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Scale and Complexity in Visual Analytics 

George Robertson, David Ebert, Stephen Eick,  

Daniel Keim, and Ken Joy 

Abstract 

The fundamental problem that we face is that a variety of large-scale problems in security, 

public safety, energy, ecology, health care, and basic science all require that we process and 

understand increasingly vast amounts and variety of data. There is a growing impedance 

mismatch between data size/complexity and the human ability to understand and interact with 

data. Visual analytic tools are intended to help reduce that impedance mismatch by using 

analytic tools to reduce the amount of data that must be viewed, and visualization tools to help 

understand the patterns and relationships in the reduced data. But visual analytic tools must 

address a variety of scalability issues if they are to succeed. In this paper, we characterize the 

scalability and complexity issues in visual analytics. We discuss some highlights on progress 

that has been made in the last five years, as well as key areas where more progress is needed.  

 

Keywords: visual analytics, scalability, visualization, analytics  



 3  

Introduction 

In 2004, the U.S. Department of Homeland Security (DHS) chartered the National Visualization 

and Analytics Center™ (NVAC™) to lead the research and development of visual analytic 

techniques for homeland protection. One of the first steps in that process was the development 

of a long-term research and development (R&D) agenda, which was published in the book 

Illuminating the Path1. The R&D agenda focused on developing visual analytic tools to support 

three primary objectives: preventing terrorist attacks, protecting borders, and improving 

emergency response. One of the grand challenges described in Illuminating the Path is the 

Scalability Challenge. This paper examines and elaborates that challenge. 

 

Our ability to collect data is increasing at a faster rate than our ability to analyze it. EMCFehler! 

Verweisquelle konnte nicht gefunden werden. reports that the Digital Universe as of May 

2009 contained 500 exabytes, and will double every 18 months. They also point out that 

creation of digital information in 2008 exceeded the total capacity to store it. Analysts, 

emergency response teams, and border protection personnel have massive amounts of 

information available to them from multiple sources, but the important information may be 

hidden in a few nuggets. We must create new methods to allow the analyst to examine massive, 

multi-dimensional, multi-source, time varying information streams to make effective decisions in 

time critical situations. 

 

In the five years since the NVAC R&D agenda was proposed, some progress has been made 

toward addressing scalability challenges. However, scalability issues can never be fully resolved 

as long as the scale of the problems keeps increasing. We need to continually discover ways to 

handle larger and larger problems. Hence, the basic goals outlined in the agenda remain the 

same, and much work remains. In addition, visual analytic techniques can be applied to many 
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domains other than homeland security. For example, these techniques can be used for analytic 

problems in the areas of energy, the environment, and basic science3, as well as for business 

intelligence and health care. As we gain experience with visual analytic techniques, some new 

scalability issues have been observed. 

 

In this paper, we will characterize the scalability and complexity issues in visual analytics. We 

will discuss some highlights on progress that has been made in the last five years, identify key 

areas where more progress is needed, and describe new scalability issues that must be 

addressed. 

 

Data Characteristics 

The following primitive data types contribute to information overload for analysts.  

 

Textual data. Massive textual data can come from documents, speeches, e-mail messages, or 

web pages. These data are ever increasing in volume. One target reported in 20051 was to be 

able to support analysis of data volumes growing at a rate of one billion new structured 

messages or transactions per hour, and one million new unstructured messages or documents 

per hour. These were estimates of what would be required in the intelligence community to 

detect terrorist threats. Of course, this is a moving target as the total amount of information 

acquired continues to grow. 

 

Numeric data. The revolution in miniaturization for computer systems has resulted in the 

production of many types of sensors. The sensors can collect numeric data about their 

environment (location, proximity, temperature, light, radiation, etc.), can analyze these data, and 

can communicate among themselves. Collections of sensors can produce very large streaming 
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sets of data. Methods are needed for analyzing numeric data to efficiently incorporate the data 

into computerized models. 

  

Image data. Consider the data collected by satellites that image the earth. Commercial satellites 

can create images at one meter resolution and collectively create an image of the planet’s land 

surface in a very short time. New methods are needed to permit efficient understanding of 

image data, especially in the context of other types of data mentioned here.  

