resources to the higher risk patients can result
in meaningful outcomes. Risk stratification enabled the
teams to better align resources to the higher risk patients
and enable sustainability in the long term.

Fig. 2 Medicine 30-day readmission trend line.
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The risk score has several strengths to support its use.
First, the outcome predicted by the risk score is not just
important, but clinically relevant and reliably measured. The
discrimination of the risk score was comparable if not better
than those that are commonly used in other coun-
tries.24,32,33,80–82 The model can also be replicated by other
hospitals in Singapore given that all the predictors can be
obtained in a similar fashion upon admission at any acute
hospital in Singapore. The risk score was developed on the
NTFGH cohort and was adopted for implementation across
the NUHS and NHG clusters’ EMR system.

Second, we used parameters which were available at the
time of admission for the development of our risk score
model. This enables the provision of real-time forecasts of
risks in terms of patient outcomes,6,28 and for high-risk
patients to be flagged to the frontline clinical teams in bid
of real-time decision-making such as inclusion of preventive
interventions by day 2 of the patient’s index admission.83

Third, there is increased visibility on each of the compo-
nents of the risk score, allowing the care team to see which
risk factors are contributing to an individual patient’s high-
risk score for actionable insights and to tailor interventions
around these risk factors accordingly.84

The risk score is based on afixed set of variableswith fixed
coefficients. The next step for research is a “smart” algorithm
in which the risk score is continually evaluated against its
own accuracy to update the list of variables and the coef-
ficients to reflect case mix seasonality changes.

Prospectively, further research is required to externally
validate the risk score and examine the effectiveness of such
bundled interventions. We also only considered supervised
machine-learning methods for our study and used param-
eters that were readily available in the EMR system at the
point of the study. Additionally, our model was constructed
by using a top-to-bottom approach. For future research, we
may explore unsupervised learning methods21 and use a
bottom-up approach for model construction. New param-
eters will be included in future as new types of data become
readily available in EMR systems for use in prediction
models.85

Conclusion

We have developed a risk score which can provide a reliable
basis for the prediction of 30-day unplanned hospital read-
mission in Singapore. The model presents the possibility for
effective prediction of potential readmission cases and
allows the stratification of patients according to risk of 30-
day readmission to aid in decision-making at the point of
care for better integrated care.

Clinical Relevance Statement

We developed a simple risk score predictive model using
parameters available at the time of admission to enable
real-time forecasts for decision-making and preventive
interventions, showing promising results of using such a
model. Through bundled interventions combined with risk

stratification, we aligned resource-intensive interventions
to high-risk patients, leading to significant reductions in
readmission rates. Our risk score model was accepted and
extended for implementation by other institutions in their
EMR systems.

Multiple Choice Questions

1. Which socioeconomic variable had been validated as a
sensitive indicator of socioeconomic status and was in-
cluded in the risk score model?
a. Ward class
b. Activity of daily living
c. Rental housing
d. Income

Correct Answer: The correct answer is option c. A study
had shown that public rental housing as an area-level
measure of socioeconomic status is independently asso-
ciated with increased readmission risk and being a fre-
quent hospital admitter and ED user.

2. Why did we use parameters which were available at the
time of admission for our risk score model?
a. Data are more accurate when gathered at admission
b. Enables the provision of real-time forecasts
c. Increased visibility on each of the components
d. Able to generalize to other hospitals

Correct Answer: The correct answer is option b. Using
parameterswhichwere available at the time of admission,
the risk score could be generated early into the admission,
which thus enables the provision of real-time forecasts for
decision-making.
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