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Abstract
The design of transfer functions for volume rendering is a non-trivial task. This is particularly true
for multi-channel data sets, where multiple data values exist for each voxel, which requires multi-
dimensional transfer functions. In this paper, we propose a new method for multi-dimensional
transfer function design. Our new method provides a framework to combine multiple
computational approaches and pushes the boundary of gradient-based multi-dimensional transfer
functions to multiple channels, while keeping the dimensionality of transfer functions at a
manageable level, i.e., a maximum of three dimensions, which can be displayed visually in a
straightforward way. Our approach utilizes channel intensity, gradient, curvature and texture
properties of each voxel. Applying recently developed nonlinear dimensionality reduction
algorithms reduces the high-dimensional data of the domain. In this paper, we use Isomap and
Locally Linear Embedding as well as a traditional algorithm, Principle Component Analysis. Our
results show that these dimensionality reduction algorithms significantly improve the transfer
function design process without compromising visualization accuracy. We demonstrate the
effectiveness of our new dimensionality reduction algorithms with two volumetric confocal
microscopy data sets.
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1. INTRODUCTION
In volume rendering, the transfer function maps visual properties, such as color and opacity
(alpha), to each voxel in a volumetric data set (i.e., data filling a three dimensional space). A
carefully designed transfer function can reveal much more visual information than a simple
one, and thus is very valuable for scientists exploring 3D volume data sets.1 Effective
transfer functions will identify the different materials, or features of a data set, such as bone
or skin in medical data sets, or cell nuclei or protein structures in microscopical images.2 It
is desirable that the transfer function design process be done in real time, to minimize the
duration of the partially manual design process.
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We call a volume data set multi-channel if there are multiple values for each point (voxel) in
the data set. The data sets we consider in this publication are from confocal microscopy
images of the mouse hippocampus region, which is a multi-channel data set because it
contains the intensities of three different fluorescent antibodies. Our goal is to provide a
method to design a transfer function for this kind of multi-channel data set while preserving
the information that a multi-dimensional transfer function domain has.

The obvious barrier for the goal is the dimensionality of the domain. As an example,
suppose that we only use measured intensity and derived gradient magnitude. As we have
three measured channels, the dimension of the domain is now six (each measured channel is
used as is, plus its gradient magnitude), and the 6D domain is impossible to visualize
directly as we do with 2D or 3D transfer functions. One solution can be to consider each
channel separately, generating two-dimensional transfer functions for each channel.
However, the transfer functions for the three channels would be independent and would not
use the information from the other two channels, and thus ignore potentially useful
information. Therefore, we propose a method that provides a lower dimensional
representation of the original high dimensional domain so that users can design multi-
dimensional transfer functions while keeping all the rich information in the high
dimensional space.

A previous paper3 proposed a framework that can potentially provide a 3D view of a high-
dimensional data space so that we can continue the idea of multi-dimensional transfer
function even with multi-channel data. We employed two dimensionality reduction
algorithms: Principle Component Analysis (PCA) and Isomap. This article extends the
concept of having a low-dimensional representation of the original data domain in two
directions. Firstly, we apply another non-linear dimensionality reduction algorithm, Locally
Linear Embedding (LLE), to our problem. There have been many efforts in the machine
learning community to propose better algorithms for dimensionality reduction. We decided
to use the LLE algorithm because LLE and Isomap are two representative algorithms, but
the technical approach is opposite to each other as we will explain in Section 3. By using
two different “advanced” algorithms, we present the effectiveness of the two algorithms in a
field they have not previously been applied to. Secondly, we investigate our approach with a
new microscopy example with different feature vectors. This is to consider two possible
scenarios that we often encounter in analyzing volume data sets with transfer function:

Multiple Features When we have little information about the data and when we do not
have enough insight about which features can effectively isolate areas of interest,
without our approach one needs to iteratively compare with 2 or 3 features. Then O(n2)
many comparisons are needed where n is the total number of features. This takes
considerably longer, and it is hard to capture the shape or distribution of the entire
multi-dimensional domain. Because our approach keeps the shape of the multi-
dimensional domain while it provides a 3D view of the domain, visualization scientists
can easily understand how the voxels are distributed across the multi-dimensional
domain. For this scenario, a data set is prepared in such a way that we use up to 24
features, which leads to a transfer function domain with up to 24. This is the domain we
then run our dimensionality reduction algorithms. We find that the result from it helps
understand the high-dimensional transfer function domain, which is shown by a more
useful coloring of the volume data set.

Multiple Channels Assuming that we have more knowledge about the data and we
know that some data channels are more important for the visualization than others.
Although many features can possibly isolate more areas of interest, if we are certain
about which features we would like to use, then the remaining features may be
considered less important. The benefit of dimensionality reduction still holds here
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because multi-channel data has 3 or 4 intensities and adding one more feature increases
the dimension to 6 or 8. The difference compared to the previous scenario is, however,
that the original domain is much smaller, i.e. 6D in our example. We demonstrate our
results with a light microscopy data set of a blood vessel in a mouse’s hippocampus
region that was stained for specific proteins.

This article is organized as follows: Section 2 discusses previous approaches on transfer
function design and dimensionality reduction algorithms. Then, Section 3 reviews the three
dimensionality reduction algorithms we employed for our work. Section 4 presents how we
apply dimensionality reduction algorithms to automate transfer function design for multi-
channel data sets. Section 5 outlines the experiments validating our approach and Section 6
shows results from dimensionality reductions and volume rendering. Finally, Section 7
discusses how our algorithm fits in many existing algorithms and Section 8 concludes this
paper.

2. RELATED WORK
Our new method combines algorithms from two different disciplines: multi-dimensional
transfer functions from volume rendering and dimensionality reduction algorithms from
machine learning. In the following, we briefly discuss previous work from both fields
related to our approach.