 

Video data. Video is often used to enhance the effectiveness of high-risk security and public 

safety operations. Video recording and content analysis are being used in concert as a powerful 

tool for improving business processes and customer service. New techniques must be 

developed to integrate these capabilities for analyzing streaming video data into the analyst's 

toolbox. 

 

Audio data. Consider the processing of audio from phone calls, 911 calls, radio intercepts, radio 

traffic during emergency response, and commercial radio and television broadcasts. Techniques 

exist for word spotting in audio streams. However, that may be insufficient as the volume of 

audio data increases, because these techniques fail to take context into account. 

 

These primitive data types are organized into collections of various kinds (files, directories, 

databases, etc.). The nature of these organizations and the methods for processing these data 

are discussed in the companion paper on Data Transformations for Computation and 

Visualization4. 

 

Data present challenges not only because of their diversity, volume, and dynamic nature but 

also because data contain errors and are ambiguous, incomplete, uncertain, and potentially 
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intentionally deceptive. Data of multiple types must often be analyzed in concert to gain insight. 

Important data needed for correct interpretation may be missing, but this may or may not be 

apparent to the analyst. We must provide mechanisms that help the analyst visually understand 

the nature of the data being evaluated. 

 

A grand challenge is to support the analyst in distilling the relevant nuggets of information from 

widely disparate information streams and create an information space containing relevant 

information that can be used by the analyst in reaching the most timely and well-informed 

assessment of the situation. We must provide mechanisms that can visually represent the 

connections between the relevant information in the information streams and allow the analyst 

to relate concept to data. 

 

A Variety of Scalability Issues 

Current technologies cannot support the scale and complexity of the growing analytical 

challenge. New techniques and underlying scientific foundations are needed to deal with the 

scale of the problems we are facing in security (threat analysis, emergency management, and 

border protection), global issues of energy, the environment, basic science, health care, and 

business development. Issues of scale cut across every aspect of this challenge.  

 

When considering scalability issues, it is important to understand the context of the 

development of the computer industry as well as natural human skills and limitations. Moore’s 

Law suggests that basic computer technology performance (processor speed and memory 

density) will double every 18 months. This trend has continued for 45 years and some 

projections say it will continue for at least another five years before fundamental limitations of 

physics are encountered5. Recently, graphics technology has been improving performance at an 
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even faster rate, doubling every 6 months6. Much of the future growth in computational power 

will come from parallel processing, which is difficult to exploit (this issue is discussed later in the 

section on computational scalability). All of this added processing power and memory density 

has enabled the gathering and processing of vast amounts of data.  

 

However, basic human skills and abilities do not change significantly over time. It is true that 

technology advances, applied carefully, can enable us to use a higher percentage of natural 

human abilities, but there are basic limits that we are asymptotically approaching. This situation 

gives rise to the popular notion of information glut. That is, we are able to access far more 

information than we, as humans, can possibly process. The situation also makes scalability 

issues more difficult to resolve. In addition, analytical challenges often require coping with, 

sharing, and using information at multiple scales simultaneously. Ultimately, large scale 

problems have to be reduced to a scale that humans can comprehend and act on. 

 

Scale may bring opportunities as well. For example, increased scale may help reduce 

uncertainty of an emerging situation by providing more evidence to either confirm or deny 

hypotheses. Large data volumes allow analysts to discover more complete information about a 

situation. As a result, analysts may be able to determine more easily when expected information 

is missing; sometimes the fact that information is missing offers important clues in the 

assessment of a situation.  

 

Here, we consider five of the major scale issues that must be addressed: information scalability, 

visual scalability, display scalability, human scalability, and computational scalability.  

 

Information Scalability 
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Information scalability implies the capability to extract and make sense of relevant information 

from massive data streams. Methods of information scalability include methods to filter and 

reduce the amount of data, techniques to represent the data in a multi-resolution manner, and 

methods to abstract the data sets. The companion paper on Data Transformations for 

Computation and Visualization4 discusses these methods and techniques, as well as the 

challenges that must be overcome. 

 

A second form of information scalability has to do with the rate of change of the information. 

