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Abstract Scatter Plots are one of the most powerful and most widely used 
techniques for visual data exploration. A well-known problem is that scatter 
plots often have a high degree of overlap, which may occlude a significant 
portion of the data values shown. In this paper, we propose th e general­
ized scatter plot technique, which allows an overlap-free representation of 
large data sets to fit entirely into the display. The basic idea is to allow the 
analyst to optimize the degree of overlap and distortion to generate the best­
possible view. To allow an effective usage, we provide the capability to zoom 
smoothly between the traditional and our generalized scatter plots. We iden­
tify an optimization function that takes overlap and distortion of the visualiza­
tion into acccount. We evaluate the generalized scatter plots according to this 
optimization function, and show that there usually exists an optimal compro­
mise between overlap and distortion . Our generalized scatter plots have been 
applied successfully to a number of real-wo rld IT services applications, such as 
server performance monitoring, telephone service usage analysis and financial 
data, demonstrating the benefits of the generalized scatter plots over tradi­
tional ones. 
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Introduction 

Motivation 

Large amounts of multi-dimensional data occur in many important appli­
cation domains such as telephone service usage analysis, sales and server 
performance monitoring. Analysts want to know how much one attribute 
of the data set is affected by another. In 1984, William Cleveland et all 
wrote: 

The scatter plot is one of our most powerful tools for data analysis. 

It is still true that scatter plots (sometimes they are also called x-y diagrams) 
are one of the most common ways to visualize multidimensional data . 
Using scatter plots, we can identify the relationship between two attributes, 
clusters of points and outliers. However, todays scatter plots have a high 
degree of overlap, which obscures the true density of data values. William 
Cleveland et all already noted: 

Still, we can add graphical information to scatter plots to make them 
considerably more powerful. 

In his article, Cleveland introduced different types of enhancements 
including a combination with iconic techniques and a superposition 
of smoothing methods for enhancing the x-y axes dependency and 
scale-ratio. Clevelands ideas are great enhancements of scatter plots, but 
they do not solve the overlap problem of scatter plots showing large 
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data sets. In exploring large data sets, the high degree of 
overlap in scatter plots is one of the most severe draw­
backs, which often causes correlations to be hidden or at 
least difficult to observe. 

In this article, we address the overlap issue and propose 
a generalization of scatter plots where the analyst can 
control the degree of overlap and distortion allowing the 
analyst to generate many different views for revealing 
patterns and relations from the data. In the Section 
'Applications', we will illustrate the applicability of the 
proposed technique. The potential of the technique 
in revealing previously barely visible information will 
be demonstrated by showing the power of combining 
distortion and pixel placement on real-world data set. 
Our examples show that the strength of the proposed 
methods lies first in the combination of two techniques, . 
and second in the ability of the users to interactively 
guide the progress between the original and the general­
ized representation of the data. 

Related work 

To create a representation of an entire high-density scatter 
plot without overlap, we need a visualization technique 
that places a large volume of data in the limited size 
of the display screen. Early successful high information 
density displays were for example pioneered by Eicks 
SeeSoft system.2 Eick allows users to analyze up to 50 
000 lines of code simultaneously by mapping each line of 
code into a thin row for finding interesting patterns. To 
explore the high-density display, Eick also provided Data 
Visualization Slides3 to filter the information displayed 
on the screen. Users can use the slider to prune the visual 
clutter and explore the display from several perspectives. 

In the meantime, many interesting approaches for large 
high-density displays have been developed. In ]erding 
and Staskos4 Information Mural developed a technique 
for displaying and navigating large information spaces 
without filtering. Information Murals use gray-scale 
shading and color along with anti-aliasing techniques to 
create a miniature version of the entire data set. ]erding 
and Stask04 are able to plot over 52000 sunspot values in 
a small display window. Users can navigate the detailed 
subset of the data from the miniature overview window 
of the entire data set. 