2.1 Transfer Function
Transfer functions have been an active area of research in the field of volume rendering,1, 2

due to the significance and the difficulty of finding a good transfer function in direct volume
rendering. Especially, significant effort was made to extend the domain of transfer
functions4 from 1D intensity-based transfer functions to multi-dimensional ones. The most
popular choice for the second dimension has been gradient magnitude.4, 5 Gradient
magnitude encodes the boundaries of the data in the volume. A large value of gradient
magnitude at a voxel indicates that the intensity changes rapidly around the voxel, whereas
in smooth areas, gradient magnitude values are small. Since gradient magnitude as a second
transfer function dimension has worked so well, many groups have proposed other derived
values as the second dimension.

Curvature information6, 7 was shown to be useful in non-photorealistic rendering by
emphasizing ridges and valleys. Correa et al.8 considered relative sizes of features as an
alternative domain. Caban et al.9 employed texture properties to encode local textural
information. First order statistics, such as mean, variance, and skewness, as well as second
order statistics and run length matrices, were used to describe texture properties. This
approach is related to our work in that the dimensionality of information reaches up to more
than 20. The high dimensional descriptor enhances volume rendering by differentiating two
parts that have similar intensity and gradient values but different textural characteristics. The
high-dimensional information is used as secondary information to map each point to several
classes grouped by textural similarities.

Human perception of 4D or higher dimensional data is very limited, and thus keeping the
dimensionality of the domain to 2D or 3D is critical for the user interface. Therefore, all the
above approaches limit the maximum dimensionality of the transfer function. However, our
work aims to give a way to utilize multiple quantities all together in transfer function design.

Recently, an algorithm using non-parametric clustering algorithm was proposed.10 The
clustering of transfer function domain provides starting points for feature identification and
volume exploration. Transfer function with clustering will strengthen our approach because
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dimensionality reduction does not provide information about which part of the domain
corresponds to which features in the volume data.

2.2 Dimensionality Reduction
Besides the dimensionality reduction algorithms discussed in Section 3, many alternative
algorithms have been proposed. Although PCA has been successfully used for a long time in
many fields, recent development in non-linear dimensionality reduction algorithms have
shown great success in analyzing complex non-linear high-dimensional data.11–15 Each
approach attempts to preserve different metrics and constructs different optimization
problems under different constraints. However, the problem they all try to solve is the same,
finding a low dimensional representation that faithfully describes original high-dimensional
data.

In scientific visualization, self-organizing maps16 and K-means clustering17 have widely
been used for data exploration. Although each algorithm has shown strength in data analysis
to display the distribution of high-dimensional data, the results are subject to a set of initial
reference vectors or initial K-means that users initially assign. The non-linear dimensionality
reduction algorithms, on the other hand, require a minimum number of free parameters, e.g.
K in the K-nearest neighborhood algorithm, and they find a low-dimensional representation
that preserves relative distances in high-dimensional space. Moreover, non-linear
dimensionality reduction algorithms produce a single global optimal point, as opposed to
many local minima in self-organizing map or in K-means clustering.

Lewis et al.18 applied K-means clustering, PCA, Isomap, and Maximum Variance
Unfolding11, 12 to oceanographic multivariate data in an approach similar to ours. They use
clustering and classification of data into multiple disjoint groups, which is parallel to our
work in that we focus on color encoding for transfer function design and feature discovery in
volume visualization to emphasize areas of interest in biological images.

3. DIMENSIONALITY REDUCTION
In this section, we briefly review the three dimensionality reduction algorithms that we
employ, namely, 1) Principle Component Analysis (PCA), 2) Isomap, and 3) Locally Linear
Embedding. We discuss these algorithms in terms of what each of the algorithms preserves
in the low-dimensional representation and what they minimize/maximize. Intuitively, the
inputs to dimensionality reduction algorithms are a set of vectors in D > 3 dimensional space
and the outputs are the same number of points but in 3D space. Preserved between the inputs
and outputs are the distances between points. Readers are encouraged to see Ref. 13,19–22
for more details.

Let X1, …, XN be inputs in high dimensional space, ℝD. The goal of dimensionality
reduction algorithms is to find a low dimensional representation Y1, …, YN ∈ ℝd such that d
≪ D and  faithfully explains the original data .

3.1 Principle Component Analysis
The main idea of Principle Component Analysis (PCA) is to find a subspace that maximizes
the variance when  are projected to the subspace. For example, if Xi’s are spread out
on or near the x-axis in ℝ2, a good 1D subspace would be the x-axis, rather than the y-axis:
all the points projected to the y-axis are around y = 0 whereas projecting to the x-axis loses
less information by preserving the variance in 2D. Therefore, PCA maximizes the variance
of projected sample points to direction û:
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(1)

The solution for this optimization problem is computed by singular value decomposition
(SVD).22 SVD results in the eigenvector with the largest eigenvalue of covariance matrix C

of sample points Xi. Namely, for a given set of points , PCA computes the covariance
matrix C of Xi’s and solves eigenvalue equations Cu⃗ = λu ⃗. Then the top d eigenvectors that
yield the largest eigenvalues are the direction ûj (j = 1 … d) which achieves maximum
variance. The jth component of Yi (j = 1 … d) can be easily computed with the inner product
of Xi and ûj, i.e. Yij = Xi · ûj.

Due to the simplicity of the algorithm, albeit computationally expensive, PCA has been
widely used in many fields. Note also that its solution is the global minimum. However, the
limitation is the assumption that the sample points are on or near a linear subspace.