Many existing systems are dynamically updated as data change, but published techniques only 

deal with modest rates of change. There are two issues that must be addressed with changing 

data; the new data must be assimilated into the current views the analyst is using, and in some 

cases, the analyst must be made aware of what has changed. Existing techniques can do both 

if the rate of change is modest. But, suppose the rate of change radically increased, going from 

several thousand new data elements per day to several million. Existing techniques would have 

difficulty keeping up with such a large volume of change, and would also fail to show the analyst 

what had changed.  

 

Finally, information presentations must be scaled or adapted to the audience. For example, an 

analyst’s presentation to other analysts will contain far more detail than the summary analysis 

presented to senior management. Current techniques require that this be done manually in an 

ad hoc fashion. In fact, current practice often involves copying or abstracting parts of an 

analysis from tools designed for analysis to different tools designed for presentation. One 

problem with this approach is that during a presentation, there may be limited (or no) tools 

available to show details of how an analysis was done, or to explore alternatives. An integration 

of analysis and presentation tools would improve the process. The Scalable Reasoning System7 
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is a recent example of a system that integrates analysis and dissemination, as well as provides 

a means of scaling or adapting the analysis/presentation to the audience.  

 

Relevant information may appear at a variety of scales; the user must be able to change 

between scales in a way that is easy to understand and track, and must be able to understand 

cross-scale interactions. We must be able to handle a wide range of dynamic change, and 

develop systems that semi-automatically scale or adapt information presentations to match a 

target audience. 

 

One notable recent advance reported by Ingram, Munzner, and Olano8 is Glimmer, a multilevel 

algorithm for multidimensional scaling (MDS) designed to run on modern graphics processing 

unit (GPU) hardware. MDS is a key technique for reducing high-dimensional data onto a low-

dimensional target for presentation. The use of MDS has been somewhat limited because it has 

been too slow for interactive use when the number of dimensions is scaled up. The Glimmer 

approach increases speed by a factor of 10 to 15 for large data sets, making it possible to use 

MDS interactively on larger data sets. More advances like this are needed. 

 

Visual Scalability 

Visual scalability is the capability of visualization representation and visualization tools to display 

effectively massive data sets, in terms of either the number or the dimension of individual data 

elements9. Factors affecting visual scalability include the quality of visual displays, the visual 

metaphors used in the display of information, the techniques used to interact with the visual 

representations, and the perception capabilities of the human cognitive system.  
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Ware10 argues that the optimal display is a 4000 x 4000 pixel resolution monitor, based on 

human perceptual capabilities such as visual acuity and spatial contrast sensitivity. If each of 

those 16 million pixels represented one data element, the viewer would see a black screen. If 

the visual representation of the information requires showing links or labels, as well as 

separation of the individual objects, then perhaps a few tens of thousands of data elements 

could be displayed on such a display. For most user tasks, the effective number of data 

elements that can be displayed is probably much smaller. So, the fundamental problem of visual 

scalability is how to visually represent a very large number of data elements in a much smaller 

number of visual display elements, so that the user’s task can be performed. Some user tasks 

can be addressed by filtering the data and showing only the most relevant data; this is 

information scalability. Other tasks require showing an overview of all of the data (or a very 

large part of the data) so that large scale relationships can be seen; this is visual scalability. 

 

Most published techniques in the field of information visualization handle data sets with 

hundreds to thousands of elements. Some techniques can scale to handle tens of thousands of 

elements and a very few can handle hundreds of thousands up to one million elements. The 

InfoVis 2003 Contest focused on the problem of visualizing and comparing large hierarchies. 

The best technique was TreeJuxtaposer11, which could handle two trees of about 100,000 

elements and one tree up to 500,000 elements. TreeJuxtaposer used a technique called 

Accordion Drawing. Later work reported by Beerman, Munzner, and Humphreys12 extended 

these ideas in a system called TJC, to support browsing trees up to 15 million nodes. 

 

However, as described previously, some extreme situations may demand the processing tens of 

millions of new documents per day, with a total database size of tens of billions of documents. It 

is reported that at least one existing database has 120 billion documents1. It seems likely that 

these database sizes will increase over time. Clearly the current state of the art is far from being 
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able to visually represent today’s data collections, and the need will continue to grow. New 

techniques are needed to bridge this gap. 