Later, Fish-Eye views and Degree of Interest techniques 
try to integrate overview and detail windows. SpenceS and 
Furnas6 for example, enable users to focus on something 
interesting in a large graph. Bertini and Santucci? use 
sampling techniques to localize a particular region of the 
display. Bertini and SantUCCi? allow the user to examine 
small data items in detail, avoiding a loss of informa­
tion in low-density areas while reducing overplotting in 
high-density areas. Ellis8 uses auto-sampling to reduce the 
overplotting in parallel coordinates and scatter plots. Simi­
larly, Fua et ai9 uses hierarchical clustering techniqueslO 

to reduce clutter in several visualizations in the system. 
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Distortion plays .an important role in avoiding overlap 
in scatter plots. Bueringll provides two user interac­
tion techniques on a small screen: a geometric-semantic 
zoom that smooths transitions between overview and 
detail; and a fish-eye distortion that displays the focus 
and context regions of the scatter plot in a single view. 
Keirn 12 uses pixel-based distortion to efficiently generate 
cartograms for showing geography-related statistical 
information. 

Alternatively to distortions, many researchers suggested 
alpha-blending, which uses the alpha-transparency of 
the color system to represent data pOints. As a result, 
highly overplotted areas have high opacity and sparse 
areas have higher transparency.13 In the book by Antony 
Unwin et ai,13 a number of interesting visualization 
techniques were introduced regarding scatter plots, such 
as drawing overlapping points with slightly bigger sizes 
and reducing the x and y axes by certain factors. ]MP 8 
Software14 generates scatter plots with non-parametric 
density contours and marginal distributions to show 
where the data is most dense. Each contour line in the 
curved shape encloses 5 per cent of the data. CarrIS uses 
a hexagonal-shaped symbol whose size increases mono­
tonically as the number of observations in the associated 
bin increases, and HexBin scatter plots1S determine the 
brightness value of each HexBin cell depending on the 
number of data points in the cell. All three techniques, 
Unwins distortion, Carrs binning and the HexBin visu­
alization techniques, are close to the method presented 
in this article. However, using these techniques analysts 
are not able to see and access all data points, especially if 
the third variable mapped to color is of high importance. 
In order to overcome this problem, scientists suggested 
to use jitter or minimal random noise, which aim at 
avoiding overplotting, but result in random distribution 
of data points, and the heterogeneous patterns of colored 
data pOints might bias users' perception. IS 

Also different interaction techniques are suggested to 
solve the overplotting problem. Different zooming tech­
niques are commonly used. With these methods, users are 
able to request more details by increasing the magnifica­
tion of representation. The question of determining the 
optimal level of the resolution still remains a challenge. 13 
Additionally, scaling of the axis has been applied in many 
fields to endow higher density areas with a larger space 
and sparse areas with a lower space. Square root and Loga­
rithmic scaling to x- and/or y-axis is certainly very popular. 
This method, however, is only applicable to the visualiza­
tion when it represents an explicit feature of the data. The 
applicability of such scaling techniques is therefore very 
limited. Figure 1 illustrates some examples of the methods 
mentioned. The data used for the representations is the 
Telephone Conference Data (N = 37788), described in 
the Application section in more detail. The data set shows 
the duration of the conference call on the x-axis, the 
charges for the call on the y-axis and the number of partic­
ipants are mapped to color. First the (a) original data set 
with a linear scaling, (b) logarithmic scaling on the x- and 
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Figure 1: Traditio nal techniq ues aiming to overco me the overplottin g prob lem app lied on a Telephone Service Usage data 
set. X-axis represents the duration, y-axis represen ts the charges fo r the ca ll and num ber of participants are mapped to co lo r. 

y-axis, (c) jitter enhanced, (d) zooming, (e) alpha-blending 
and finally the (f) HexBin approach are shown in Figure l. 