3.2 Isomap
Isomap19, 20 is an extension of multidimensional scaling (MDS)21 for finding a low-
dimensional representation of samples that have nonlinear shapes. The algorithm assumes
that the observation points in high-dimensional space are a sample from an intrinsic lower
dimensional manifold. The key idea here is that the geodesic distance between two points, Xi
and Xj, not the Euclidean distance in ℝD, captures the shape of non-linear structures in high-
dimensional space. One canonical example widely used is a Swiss roll shaped plane. A long
strip shaped plane is rolled into a spiral. Geodesic distance is the distance between two
points on the Swiss roll when traveling only on the plane. Then, MDS constructs a low-
dimensional representation  where the distance between two points in Y is closest to
the geodesic distance.

The algorithm has three steps. The first step is to construct a neighborhood graph based on
Euclidean distance in the high-dimensional space. For each point Xi, the distance to other
points, ||Xi − Xj||2 is computed, and the closest K points are picked. The distance is used as
the weight between the two nodes, Xi and Xj, in the neighborhood graph, but if two nodes
are not close to each other, i.e., they are not in the K-nearest neighborhood to each other, no
edge exists. The second step is to compute the shortest path between any two nodes. The
resulting information, shortest distances between nodes, encodes the geodesic distance. The
distance approximately measures the distance on the manifold. For example, if we have
points sampled from a sphere, the geodesic distance represents the shortest distance when
traveling only on the surface of sphere. Thus, this graph captures the nonlinear manifold.
The last step is running MDS on the graph to find a low-dimensional representation
preserving the pairwise geodesic distances.

The computational cost is higher than PCA because of the first and second step. A naive
implementation of the K-nearest neighborhood can go up to O(N2D). However, a
sophisticated implementation can optimize the process, and it runs much faster.
Furthermore, the process is embarrassingly parallelizable, so OpenMP23 can be utilized to
boost the performance on a multi-core shared memory system. The second step, with
Dijkstra’s algorithm24 and it’s naive implementation, can run in O(N2), although it is known
that a Fibonacci heap can reduce the asymptotic time down to O(N log N + E), where E is
the number of edges in the graph.
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The cost can be further reduced by using landmarks.20 Instead of using all the points in the
analysis, which are redundant in most cases, only a small set of randomly chosen points,
called landmarks, are considered. This algorithm dramatically reduces the computational
cost while producing almost the same quality of the resulting low-dimensional
representation.

3.3 Locally Linear Embedding
Locally Linear Embedding (LLE)13 is another popular nonlinear dimensionality reduction
algorithm. Whereas Isomap tries to preserve geodesic distance in the manifold, LLE
preserves locally linear structures. Namely, LLE exploits the relationship between a point
and its neighborhood, which is represented as a linear patch around the point. The linear
patches approximating the data are analogous to triangles approximating a sphere in
computer graphics. Moreover, the locally linear structures are invariant to translation,
scaling, and rotation. This means the algorithm has the freedom to take each patch from
tangled objects in high dimensional space and maps into a low dimensional space.

The algorithm starts with the same step as in Isomap, computing the K-nearest neighborhood
K. Then, it finds Wij such that Wij minimizes |Xi − Σj WijXj|2 with the constraint of 1) Wij = 0
if Xj is not K-nearest neighborhood of Xi and 2) Σj Wij = 1. Intuitively, Xi lies on the plane,
the linear patch, constructed by Xj’s, and Xi can be reconstructed by interpolating Xj’s with
weight Wij with a minimum error. The last step is to find low-dimensional coordinates Yi by
minimizing the following embedding cost function:

(2)

where this optimization problem is a quadratic form for Yi’s and Wij’s are the weights
computed in the previous step. The solution for this problem is found by solving, again, an
eigenvalue problem. For this problem, however, we need d + 1 eigenvectors of matrix (I −
W)T(I − W) that have smallest positive d + 1 eigenvalues as opposed to largest eigenvalues
as in PCA and Isomap.

The benefit of LLE is that: 1) the algorithm is straightforward and easy to understand; 2) it
does not require expensive processing to construct an input for the eigenvalue problem, as
opposed to shortest path algorithm in Isomap; and 3) the matrix constructed by step 2 is
usually very sparse, which consumes less memory, whereas Isomap produces a dense
matrix. However, the computational cost of finding eigenvectors of smallest eigenvalues is
usually much higher than those of largest eigenvalues.

4. TRANSFER FUNCTION DESIGN
In this section, we discuss how the dimensionality reduction algorithms discussed in Section
3. We start with defining transfer function and discuss the limitation of current multi-
dimensional transfer function. Then, to overcome the limitation, we propose our solution
utilizing dimensionality reduction algorithms and explain in detail how our approach works.

4.1 Volume Rendering
Volume rendering renders 3D data. In order to get a final 2D image, typical volume
rendering pipelines consist of three steps: data acquisition, volume rendering, and data
exploration via transfer function manipulation. Data acquisition step generates the 3D data.
Microscopic data in our application is acquired through capturing proteins in the cell, each
of which is stained with different uorescence. Once intensities of the fluorescence light is
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measured, multiple measurements are stitched together to obtain one slice image across a
large region. A stack of such slices are merged together to get a 3D volume data set. Thus,
one data set is a box shape and each point in the data, which we call voxel, has multiple
values representing each fluorescence intensity. The second step, volume rendering, loads
the 3D data into the volume rendering system. Users can rotate, translate, or zoom to
observe the data. Depending on the opacity of the data, which normally defined proportional
to the intensity of each voxel, one may or may not see the details inside the volume.
Therefore, the final step, data exploration with transfer function, is a crucial step to visually
emphasize interesting parts in the data. Transfer function defines a mapping from intensity
values to color and opacity values. Thus, a good transfer function should be able to
emphasize areas of interest, such as a range of intensity values or an object in the data set.