 

One notable recent advance on visual scalability was reported by Chan, Xiao, Gerth, and 

Hanrahan13 at VAST 2008. The authors describe ATLAS, a visualization tool for temporal data 

that enables interactive access to a network traffic data set of more than one billion records. 

They accomplish this by combining high-performance database technology with predictive 

caching and level of detail management. This approach is limited in the kinds of visual analytic 

tasks that can be performed rapidly. For example, searching for interesting patterns across time 

periods cannot be done effectively with predictive caching. Hence more work is required to 

support the full range of analytic tasks interactively on large data sets. 

 

Another example of recent work in visual scalability is the GreenGrid visualization for electric 

power grid analytics, reported by Wong et al.14 While the North American power grid has about 

50,000 electrical buses, losing ten of these can generate an enormous number (1040) of 

scenarios to analyze. GreenGrid uses a weighted force-directed multilevel graph visualization to 

enable visual analysis of problems at this scale. The system demonstrates how a combination 

of node and link weighting can make visual analysis significantly easier than the traditional 

geographic visualization of the power grid. 

 

Display Scalability 

Most published visualization techniques are designed for one size display, generally a desktop 

display (typically 1280x1024 pixels). We need to develop techniques that scale to a variety of 

display form factors to take advantage of whatever capabilities are available to support analysis 

and collaboration. Tools should be able to make effective use of everything from a wall-sized 
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display in an emergency response situation room to a PDA or phone-sized display in the hands 

of a first responder in the field. Studies need to be done to determine how to display information 

effectively, particularly on small displays. 

 

One recent exploration of display-scale independence was reported by Smith et al.15 in a 

description of FacetMap, a scalable browser for faceted data. FacetMap is designed to work on 

any size display, adapting its information layout to reveal more information with larger displays. 

The same visual representation and interaction techniques are used for all display sizes. This 

works well until you get down to PDA or phone-sized displays, where the amount of information 

displayed requires too many interactions to be effective. FaThumb16 was an alternative facet-

based interface for mobile devices with a numeric keypad. It was optimized for the small display. 

Display scale-independence reduces the need for retraining or learning multiple systems for 

different sized displays. However, the experience with FacetMap and FaThumb suggests that 

effectiveness of systems for very small displays is perhaps more important than display scale-

independence. 

 

One thread of recent research has begun to examine the issues of information visualization 

specifically on large displays. Recent work by Yost, Haciahmetoglu, and North17 has shown that 

displays larger than visual acuity (e.g., wall sized), and requiring physical navigation, can be 

more effective and preferred over smaller displays for some tasks, if the appropriate 

visualization techniques are used. This is a surprising result, since the larger displays require 

more complex interaction techniques, including physically moving in order to see and interact 

with parts of the display. 

 

Another example of recent work on display scalability has to do with table displays (also known 

as surface computing). Isenberg18 is exploring the use of table displays for interacting with and 
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sharing information visualizations during collaboration of small collocated teams. As with large 

displays, surface computing requires exploration of new interaction techniques, including more 

use of gestures. This is also an example of human scalability work, which is further discussed 

next. 

  

Human Scalability 

While human skills and abilities do not scale (i.e., they are relatively fixed), the number of 

humans involved in analytical problem-solving activities does scale. Most published techniques 

for supporting analysis are targeted for a single user at a time. We must develop techniques that 

gracefully scale from a single user to a collaborative (multi-user) environment. Much of the 

relevant collaboration research is focused on small groups of collaborators (two or three 

people). In the scenarios we envision, users may be collaborating from within the same team in 

an organization, at different levels of an organization, or even in different organizations. Each of 

these cases has its own set of problems that must be solved. One scenario might involve a 

number of first responders, several regional emergency management centers, and a national 

emergency management center—that is, dozens of users collaborating through the use of 

shared analytical tools and focusing on different levels of information accessible by everyone 

involved.  