Generalized scatter plots 

Common to the related approaches mentioned above 
is that they provide various ways to reduce clutter (for 
example, color-shading, sampling, clustering and distor­
tion) to visualize a large data set. In this article, we 
propose generalized scatter plots with a variable degree 
of distortion and a variable degree of overlap. The tradi­
tional scatter plots are just a special case of our general­
ized scatter plots with no distortion and the data induced 
overlap. As in normal scatter plots, each data point is 
presented as one color pixel or small color icon, and users 
can move the pointer to see the content. In the distorted 
and/or overlap-optimized generalized scatter plots, data 
values are placed as close as possible to their original posi­
tions. Our method allows the user to dynamically move 
the slider to optimize the degree of overlap and distortion 
to generate the best possible view. It allows a seamless 
path from traditional scatter plots and our generalized 
scatter plots. 

In addition, we incorporate the intelligent visual 
analytics queries16 to perform root-cause visual analyzes . 
The real application examples in the areas of telephone 
service usage analysis, computer server performance 
monitoring and financial data analysis demonstrate the 
benefits of our generalized scatter plots over the tradi­
tional ones. The remainder of this article is organized as 
follows: The section Generalized scatter factors, further 
describes the method by general optimization goals and 
layout algorithms of the generalized scatter plots. The 
efficiency of our new approach and applications are 
described in the sections I Applications' and I Computation 
of optimization goals'. 

Method 

The overlap optimized scatter plot allows a variable degree 
of distortion and a variable degree of overlap. The distor­
tion is based on a li near distortion in x and y direction 
similar to the HistoScale approach,1? which ensures an 
equal distribution of the data in x and y dimension. The 
distortion grants more space to areas with high density 
and less space to areas with low density while retaining 
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neighborhood relationships of the data points. More space 
in high density areas allows us to decrease the necessity 
of pixel displacements, which improves the effectiveness 
and efficiency of the generalized scatter plots. 

In contrast to the simple linear scaling of HistoScale, 
we use a variable distortion level, which can be interac­
tively adjusted by the user. For a given distortion level 
(between 0 per cent and 100 per cent), the overlap opti­
mization can also be interactively adjusted between 0 per 
cent and 100 per cent, where 0 per cent corresponds to 
the data-induced overlap level and 100 per cent corre­
sponds to complete overlap avoidance if possible for 
in the given display space. The overlap optimization is 
done by a circular arrangement around the original loca­
tion regarding to a given ordering of the elements. The 
ordering usually corresponds to the coloring attribute 
with a default ordering starting colors that occur least 
frequently. With this arrangement, we generate a natural­
looking visualization without artifacts. The ordering of 
elements prevents randomly arranged points that would 
not benefit the user. The details of the implementa­
tion and user involvement in creating overlap-optimized 
scatter plots is discussed in the following sections. 

Implementation 

Because our generalized scatter plot system is designed as 
an interactive tool, our algorithm has to be as efficient 
as possible. The overlap-optimized pixel placement algo­
rithm is the most time-consuming part of our generalized 
scatter plot and therefore has been carefully implemented. 

Algorithm: doPixelArrangement(OrderedList DataObjects) 
int [ ] [ ] overlapCnt := new int[widthj[height]; 
for each 0 of DataObjects do 
Point p := o.getPixeIPos(); 
if (overlapCnt[p.x] [p.y] < max Overlap) then 

1 

o.setPaintPos(p); 
overlapCnt[p.x][p.y] + +; 

else 
I rearrangeDataObject(o, p, overlapCnt); 
end 
end 

As depicted in 'doPixeIArrangement', our algorithm 
displaces the pOints in order of their priority (for example, 
the value of the point) to avoid random patterns in the 
resulting visualization. Because we have to remember 
how many data objects are already located at a specific 
pixel location, we need a two-dimensional integer array 
representing each pixel of the display area. For each data 
point, the program has to look up the number of data 
objects already placed at the preferred position of the 
data object and compare this to the maximum allowable 
number of overlapping pOints, which depends on the 
interactively chosen overlap level (slider) . If the current 
data object can be placed at its preferred location, we 
have to store this information in the two-dimensional 
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integer arrays. Otherwise, we have to look for the next 
free pixel position in order to place the current data 
object as illustrated in 'rearrangeDataObject'. 