4.2 High Dimensional Transfer Function
Among the three steps in volume rendering, we focus on the last step, transfer function
design. The simplest way to define a transfer function tf for volume data sets is to define a
function from the intensity domain to RGB colors and opacity, known as a one-dimensional
transfer function:

(3)

where x denotes the measurement intensity. A few examples can be 1) a linear function that
maps white to the highest intensity and black to the lowest intensity, 2) a window function
that maps a color only to the intensity of a certain range either as a step function or a
triangular function, or 3) the superposition of multiple step and/or triangular functions. By
adjusting the width of step or triangular functions one can eliminates parts that are not
interesting. The limitation of 1D transfer functions is that it can only distinguish different
data values from one another, regardless of their neighborhood, and that they do not
translate to multi-channel data sets, where every voxel consists of multiple data values (for
instance for multiple fluorescent proteins in confocal microscopy). Because the only
information used is intensity, 1D transfer functions map two points that have the same
intensity always to the same color and opacity. An improvement over 1D transfer functions
for single channel data sets is to derive additional data channels from the data by applying
mathematical functions, for instance gradient magnitude or second derivatives. Gradient
magnitude helps identify boundaries between materials.

Multi-dimensional transfer function4 overcame the limitation of one-dimensional transfer
functions and extended the transfer function domain to a multidimensional one. That is, a
transfer function is defined in 2D or 3D as:

(4)

where y is defined as the gradient magnitude. The benefit of having additional dimensions is
that features of interest can be isolated. Two data values that are mapped to the same visual
properties with a 1D transfer function may be located in different places in a 2D transfer
function domain, and by mapping different colors to them these data points can be visually
distinguished in the volume data set. The remaining question is whether the second axis of
the transfer function domain is effective enough in isolating the features the user is looking
for. Gradient magnitude, defined as the L2-norm of the gradient vector, has been proved to
be effective in visualizing the boundaries of objects.25 This shows that by using multiple
data channels, even if the other channels are derived from the first one, transfer function
design can become easier and organize the data points into clusters which represent a certain
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feature of the data, e.g., the boundary of a cell structure. Hence, feature isolation, or
segmentation, is an essential part of transfer functions. There have been many similar
attempts using different derived mathematical values for the second axis6–9 to more
effectively pull out features of the data set. The essence of these ideas is that the additional
information about the data points can separate features of interest more effectively in the
transfer function domain.

Furthermore, the way of defining a transfer function in the 2D domain reveals another
assumption that multi-channel transfer function design relies on. All the widgets used for
transfer function design4 define a region that encompasses many points and they are mapped
to the same or similar color. This means that two points close to each other map to similar
visual properties, and more importantly, two points in the same object in the volume data set
are located close to each other in the transfer function domain. If the selected transfer
function domain does not effectively cluster points of similar characteristics, defining
transfer functions in this domain will be more difficult than if a more suitable derivation
function were used.

Principle component analysis (PCA) has been widely used in the visualization community,
whereas Isomap and LLE are relatively new algorithms that can reduce the dimensionality
of data to a low dimensional representation in a non-linear fashion. All three algorithms
reduce the dimensionality while preserving relative distances between points in high-
dimensional space. Therefore, two points close to each other in the domain after applying
dimensionality reduction algorithms are also close to each other in the original domain.
However, we claim that non-linear dimensionality reduction algorithms are more
appropriate for our problem, because Isomap and LLE find the low dimensional
representation with a non-linear mapping and because the points in the transfer function
domain are often distributed in a non-linear way.

The distance-preserving characteristics of dimensionality reduction algorithms are crucial in
the transfer function domain, because the concept of transfer function design is based on the
assumption that points close to each other in the data domain share the same or similar
properties, and that if those points are assigned to the same or similar colors, we will
perceive them as part of the same object. While the dimensionality reduction algorithms
automatically generate a domain, the freedom of visualizing the resulting lower dimensional
domain stays the same as in traditional multi-channel transfer function domains. One can
examine the domain to find areas of interest using any type of widgets to map color and
opacity to the data values. Another advantage of dimensionality reduction is that the number
of features is less restricted in our proposed method and users are free to add additional
fields to the transfer function domain. Once the domain has enough information to isolate
areas of interest in the volume, the high dimensionality is reduced to the usual up to three
dimensions.

4.3 Reduced Transfer Function Domain
Our goal in this work is to support the design of multi-dimensional transfer functions for
multi-channel data sets. We define multi-channel data to be a set of sample data from the
same object but with different types of measurement methods as described in Section 5.1.
With multi-channel data, the areas scientists are most interested in, are often described in
complex ways: for example, areas where first and third channels are active together and
where the activation area is around the boundary of an object. This type of area cannot be
found with traditional 1D transfer functions because assigning color with regards to only the
intensity of a single channel cannot capture the correlations between multiple channels.
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The first step of our transfer function design process is collecting features of voxels. We
construct feature vectors defined for each voxel to contain enough information to encode
areas of interest. Two sets of data are prepared for our experiments. The first data set, which
we refer to as 24D Tissue Edge Data, is as the name indicates, confocal volume image data
of the edge of a section of brain tissue. In this case, the contrast between the tissue with
three spectrally distinct fluorescent labels specific for three proteins or nucleic acids and
often displayed with three primary colors and the background containing no fluorescent
labels is very high. In this data set, the feature vectors consist of 24 fields in our example.
The first three fields are intensity information for each channel, (u1, u2, u3). The next
information included is gradient information to isolate voxels near boundaries. Because we
are not restricted to the size of feature vectors, which is one of the strengths of our approach,
we add not only gradient magnitude, but also each component of the gradient vector, i.e.

 for i = 1, 2, 3. In addition, discrete Laplacian values are appended to capture

ridges and valleys as in Ref., i.e.,  for i = 1, 2, 3. Finally, two values from
first order statistics are added: mean and variance of channel intensity. In our example,
3×3×3 voxel cubes are used to capture textural characteristics.9

One may argue that the feature vector is superfluous in the 24D Tissue Edge Data, but even
though it may have redundant information, the dimensionality reduction algorithms can
filter out redundancies. Note also that one has all the freedom of adding or removing
features; if a set of features is believed to be effective in isolation, adding to the current
feature vector does not cause much overhead. If an added feature is new information, the
dimensionality reduction algorithm will capture the large variance of the feature. Even if it
turns out that they are not effective, the dimensionality reduction algorithm will also
eliminate the small variance of the domain.