 

Collaboration issues extend beyond analytical problem-solving activities to decision making 

processes. Decision making for an individual or a small team is straight forward compared to the 

complexity that arises for coordinated decision making in multiple teams, especially if these 

teams are from different levels of an organization or from different organizations. Visual analytic 

tools must support the decision-making processes even in these complex situations. 
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One recent exploration of human scalability is the Many Eyes website19, launched in 2007 to 

enable users to do collaborative analysis by uploading data, creating interactive visualizations, 

and annotating others’ work to engage in discussions. Another web-based collaborative 

visualization and analysis system is Swivel20, launched in late 2006. While Many Eyes provides 

a much richer set of visualizations than Swivel, it lacks Swivel’s ability to mash up parts of 

multiple data sets. Kosara21 provides an informal comparison of these two social visualization 

systems. Both systems seek to make data available to, gain insights from, and share insights 

with a very large and diverse set of web users. Note that both of these systems involve 

asynchronous collaboration and analysis. Synchronous collaboration involves many of the same 

issues, but often requires the addition of some form of turn-taking or floor control to ease the 

interactions between the people involved. 

 

Computational Scalability 

The National Science Foundation (NSF) has on ongoing five-year goal for high performance 

computing to enable petascale computing (1015 operations per second) for investigations of 

computationally challenging problems in science and engineering by the year 201022. In 2007, 

three Town Hall meetings were held to discuss the challenges of developing exascale 

computing (1018 operations per second) to address global issues of energy, ecological 

sustainability, basic science, and security3. The belief is that general-purpose exascale 

computing will be technologically feasible within the next 15 years. These systems are likely to 

have 10-100 million processing elements or cores. Adoption of 1000-processor multicore 

systems will require a substantial revolution in software and programming techniques for a 

workforce that has inadequate parallel programming skills. Current code, algorithms, tools, and 

visualization approaches will not work at the exascale level without a paradigm shift. 
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The report of the exascale computing Town Hall Meetings3 discusses many of the same topics 

that we discussed earlier. However, some issues change as we approach petascale and then 

work towards exascale computing. For example, in reference to handling massive data sets, the 

report observes, “Data can be the result of an exascale simulation that must be post-processed 

for human interpretation, or it can form the input to complex problems via data assimilation. 

Browsing or looking at data is no longer possible as we near a petabyte. To visualize 1% of 1 

petabyte at 10 MB/s takes 35 workdays. There is an enormous need for methods to dynamically 

analyze, organize, and present data by variability of interest.” 

 

In reference to mathematics for data analysis, the report states, “A particular gap exists in the 

mathematics needed to bring analysis and estimation methodology into a data-parallel 

environment. Parallel linear algebra methods go a long way toward enabling data-parallel 

analysis, but they do not solve it, just as they would not solve a climate simulation problem. For 

example, the standard principal component analysis computation does not become data-parallel 

with a parallel singular value decomposition (SVD) solver, even though the SVD is the core 

computation in that analysis. Data-parallel solutions for applications on exascale resources will 

require new mathematics that considers an entire estimation problem for developing scalable 

data-parallel algorithms in data analysis.” 

 

Exascale applications will generate several terabytes of data per second. Because it is not 

practical to store raw data generated at such a rate, dynamic reduction of data by incremental 

summarization, subset selection, and other filtering methods will be necessary. For exascale 

computing, visual analytic methods will be critical for handling the growing impendence 

mismatch between the size/complexity of data and an analyst’s ability to understand and 

interact with that data. 
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Other Scalability Issues 

In addition to the five major scalability issues just discussed, there are a number of other 

scalability issues that must ultimately be addressed. 

 

Software scalability. The capability of software systems to be configured to interactively 

manipulate data sets of various sizes is called software scalability. This includes the generation 

of new algorithms that scale to the ever-increasing information sets that we generate today. We 

wish to avoid the hidden costs that arise when we build and maintain monolithic, non-

interacting, non-scalable software models. 

 

Temporal scalability. Sensemaking often involves temporal reasoning and may require handling 

data at different time scales. For example, it may be necessary to understand long-term 

patterns by looking at data over a period of years or even decades and simultaneously 

understand near-term effects by looking at data over a period of hours or less. Moreover, it may 

be necessary to integrate and perform correlative analysis on data collected at different 

temporal scales based on acquisition technology. For instance, in understanding fundamental 

principles of rain formation in clouds, it may be necessary to integrate data collected 1000 times 

per second with data collected every several minutes (radar data), and this information may 

then feed into climate models that work on the scale of years and decades. 