The procedure rearrangeDataObject does the real pixel 
placement: In order to have a fast algorithm for each pixel 
we store the radius, which was used for the last displace­
ment (The initial value is 1). We can calculate the pixels 
of the circle around point p with this radius. The calcu­
lation of the pixels is done by using a modified version 
of the Bresenham Midpoint algorithm.18 The Bresenham 
algorithm was modified in such way that it calculates the 
pixels of a circle with a line width of two. The modification 
was necessary, as with the standard Bresenham algorithm 
not every pixel is touched when we increase the radius by 
one, which means that a significant number of pixels are 
not used, thereby creating artifacts in the resulting visu­
alization. 

The calcCirciePoints method returns the pixels of the 
circle ordered by their distance from the original pixel 
position. As we have a choice of candidate pixels we 
have to check each of them until we can either place the 
data object or there arent any pixels left on the circle 
with the current radius. In the second case, we have to 
increase the radius and calculate the new pixel positions 
and then go on as described above. When we have found 
a suitable pixel position we can store the radius we had 
to use to accelerate the next displacement operations. 

Algorithm: rearrangeDataObject(o, p, overlapCount) 
int r := getLastUsedRadius(p); 
Point[ ] circiePoints := caIcCirciePoints(p, r); 
while new place not found do 
if any cirClePoints left then 
Point p := next circiePoint; 
if (overlapCount[p .x][p.y] < max Overlap) then 

l
o.setpaintpos(p); 
overlapCount[p.x][p.y] + + ; 

else 

I
r ++; 
circiePoints := caIcCirciePoints(p, r) ; 

end 

end 

updateLastUsedRad ius(p, r); 

Smooth interpolation 

As our generalized scatter plot provides plots anywhere 
in between the traditional scatter plot and the overlap­
optimized visualization, we h;ld to implement a smooth 
interpolation between these extremes. The interpolations 
of distortion and overlap-optimized visualization are 
calculated differently and are therefore independent of 
each other. For the interpolation between the distorted 
and non-distorted positions, we use a weighted average. 
This weight can be adjusted interactively using a slider 
and it directly influences the linear interpolation. The 
system automatically determines the distortion level that 



Figure 2: Intelligent Data Analysis using k-Means (=100) and Veronoi cells for their representation. 

best fits to the data (see the section 'Computation of 
optimization goals' for details). Using the slider, the user 
can easily adapt the distortion level according to users 
preference. 

In some cases, it is not useful to draw a scatter plot 
without any overlapping points. For very large data sets or 
highly skewed data distributions, for example, the prop­
erties of the data are difficult to see if too many pixels are 
displaced by the overlap-optimized pixel placement algo­
rithm. For this reason we provide a slider to enable the user 
to control the degree of overlap. For a smooth interpo­
lation between the data-induced maximum overlap and 
the overlap-free scatter plot, we determine the maximum 
number of overlapping points and use x·maxOverZapPoints 
(where x is in [0, 1] and is set by the user with a slider) 
as the maximum overlap degree in the generated visu­
alization. A short video showing the transition from an 
original scatter plot to an overlap-optimized scatter plot, 
based on the Telephone Service Usage data set, is avail­
able under: www.informatik.uni-konstanz.de/fileadmin/ 
dataMining/GSP 3ideo.avi. 

Intelligent visual queries 

Interactivity is an important aspect of our visual data 
exploration technique. To make large volumes of multi­
dimensional data sets easy to explore and interpret, in 
addition to the layered drill-down and zoom, we allow 
intelligent visual analytics queries to be performed by the 
user. Analysts can rubber band an interesting area and 
invoke data mining algorithms to determine attributes 
that are closely related to the selected attribute. A number 
of data mining methods including correlation analysis, 
similarity functions and cluster analysis are used to 
analyze relations between attributes. The mining results 
are again presented as generalized scatter plots, allowing 
the user to seamlessly continue the exploration. 