On the other hand, the second data set, which we call 6D Blood Vessel Data, is simple and
straightforward. It has only 6 fields: intensity and gradient magnitude from 3 channels. This
volume data set is centered around a blood vessel in the hippocampus. This data set is to
verify that our method can provide the same way as in Ref. 4 and with relatively smaller
dimensionality. That is, once we acquire experience about which field effectively isolates
areas of interest, we can carefully choose only the fields needed for the visualization goals.
By reducing the number of fields, one can reduce the computational cost and generate better
result as we will describe shortly in Section 6.3.

The second step is to run the dimensionality reduction algorithm. The input is the set of
feature vectors we constructed in the first step. The reason why we apply the dimensionality
reduction algorithm is that the dimensionality of the original feature vector is too high - 24
in our example but it may be even larger depending on the visualization goals. What we get
after dimensionality reduction is a compact form of a voxel distribution in 3D. Instead of
working with 24D data, the dimensionality reduction algorithm enables us to stay in 3D
space. The relationship between the original 24D distribution and the newly computed 3D
distribution is that the 3D distribution best approximates the original data. What is preserved
when transforming feature vectors from 24D to 3D, is the relative distance between feature
vectors. Two vectors that are close to each other in high-dimensional space are close in low-
dimensional space as well. This allows us to assign similar colors to two voxels that are
located close to each other in the resulting 3D domain because they are also close in the
original domain.

The final step for our transfer function design is to navigate the domain produced in the
second step. This is the same procedure visualization scientists go through to create multi-
dimensional transfer functions in previous work. Dual domain navigation and coloring
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widgets4 help examining the domain in this step. The feature domain, which is actually
produced by the dimensionality reduction algorithms, is created in such a way that large
variances of fields in the original data are shown in the feature domain, too. Preserving the
variance of the original data helps visualization scientists to more easily identify areas of
interest in the volume rendering domain.

4.4 Scalability
Due to recent improvements of confocal scanning technology, the size of the image data that
scientists usually handle has reached giga-pixels and more. The computational cost of most
steps in the dimensionality reduction algorithms, such as computing pairwise distance and
eigenvectors, or running the shortest distance algorithm on billions of elements are,
however, sometimes prohibitively expensive. Although there have been many algorithmic
attempts to avoid this barrier,20 we were unable to process very high resolution images in
just a single run.

We cut out a small cube (128 × 128 × 24 voxels for 24D data and 50 × 50 × 24 voxels for
6D data) from the entire data volume, containing the most interesting parts for scientists.
With the small subset of data, a transfer function can be calculated much more easily. With
the transfer function, we extend the result to other parts of data with the following
algorithm:

• We compute the feature vector for X, a point in the large volume, and we find 3
nearest neighbors of X, in terms of Euclidean distance in the feature vector space,
from the reference data, , that we used for transfer function design. Then we
can represent X as a weighted sum of the three vectors X(1), X(2), X(3) with the
optimization problem:

• We estimate the low-dimensional embedding of X by interpolating the three
neighbors. We use the same assumption that the Locally Linear Embedding
algorithm13 makes; if X and its neighbors are close enough, then we can assume
that X is on the linear plane that its neighborhood points generate. We use the
weights w1, w2, and w3 to get the low dimensional coordinate, Y, of X by linearly
interpolating from Y(1), Y(2), and Y(3).

Another scalability issue is for LLE. LLE requires computing the eigenvectors that have the
smallest positive eigenvalues. Although the rest of the algorithm is relatively very simple
and does not require solving dynamic programming as in Isomap, we failed to compute the
eigenvectors of 400,000 × 400,000 matrix. Therefore, if one would to use high resolution
images as the reference image for transfer function design, LLE may not be the best choice
for the work. However, computation of 60,000 × 60,000 matrix took a significant less time
thanks to a efficient numerical method.26

5. EXPERIMENT
We first introduce the volume data we used for our experiment in this section. Then we
present 3D transfer function and direct volume rendering results, highlighting areas of
interest, generated in the transfer function domain.
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5.1 Light Microscopy Volume
Here we apply our new transfer function design process to a dataset of images acquired by
confocal microscopy of immunolabeled mouse brain tissue. The tissue is labeled with 3
different fluorescent antibodies to localize three proteins within the tissue. The image
consists of three channels, each of which is the emission of a different wavelength of light
collected from these fluorophores within the specimen. This dataset was generated at
National Center for Microscopy and Imaging Research (NCMIR) and deposited into the Cell
Centered Database (CCDB; http://ccdb.ucsd.edu, accession # MPID6674), a resource for
imaging data sets from advanced light and electron microscopies.27