 

Cross-scale issues. Tools are needed that scale to handle “systems of systems.” These 

problems are common in science and engineering and may require analysis and combination of 

data across scales. For example, macrobiology analysis may require understanding the 

interactions of data simultaneously at the genome, protein, cell, organ, human, country, and 

ecosystem levels. Cancer care treatment requires understanding and integrating data from the 
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biomarker level (e.g., integrating metabolics, lipidomics, genomics, and proteomics data already 

at multiple scales), cancer processes at the organ level, environmental exposure, and 

socioeconomic factors that affect the success and completion of treatment regimens. 

  

Privacy and security issues. Cutting across many scalability issues are concerns with privacy 

and security, particularly when scaling to multi-user environments. Data privacy and security 

laws and policies must be adhered to rigorously, which means that software must address 

challenges such protecting information from inappropriate access, down to the data item and 

individual user level. While this may appear to be a universal problem, it is exacerbated by the 

human scalability problem. For example, when the analytic team involves multiple 

organizations, some of the data and analysis may not be accessible to everyone involved in the 

analysis, making the analysis more challenging and potentially making the results less accurate. 

 

Language issues. Scalability issues also arise in dealing with geographically dispersed teams 

speaking different languages or using different terminology within the same language, and 

working across teams of people with differing expertise. This is an extension of the human 

scalability problem. As analytic teams grow in size and become more geographically dispersed, 

the chances increase that team members will not be using the same terminology or even 

speaking the same language. Recognition of the potential problem is essential; some form of 

translation may be needed to resolve the problem. 

 

Conclusions 

The fundamental problem that we face is that a variety of large-scale problems in security, 

public safety, energy, ecology, health care, and basic science all require that we process and 

understand increasingly vast amounts and variety of data. There is a growing impedance 
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mismatch between data size/complexity and human ability to understand and interact with those 

data. Visual analytic tools are intended to help reduce that impedance mismatch by using 

analytic tools to reduce the amount of data that must be viewed (e.g., by filtering, 

summarization, and abstraction), and visualization tools to help understand the patterns and 

relationships in the reduced data. But visual analytic tools must address a variety of scalability 

issues if they are to succeed. 

 

Scalability and complexity issues in visual analytics are themselves quite complex and 

intertwined. In many cases, what an analyst needs most are simple visualizations of the right 

subset of the data. This is the information scalability problem; how do you extract the relevant 

data from a massive stream of data? In other cases, the key insight sought by an analyst 

requires viewing an overview of the data. This is the visual scalability problem; how do you 

visualize enormous amounts of data? In either case, the analyst or user of the visual analytic 

tools may be using those tools on different display devices at different times. The display 

scalability problem addresses this issue; how do you avoid learning a different system for each 

size display you work with? As we deal with larger scale issues, it is often necessary to 

collaborate on analysis. This leads to the human scalability problem; how do we design visual 

analytic tools that can gracefully scale from a single user to a collaborative multi-user 

environment? These tools are all built on a computing infrastructure that is currently 

approaching petascale capability. Projections indicate that over the next 15 years, exascale 

computing will become possible. However, it is highly likely that exascale computing will require 

a paradigm shift in our approach to computing, as it will be highly parallel. This leads to the 

computational scalability problem: how do we redesign our analysis and visualization tools for 

exascale computing? 
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There is no formal research program on scalability issues in visual analytics. Rather, the 

problems are typically addressed in other visual analytics research and development where the 

specific scalability issues create a roadblock. Hence, some areas have received more attention 

than others. The areas that have received the most attention are information scalability for 

methods to filter data, and visual scalability. However, the solutions to date are point designs 

that solve specific problems. The areas that have received the least attention are information 

scalability for large-scale dynamic change, information presentation scaling, display scalability, 

human scalability, and computational scalability. While we must continue to develop point 

designs that address specific scaling issues that block other visual analytics research and 

development, we also need to work on systematic solutions to the broader set of scalability 

issues. 

 

Many of these scalability issues were posed in the NVAC R&D agenda published in Illuminating 

the Path1 five years ago. The basic issues published then remain the same, with the addition of 

several new issues (computational scalability, temporal scalability, and cross-scale problems). 

Although some progress has been made on many of the goals, dealing with scalability and 

complexity issues in visual analytic tools will continue to be a challenge as long as the volume of 

data continues to grow as it has. 
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