We choose the clustering task to demonstrate the added 
value ofthe overlap optimization. Clustering is often used 

to represent significant groups in the representation and 
to extract patterns of interest by partitioning the data set. 
The system currently includes the k-Means clustering algo­
rithm and the creation of Voronoi tessellations, which are 
modules that can be easily extended by techniques most 
suitable for the underlying data set. The k-Means algo­
rithm partitions the data into k clusters, in which each 
point belongs to the cluster with the smallest distance . 
Resulting in k cluster centers that correlate with the distri­
bution of the data . The Voronoi tessellation is applied to 
the resulting cluster centers, in order to create a visual 
feedback to which clusters the data points belong. Red 
marks are used to show cluster centers, and the borders of 
the Voronoi cells are drawn in black. 

Figure 2 shows the results of an analysis using the 
described methods for the original, medium-distorted and 
maximum-distorted scatter plot. In all cases the degree 
of overlap is set to SO per cent. From the representations, 
it is clearly evident that overlap optimization improves 
the clustering results. The Original data set (left) is palti­
tioned inefficiently and results in a crowd of cluster 
centers with no ability to segment the data. The medium 
distortion (middle) reveals already more details and more 
separable segments appear. Finally, the maximum distor­
tion (right) reveals fully the patterns previously hidden 
in the data. The cluster centers follow the high-density 
lines and enhance the visibility of these patterns, and the 
Voronoi cells clearly segment the data points along these 
patterns. 

Optimization goals 

One optimization goal is that the displacement of pixels 
with respect to their original position should be minimal, 
which is important in order to understand the generated 
scatter plots. For a given data set of n points pI, pn, 
let O(pi) denote the original location and N(pi) denote 
the calculated position in the generated scatter plot, and 
d(O,N) is a distance function in the scatter plot measuring 
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the Euclidean distance of 0 and N. The displacement error 
is calculated as follows: 

~ d(O(pi),N(Pi» 
edisp = ~ 

i=l n 

The displacement error measures the amount of positional 
changes of all data points between the original scatter plot 
and the generalized scatter plot. The second optimization 
goal is that the overlap of pOints should be as minimal 
as possible. The overlap of points can be measured by the 
following function: 

IIPiI3j: N(pi) =N(Pj) 1\ iiill 
eoverlap = n 

Note that there is a trade-off between the two functions: If 
we increase the distortion we usually get a lower overlap 
error but always have a higher displacement error. To 
calculate a combined optimization function we suggest a 
weighted sum of the error functions: 

c * edist + (1 - c) * eoverlap -+ MIN 

with c being proportionality constant. Increasing c would 
allow a lower level of distortion and a higher degree 
of overlap. Correspondingly, decreasing c would show 
inverse results. For a balanced weight of displacement 
and overlap errors, c should be set to 0.5. In the section 
'Computation of optimization goals', we evaluate the 
two-error functions and show that we can use the opti­
mization function to determine the optimal distortion 
and overlap values. 

Applications 

Real-world data sets can best show the contribution of 
the proposed overlap-optimized scatter plot technique. 
We selected three domains, in which scatter plots are 
commonly used. First, we show the already introduced 
Telephone Conference Call data set with 37 788 entries. 
Second, we show Server Performance Evaluation with 69 
056 measurements in five performance measures. Third, 
we show a Financial data set containing bond market 
prices of 1 month in two consecutive years (March 2004 
and 2005) having over 8000 entries . The insights gained 
through our technique are the result of consulting experts 
of the particular field in informal interviews. 

A telephone service usage analysis 

Telephone service usage analyses include the following 
tasks: 

• exploring the distribution of the call amounts, 
• determining the call duration time and the most 

common charges, and 
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• investigating the correlation of the conference call 
charge with the length of the call and with the number 
of participants. 