The original microscopy product is a mosaic of 176 overlapping image stacks that were
acquired and assembled into one mosaic image encompassing the entire hippocampus region
of the mouse brain, acquired using a laser scanning confocal microscope with a precision
motorized stage. The original wide-field mosaic image can be browsed at multiple
resolutions: the entire specimen, regions of interest, certain cell populations within regions,
and even cellular compartments (at maximum resolution). This large-scale imaging
technique is used to scan large regions of the mouse brain to look for expression of the
pannexin1 protein, a recently discovered protein that is thought to be an ATP release
channel participating in ATP signaling cascades. It is highly expressed in the brain. Because
the brain is a highly heterogeneous organ and expression levels and patterns can vary within
sub-domains, even within the same class of cell, these brain mosaics span an expanse of
millimeters of tissue with each tile is recorded at close to the highest resolution achievable
by light microscope. In these images, Pannexin1 protein expression (green) is examined in
comparison with that of gap junction protein, connexin43, (red) and the astrocyte marker,
glial fibrillary acidic protein (GFAP) (blue). The aim is to learn where pannexin1 protein is
being utilized in brain tissue at multiple levels of resolution and determine what other
cellular partners might bind to the Pannexin1 protein assemblies.

This image data is rich in content and large in size. Volumes like these usually contain much
more information beyond the original experimental intent. They are good source material for
data mining and sharing technology that stimulates new avenues of investigation. These
large-scale mosaic image volumes must be cropped to a manageable size at an appropriate
scale in order to demonstrate the findings for collaborators and in publications such as the
examples in Figure 2. A big challenge is presenting this data set in a way that retains both its
complexity and protein specificity to optimally convey any novelty and significance within
its biological contexts.

5.2 Experiment Design
We seek three results from the experiment: 1) rendered image quality, 2) the distribution and
shape of transfer function domain, and 3) eigenvalue spectrums of PCA and Isomap
algorithms. We evaluate the image quality of various images generated by transfer function.
Since there is no quantitative way to compare the quality of two images generated from two
different transfer function domains, we show several rendered images that successfully
isolate features of interest. 1D transfer function domain or even 2D domain is often not able
to isolate features. Only the domain having features spread out nicely in it can provide a way
to highlight those features. For the distribution and shape of transfer function domain aligns
with the first result. We will show the domain generated by dimensionality reduction
algorithms and see if the shape is nicely stretched in the 3D space. If points are located close
to each other, it is more likely for points from different areas of interest to be overlapped
together. If this happens, it is impossible to isolate two areas. As we will discuss in Section
6.3, domain from LLE and other algorithms can only be compared by this result. The last
result we will present, eigenvalue spectrums, compares the quality of PCA and Isomap.
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These two algorithms produce a list of eigenvectors and corresponding eigenvalues. We are
interested in three largest eigenvalues and if those three dominate the spectrum, it indicates
that we have achieved small variance loss during the reduction.

6. RESULT
We present results from the experiment we designed in Section 5. First, we show the transfer
function domains obtained from the different dimensionality reduction algorithms, and we
present rendered images of 3D microscopic data, showing highlighted features. Finally, we
discuss the difference between the three algorithms.

6.1 Transfer Function Domain
Figure 1 shows the domain of a transfer function of the 24D Tissue Edge Data described in
Section 5.1. Figure 1(a) is the view from the top of the domain, i.e., from the positive
infinite direction of the Z axis, or projection to the XY plane. Figure 1(b) is the view from
one side of the domain, that is, from the positive infinite direction of the Y axis, or
projection to the XZ plane. This is produced after applying the Isomap algorithm with 500
landmarks with K = 50 nearest neighborhood searchings. To give basic information about
the distribution, the original channel intensities of the voxels were initially assigned to
points.

In Figure 1(a), three channel intensity values are clustered at each corner. Voxels expressing
two channels together are between two corners. Especially region 1 denotes where
astrocytes and Connexin43 proteins are expressed around the boundary of the cell. The
distribution of voxels that express Pannexin1 protein branches out from the center, region 2.
The edge of the branch is the voxels representing blobs of Pannexin1 as shown in Figure
2(c).

It is more clear to see how Connexin43 proteins are distributed in the sample with Figure
1(b). The voxels are spread according to ridges and valleys; region 3 is where valleys going
down to +z depth from right to left; region 4 is where ridge voxels are distributed; and
region 5 denotes another valleys but the opposite direction to region 2.

Many widgets for editing transfer functions, for instance as in Ref. 25, can be used in the
same way with this domain. For the images in Section 6.2, only a Gaussian widget was used.
The Gaussian widget in the 3D domain maps point x to a color according to the Gaussian
distribution:

(5)

where μ denotes the location of the center, and points around the center are affected by the
widget. σ decides how far from the center the widget’s influence reaches. Larger σ values
color a wide range of points whereas smaller σ affects only a small range of points. The
location of the center, μ, is selected by users, and our tool provides a method to adjust σ. In
the future, we may investigate a tool which separately controls σ in three directions, but this
widget was effective enough in our experiments.

6.2 Rendering Results
We rendered two datasets, 24D Tissue Edge (512 × 256 × 24 voxels) and 6D Blood Vessel
(300 × 250 × 24 voxels), with DeskVOX,28 an open-source volume rendering software. A
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maximum intensity projection algorithm was used for blending the slices. Figure 2 and
Figure 3 shows several screen shots.

6.2.1 Tissue Edge—In Figure 2(a), a small region of the three-color image shows the
edge of the hippocampus tissue with triple fluorescent immunolabeling (Green=Pannexin1
protein, Red=Connexin43 protein, Blue=GFAP within astrocytes). In Figure 2(a), a
projection of the original multi-channel RGB image stack is displayed for comparison with
improved visualizations of key elements generated using our new transfer function design
process that are shown in Figure 2(b)–2(d).

The astrocytes (blue in Figure 1(a)) cover and their processes wrap the outer surface of the
hippocampus. These astrocytes, as well as other cell types, express Connexin43 (red). Figure
1(b) nicely highlights the Connexin43 (red) expression within astrocytes (blue) surrounding
the hippocampus tissue while suppressing the Connexin43 labeling that is present among
unlabeled, and therefore unidentifiable, cells deeper within the tissue slice.

There are aspects of Pannexin1 expression within this image region that are only apparent
after enhancement in Figure 2(c) (orange) including medium sized round areas with more
dense labeling that may be cell bodies whose cell type could be identified with future
immunolabeling experiments. Similarly, “squiggles” of more dense Pannexin1 expression
can be identified on the right side of Figure 2(c) only that they are likely cellular extension
coming from these cell bodies and penetrating deeper into the hippocampus.

Figure 2(d), is an enhancement of the astrocyte cell labeling alone (blue) that highlights their
structure. Not only do they cover the outer surface of the tissue, but in Figure 2(d) the
contour of these glial cells shows how they also send branching projections deep into the
hippocampus in order to establish contact with numerous other cell types known to include
neurons. These branching interior projections are extremely difficult to make out in the
original image shown in Figure 2(a) and cannot be demonstrated in this way using
traditional techniques of adjustments of RGB levels.

6.2.2 Blood Vessel—Figure 3 shows the blood vessel in a hippocampus. Figure 3(a) is
from the traditional volume rendering with 1D transfer function, i.e. assigning red, green,
and blue to each channel, respectively. It is hard to recognize how astrocyte and Connexin43
gap junctions interact each other around the blood vessel mainly due to tissue complexity.
Furthermore, because there is no stain inside the blood vessel, it is difficult to recognize
where the vessel actually is located.

On the other hand, Figure 3(b) is an enhancement of Figure 3(b) using the proposed method
in this article. During the transfer function design, we colored the area where three
intensities and three gradient magnitude values are all near zero. That area in the transfer
function domain successfully isolated the inside of blood vessel.

Improving the process of modeling this 3-color protein-labeling data so that it can be
meaningfully displayed, annotated and queried by other researchers with the techniques
discussed here will help the CCDB integrate the critical function of data management with
data mining tools for investigating the structural variation and molecular complexity within
the nervous system.

6.3 PCA vs. Isomap vs. LLE
A common way of measuring the quality of a low-dimensional representation is to look at
the spectrum of eigenvalues18 in PCA and Isomap. Figure 4(a) and Figure 4(b) show the
eigenvalue spectrum of two data sets, 24D Tissue Edge and 6D Blood Vessel data,
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respectively. Each bar represents the eigenvalue magnitude, and they are sorted from largest
to smallest. The first spectrum is the result from 6D space and 6 eigenvalues are generated.
Similarly, the 24D Tissue Edge data has 24 eigenvalues. As we project high-dimensional
data into 3D space, the entire data is approximated with only three eigenvectors. A large
eigenvalue means that the corresponding eigenvector can better explain the original data,
and 100% means it can reconstruct the original data without any error.

Figure 4(b) shows that the sum of three largest eigenvalues produced by Isomap is 94%,
which dominates the entire spectrum. Only 6% of the total variance is lost by the
dimensionality reduction. In this case, even with the first and second largest eigenvalues, it
sums up to 86% and then with this result, one can reduce the dimensionality down to 2D,
which is much easier to work with. The spectrum of PCA was not as high as that of Isomap,
namely only 80%. However, compared to the 24D Tissue Edge data, it is a promising result.
As shown in Figure 4(b), the sum of the three eigenvalues from PCA achieved only 46.0%
of that of the total eigenvalues. The spectrum of Isomap shows that the top three eigenvalues
dominate the entire spectrum, 75.4%.

We believe that the difference between the 6D Blood Vessel and 24D Tissue Edge data
stems from the characteristics of the data. The 24D Tissue Edge data contains more
mathematical feature information than 6D Blood Vessel data. Some of them may contribute
to identifying features that we are interested in, but the rest may not have played a
significant role. Adding more features, or increasing the dimensionality of the domain,
makes all three algorithms difficult to reduce to a lower dimension. It is mainly because a
new feature spread out the domain without the feature in the new axis. Then the new domain
with the new feature has more variance in the distribution than the one without it.

However, we were unable to quantitatively compare LLE with PCA and Isomap. It is
because LLE generates the result from a different method, finding the smallest eigenvalues.
While PCA and Isomap approximate the high-dimensional vector by cutting off
eigenvectors from the observation that eigenvectors with smaller eigenvalues contribute less
to the reconstruction of the original vector. However, the eigenvalue spectrum in LLE is not
used for this type of approximation, and thus comparing the magnitude of eigenvalues does
not reveal any information to us.

There have been many reports on the comparison between algorithms with predefined
data20, 29 but none of them was able to compare quantitatively. It is not clear how to
measure ”how faithfully” the low dimensional representation explains the original data.
Hence, the only way that we were able to use for the comparison of the result of PCA,
Isomap, and LLE was a qualitative way, i.e. by looking at the domain itself.

Figure 5 lists the two domains generated from 6D Blood Vessel data with PCA and LLE. To
help the reader’s understanding of the point distribution, we colored them with gradient
magnitude of three channels. Furthermore, because it may not clear to understand the shape
of 3D distribution, we also list 2D projection of the domains to three major planes, XY-,
YZ-, and ZX-plane.