Overlap-optimized scatter plots can help revealing the 
answers to these questions. Overlap-optimized scatter 
plots have the advantage that they are more similar to 
traditional scatter plots - in the case of no distortion and 
data-induced full overlap they are identical to traditional 
scatter plots. There is no need to an artificial binning, 
which also helps to retain a more traditional view of the 
data and especially displays neighborhood relationships 
better. In this example, we also show different versions 
of our Generalized Scatter Plots with different distor­
tion and overlap levels. Upper left in Figure 3 displays 
a normal scatter plot without distortion and maximum 
data-induced overlap. From left to right, we reduce the 
overlap first to SO per cent, then to 100 per cent. From 
up to down, we increase the distortion level first to SO 
per cent, then to 100 per cent. Highest degree of distor­
tion with no overlap is presented in the lower right 
corner. 

Note that overlap and distortion can be controlled inde­
pendently, which means that arbitrary other configura­
tions can easily be interactively explored. In comparing 
the different variants, it is clear that the normal scatter 
plot (upper left in Figure 3) reveals only a very limited 
amount of information. Two lines are barely visible and 
therefore it is difficult to see how many calls are made. 
Also, the very high duration and charge calls are very 
sparse and are therefore barely visible. Also, the depen­
dency between participants and charge/duration is not 
visible due to the high level of overplotting. 

While increasing the distortion level (from up to down) 
and decrease the overplotting (from left to right), the 
highly clustered data is partitioned and more details 
about the data become visible. At least two curves are 
visible for maximum overlap and medium distortion level 
(central left), which split into at least four separate curves 
by maximum overlap and maximum distortion level 
(lower left). Finally, minimum overlap and maximum 
distortion (lower right corner) clearly shows interesting 
details that are neither visible in the traditional scatter 
plot nor in the binned scatter plot. In this final repre­
sentation, up to nine different curves can be discerned, 
each corresponding to a particular rate. In addition, 
analysts are able to learn additional facts form the data, 
demonstrating the additional value of our generalized 
scatter plots . The following correlations between the 
charges, duration and the number of participants can be 
observed: 

1. The left curve illustrates that the most expensive 
calls have high volumes (many data pOints) and 
correlate with the time and number of participants. 
However, there is a wide distribution in charges. Inter­
estingly, the most expensive calls are the national 
calls. 
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2. Then, there is a middle curve that is significantly less 
expensive but also shows a clear correlation between 
charge and seconds. This curve is due to a special rate 
to Canada, which can only be used for a small number 
of participants (only green points). 

3. The right section contains the international calls. 
There are three blue curves representing three different 
service providers (AT&T, Sprint and ConCall). The 
rightmost curve has the highest number of calls (AT&T, 
the thickest curve), which with a high degree of overlap 
could not be shown in Figure 3 (left upper plots). 

4. The thickness of the curves reveals the number of 
national and internal calls. From the comparison of the 
thickness of the curves we learn that the international 
calls have a clear charge structure for each provider 
(solid lines) whereas the charges of national calls are 
more variable and depend on other parameters not 
shown in the visualization (for example time of the 
day). 

Server performance generalized scatter plot matrix 

As a second application example, we use server perfor­
mance data with measurements such as queue length, 
dispatched jobs, disc, swap and message queue. To answer 
the question Which system resource causes the server to 
be busy? The analyst can apply the generalized scatter 
plot visualization technique to find correlations and 
closely related attributes. Figure 4 shows a generalized 
scatter plots matrix of the data with a medium distortion 
level and no overlap. The lower left half of the scatter 
plot matrix shows the traditional scatter plots and the 
upper right half shows our generalized scatter plots. The 
color of the pixels shows the overall server performance 
measurement server busy per cent. The following facts 
can be observed: 

• There are many jobs with a low value for queue length, 
most of which also have a small value for server busy 
per cent (green color). 

• Server busy per cent has a high correlation with all 
attributes except message queue and swap (all top right 
corners of dispatched jobs and disk usage have blue and 
burgundy colors) . 