Both PCA and LLE were able to cluster voxels at three corners, each of which indicates high
gradient values of one channel. The shape roughly looks like a tripod. The shape of PCA
domain is simple, many near-zero gradient magnitude values are densely clustered and it
lays out points too closely to each other, resulting distinct areas of interest to display
identical colors when a Gaussian widget selects a region in the PCA domain. On the other
hand, LLE domain spreads out the distribution more clearly, which makes the dual
navigation easy.
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7. FURTHER APPLICATION
The result of our dimensionality reduction algorithms can be used as a starting point for
trial-and-error1 approaches. One can explore the result with the same set of widgets
developed for dual domain interaction. This means that we do not generate one final transfer
function. We only give a compact form of the domain. Visualization scientists can start with
the compact representation that can still effectively isolates areas of interest. Many
algorithms in transfer function design are geared towards better recognition of features in the
data. Gradient information is useful because it can capture the boundary of objects. The
domain we get after applying Isomap contains enough data to successfully isolate features -
otherwise, we can simply add more features that effectively isolate interesting parts in the
image before applying dimensionality reduction algorithms. Then, the dimensionality
reduction algorithms can strip out superfluous components in the feature vectors. Thus, the
domain represents the best possible low representation in 3D, especially compared to those
with only three types of information.

In addition, if advanced interfaces for classification or automatic transfer function
generation algorithms30–32 are changed to accommodate the domain created here, they
might produce better results than using channel intensities only. Furthermore, the low-
dimensional representation (3D) is much smaller than the original dimensionality (24D in
our example), and thus the space and time complexity for handling this smaller data set can
also be kept lower. One advantage over other algorithms is that dimensionality reduction
algorithms are unsupervised learning algorithms,22 that is, they do not require user input
during the computational process, nor prior knowledge about the data from the users, such
as pre-classification of the input data or selection in stochastic processes.

Finally, the low-dimensional representation can be further processed for clustering10 to
guide visualization scientists. Clustering the domain gives scientists a rough guideline for
where to start. This idea strengthens our approach because the direction of the axes in the
reduced domain has no specific meaning. Each axis of the original high-dimensional data
represents one data channel. The axes help to understand the correlation or trends between
multiple features. Without this information, it may not be easy to understand which part in
the 3D domain represents which features. The clustered result will alleviate this inherent
limitation of dimensionality reduction as it gives an initial starting point.

8. CONCLUSION AND FUTURE WORK
We proposed a new method to build transfer functions for multi-channel data sets. Feature
vectors consist of multiple mathematical properties, as well as each of the channel
intensities. The high dimensionality of the feature vector does not allow a user to directly
visualize the transfer function domain. We applied two recent developments in nonlinear
dimensionality reduction, Isomap and LLE, and a classical linear algorithm, PCA, to reduce
the high-dimensionality to a manageable size. The algorithms guarantee that the low-
dimensional domain retains details of the high-dimensional data set. The major benefit of
looking at combined features is that co-occurrence, either a positive or negative correlation,
of multiple components in the feature vector can have a different color by isolating the
regions from other parts.

We believe our approach is general enough to be applicable to other kinds of data domains
beyond the neuroscience imaging examples we show here.1 Medical imaging communities
merges multiple data sources such as MRI or CT and the multi-dimensional transfer function
originally came out of MRI data sets. If one wants to consider multi-modal data and to
design a transfer function with multi-dimensional domain, for example intensity and
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gradient maginitude, the dimension of the total features considered easily exceeds 3D. Our
approach can be applied in the same way as we discuss in this paper but it would be
interesting to study our approach in depth on these data sets.

While Isomap and LLE already showed sufficient results for our goal, we are aware that
many algorithms have been proposed for nonlinear dimensionality reduction since the two
seminal works, Isomap and LLE, published in 2000. It would be worth investigating other
variants14, 15 to test whether one of these variant algorithms can produce better results.

Finally, although the dimensionality algorithms run only one time, the amount of
computation needed for these algorithms remains a big challenge. However, we expect that
further optimization of the algorithms and efficient implementations will alleviate this
problem. For example, general purpose GPUs can be used to accelerate parallelizable parts
and the use of sub-sampled data to find low-dimensional representations, along with a
reasonable reconstruction algorithm, should improve overall computational cost.
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Figure 1.
The domain distribution of feature vectors after Isomap dimensionality reduction. Figure
1(a) is the view from the top of the domain, i.e., projected to the XY plane. Figure 1(b) is the
view from a side of the domain, i.e., projected to the XZ plane.
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Figure 2.
Images of a three-channel 512 × 256 × 24 volume. All the images depict the same volume
but with different transfer functions. Maximum intensity projection was used for slice
compositing. Figure 2(a) is a result with a transfer function that maps the three data channels
to red, green, and blue, respectively. Figure 2(b), 2(c), and 2(d) show examples of our
methods. Each of the three images was generated in the domain in which our dimensionality
reduction algorithms were applied. Figure 2(b) shows the area where Connexin43 and
astroctytes are both expressed at the boundary. Figure 2(c) emphasizes where only
Pannexin1 is expressed. Figure 2(d) shows where astrocytes with valleys are highlighted
with different colors.
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Figure 3.
Rendered images of a three-channel 300 × 250 × 24 volume.
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Figure 4.
Eigenvalue spectrum from Isomap and PCA. Each color corresponds to one of the
eigenvalues, and its size represents its relative magnitude. Larger percentage of first three
largest eigenvalues (three from the left) indicates that the three corresponding eigenvectors
can better explain (approximate) the original data. With the 24D Tissue Edge data, the three
eigenvalues of Isomap sums up to 75.4% and PCA reaches up to 46.0%. With the 6D Blood
Vessel Data, it showed a much better spectrum, 94% with Isomap and 80% with PCA.
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Figure 5.
Two domains after reducing the dimensionality of feature vectors into 3D: Figure 5(a), 5(c),
5(e), and 5(g) show the domain generated by PCA; Figure 5(b), 5(d), 5(f), and 5(h) show the
domain generated by Isomap.
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