• Server busy per cent is highly correlated to the number 
of dispatched jobs and the disk usage. This fact is indi­
cated by the burgundy color in the top right corner. 

One interesting effect occurs in queue length and disc: 
Most of the jobs have low queue length (green), except for 
two exceptional clusters (blue) that have high disk usage. 
The service manager can perform intelligent visual queries 
to find the root cause of the problems and take preven­
tive actions. The advantage of using generalized scatter 
plots is to allow analysts to visually compare the correla­
tions across many different attributes in one single display 
without losing any details due to overplotting even for 
very large data sets. 
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mance Data with medium Distortion and no Overlap (color: 
Server Busy in per cent). Below the diagona l are the orig­
inal scatter plots and above the diagona l are the ove rlap­
optimized scatter plots. 

Financial data analysis 

As a further application example, we have chosen to 
apply the described methods on financial data, which 
is traditionally interested in large number of observa­
tions in a high resolution. The current example aims to 
compare the prices of a large number of bonds in a yearly 
development. For this purpose, the prices of March 2004 
(x-axis) and prices of March 2005 (y-axis) are compared 
with the additional information about the number of 
month a particular stock was on the market (repre­
sented by color), as shown in Figure S. Darker colors 
indicate that the bond is a longer period on the 
market and brighter colors that it is fairly new on the 
market. 

The combination of the distortion and pixel placement 
can reveal the information hidden in the representa­
tion . The expected linear correlation between the prices 
at the two different points in time is seen through the 
distortions technique. Pixel placement makes the rela­
tion between bond prices and time on the market visible. 
The first representation (upper left scatter plot) shows the 
traditional scatter plot. High distortion, using HistoScale, 
is applied on the right upper representation. Overlap-free 
techniques are shown in the two lower representations, 
without distortion (left) and with distortion (right). As a 
result of the overlap free and high distortion technique, 
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Figure 5: Financia l data set showing bond market prices of two co nsecutive years, Co lor represents the number of months 
on the market. The origina l data (l eft upper) reveals its information on ly when distortion technique (right upper) and ove rlap 
free techniques without (l eft lower) and with distortion (right lower) are applied. 

analysts are able to explore, interpret and make previously 
unknown information visible: 

• A large number of bonds, close to the diagonal, indicate 
consolidate and secure development. 

• Some of the bonds are more sensitive to changes then 
others, and are therefore less risk aversive (deviation 
from regression line). Above the diagonal are bonds with 

an increase in price; below are those with a decrease in 
price . 

• The time the bonds are on the market plays a central 
role in their price, though not in their risk averseness . 

• Many of the high -risk bonds are ones that are only 
shortly on the market. Many of these were positive, but 
also an equal amount negative during the investigated 
time period, 

309 



QI 
:J 
iii 
> .. 
0 .. .. .... 

1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

0.2 

... , .. ~ 
" ' .. 

". ............. ..... 

- Displacement Error 
- - Overlap Error 
..... Overall Error 

... " 
I,. 

" ... ... , 

. ................ , ....... . 

.. ' .. ' 

0.1 

O~~----r---~~~~---~---r-~----r~ 
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Level of Distortion 

Figure 6: Overlap, displacement and ove rall-e rror as a 
function of distortion level. 

Computation of optimization goals 

In this section, we discuss the trade-off between displace­
ment and overlap error that have been introduced in 
the subsection 'Implementation'. On the one hand, if 
we increase the distortion using the distortion slider, 
consequently the displacement error measuring the 
displacement of pOints with respect to their non-distorted 
location increases. On the other hand, the overlap error 
measuring the percentage of overlap points decreases 
with increasing distortion. We measured both error 
functions while increasing the distortion level first, 
as shown in Figure 6. This evaluation was carried out 
using the telephone conference call data set discussed in 
the subsection 'A telephone service usage analysis'. As 
the displacement error function is increasing while the 
overlap error function is decreasing, it is obvious that 
the combined (overall) optimization function has a well­
defined minimum. Currently, the minimum occurs at a 
73 per cent distortion level (for example, Figure 3 (lower 
center) for a corresponding visualization) . 

Similarly, the variations of the degree of overlap have 
an impact on the computed error functions. As shown 
in Figure 7, the overlap error function is highly sensi­
tive to higher degrees of overlap. The impact of degrees 
of overlap on the displacement error is marginal. These 
representations and computations are based on a balanced 
weight for displacement and overlap errors (c = 0.5). The 
optimal degree of overlap is 89 per cent for the current 
data set. 

More important is the case, in which we vary both the 
distortion level and the overlap at the same time. Figure 8 
shows the overall error value as a combination of distor­
tion levels and degrees of overlap. For this particular data 
set, the weight (c value) was set to 0.5, because exper­
iments showed only marginal differences for c values 
between 0.25 and 0.75 . However, in other data sets, 
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Figure 8: Overall-error as a funct ion of distortion leve l and 
degree of ove rlap . Yellow color represents lower and red 
co lor hi gher error valu es. The optimal combination of the 
pa rameters is circled (d = 0.28, 0 = 0.89) for balanced weight 
(c = 0.5) . This optimal value (lowest va lue co lored ye ll ow) 
might change as a function of the weighting (c). 

an increase of the c value could result in a significant 
decrease of the optimal distortion level and an increase 
optimal degree of overlap (inversely for a decreasing c) . 
Distortion levels are mapped to the x-axis and degrees of 
overlap are mapped to the y-axis. The overall error values 
are mapped to the different colors of a heat map reaching 
from yellow to red. More red areas refer to higher error 
values and yellow areas to lower error values, in order 
to achieve highest highlighting of areas of interest. The 
results show that there is a complex interaction between 
these two parameters. The optimal combination of these 



parameters is where both values are the lowest for a 
minimal overall error value (d = 0.28,0 = 0.89) . While the 
user can interactively choose any distortion and overlap 
level, we use the minimum of the combined optimization 
function for a good initialization of distortion and overlap 
level. 

Conclusion 

In this article, we present generalized scatter plots, a new 
technique for visualizing large amounts of multi-attribute 
data. The approach is a generalization of traditional scatter 
plots and solves the overlap problem. Our technique maps 
each data pOint to one pixel of the display. We imple­
mented overlap-optimized pixel placement technique to 
place identical data points in a neighborhood around 
the already plotted pixels. In our system, we enable the 
users to smoothly vary the degree of overlap and level 
of distortion, in order to generate the best view for their 
applications . The generalized scatter plots system is an 
efficient and effective solution to the overlap problem, 
which allows scatter plots to be used for the exploration 
of very large data sets . We apply our technique to real 
data sets dealing with telephone service usage analysis, 
server performance monitoring applications and finan­
cial data to demonstrate the wide applicability of our 
technique. The results show that our technique provides 
significantly more information than regular scatter 
plots. 

An additional advantage of the overlap optimization 
technique is that it allows users to conduct and apply 
automatic analysis techniques. We demonstrate that 
k-Means algorithm and Voronoi tessellation are highly 
effective, reveal more information and allow the extrac­
tion of hidden patterns when using moderate degree 
of overlap and high degree of distortion. A consider­
able aspect in applying clustering algorithms in overlap 
optimized scatter plots is when decreasing the degree 
of overlap, some artificial clusters may appear and bias 
users ' perception. Therefore, we suggest to extend the 
computation of optimal degree of overlap as a function 
of clustering ability and error. It is also to further research 
to find other techniques and make them applicable to 
overlap-optimized scatter plots. Especially the computa­
tion of correlation is a challenge and will be addressed in 
fu tu re research. 

We also evaluate our generalized scatter plots according 
to an automatic optimization function, and show that 
an optimal compromise between overlap and distortion 
exists. Our future work is to automate the interpolation 
process between distortion and overlap. 
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