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Abstract 

Internet-based information systems (IS) have enabled a variety of forms of collective action, 

such as aggregating globally distributed development effort (e.g. open source software), 

problem solving (e.g. innovation marketplaces), or resources (e.g. crowdfunding). Within the 

domain of crowdfunding, Internet-enabled Peer-to-Peer Lending Systems (IP2PLS) have 

emerged as a disruptive technological genre, with implications for the financial services 

sector, business capitalization strategies, and personal and community development. IP2PLS 

have captured the attention of the Information Systems research community, and studies of 

user behavior in IP2PLS have revealed the saliency of social identity, personal transparency, 

and information sharing in such systems. We argue that the current state of knowledge is 

limited by methodological bias towards the study of particular IP2PLS providers, and report 

the findings of a study of a very large but under-researched platform. Through an analysis of 

116,669 loan records, and a subsequent analysis of 1000 records manually coded through a 

content analysis process, we investigate the impact of information sharing on user behavior in 

an IP2PLS, revealing relationships that frequently contradict the findings from prior research. 

The paper discusses the contributions of our work towards a more complete and 

heterogeneous picture of user behavior in IP2PLS, implications for researchers of other 

crowdfunding systems and/or other emerging forms of IS-enabled collective action, as well 

as for system designers, users and providers. 

Keywords: Internet-enabled Peer-to-Peer Lending Systems, Crowdfunding, Collective 

Action, Information Sharing, Personal Transparency, Social Identity 

INTRODUCTION 

This paper presents the findings of an empirical study theorizing the relationships between 

social identity, personal transparency, information sharing, and consequent user behavior in 

an emerging form of networked information system (IS) designed to support collective 

action, namely Internet-enabled Peer-to-Peer Lending Systems (IP2PLS).  



We categorize IP2PLS as a member of a growing portfolio of Internet-based IS that enable 

collective action on a global scale. Such systems include the communication, coordination 

and collaboration tools used to aggregate distributed skill and knowledge in the development 

of open source software (e.g. Linux) and open content (e.g. Wikipedia), the contest platforms 

used to aggregate creativity (e.g. Threadless) and innovation (e.g. InnoCentive), the 

infrastructures that enable collective micro-work (e.g. Mechanical Turk) and collective 

information processing (e.g. tagging systems), and the systems to enable the global pooling 

of computing resources (e.g. BOINC). Specifically, IP2PLS are platforms that enable the 

aggregation and exchange of financial resources and are thus related to other electronic 

marketplace platforms (e.g. Kickstarter) designed to support the process of crowdfunding.  

All of the phenomena above have attracted enormous scrutiny from the IS community due to 

their disruptive and transformative nature. These Internet-native systems (among others) have 

enabled the emergence of new forms of creativity, productivity, and problem solving that 

challenge our thinking about the nature of innovation and work. As generative and evolving 

phenomena, they enable IS researchers to explore some of the fundamental questions of the 

IS discipline, specifically (as Benbasat and Zmud (2003) phrase it) the “human behaviors 

reflected within, and induced through both the (1) planning, designing, constructing, and 

implementing, and (2) direct and indirect usage of [IS] artifacts … [and the] … the impacts 

(direct and indirect, intended and unintended) of these artifacts on the humans who directly 

(and indirectly) interact with them.”  

Within the domain of crowdfunding, IP2PLS have likewise emerged as a disruptive 

technological genre, with implications for the financial services sector, business 

capitalization strategies, and personal and community development. IP2PLS support Peer-to-

Peer Lending (P2PL), a form of crowdfunding in which lending occurs “between private 

individuals on online platforms where financial institutions operate only as intermediates 



required by law” (Bachman et al., 2011, p.2). The origins of P2PL are associated with 

Zopa.com in the UK, the first large platform dedicated to P2PL (Iacobuzio 2006, Kupp and 

Anderson 2007, Briceno Ortega and Bell 2008) and since then, various other platforms have 

emerged in countries around the world. Such platforms include Prosper and Lending Club in 

the US (Wang and Greiner 2011), PPDai and My089 in China (Chen and Han 2012), 

Popfunding in South Korea (Jeong et al., 2012), and Smava in Germany (Pötzsch and Böhme 

2010).  

Within IP2PLS, the interplay of the technology with the subtle human biases and social cues 

that influence lending behavior (how personal and humanizing data are shared and 

interpreted) is particularly salient, and has attracted researcher attention from both IS (e.g. 

Greiner and Wang, 2009) and cognate disciplines including Economics (e.g. Dezső and 

Loewenstein, 2012), Human Resources (Pope and Sydnor, 2011), Business Education 

(Livingston and Glassman, 2009), and Marketing  (e.g. Herzenstein  et al.,, 2011b).  

The current work is driven by this interplay between the human and the technological. While 

we acknowledge the economic importance of IP2PLS as an electronic marketplace (c.f. Chen 

et al., 2009), in this study we posit that it is the ability of users to humanize other users 

(specifically of lenders to humanize borrowers, and the ability to infer the borrower’s 

trustworthiness and identity from their social affiliations), that is fundamental to 

understanding the dynamics of these systems. Problematically, while there is consensus 

around the importance of the impact of personal information in P2PL, it is often discussed in 

terms that assume homogeneity across different IP2PLS, despite the evidence that the 

functionalities of these systems (and the motivation and behavior of their users) can vary 

widely (Wang et al., 2009, Bachmann et al., 2011). This is further complicated by the bias in 

the empirical research literature towards a small number of P2PL platforms, primarily 

Prosper, thus leading to an incomplete picture of the phenomenon.   



In response to this situation, our study has been specifically designed to target an under-

investigated P2PL platform, Lending Club, which would appear to differ in several 

significant ways from the dominant subjects of prior research, e.g. by offering less scope for 

unstructured personal information, photographs, and formal within-platform social ties. 

Consequently, it less clear how borrowers’ social identity can be inferred in such IP2PLS, 

and several important and unanswered questions emerge. Thus, through an analysis of 

116,669 loan records, and a subsequent analysis of 1000 records manually coded through a 

content analysis process, we investigate the impact of information sharing on user behavior in 

the Lending Club IP2PLS, revealing relationships that frequently contradict the findings from 

prior research.  

Our paper is structured as follows. First, we conceptualize the phenomenon of interest 

through a synthesis of prior research, and develop the theoretical model used in the study. 

Specifically, we utilize Social Identity Theory to theorize information sharing and 

information sharing expectancy within and between IP2PLS. Second, we present our study 

design. We describe our sampling strategy and the selection of our field site, discuss the 

nature of our transaction data set and describe our data coding process (with coding examples 

also given in Appendix A). Third, we present our findings, in two parts. Iteration 1 describes 

the regression analysis methods employed and presents our findings on how user sharing of 

“hard” data predicts user behavior, based on an analysis of 116,669 loan records. Iteration 2 

describes the regression analysis methods employed and presents our findings on how user 

sharing of “soft” data predicts user behavior, based on an analysis of 1000 randomly selected 

and manually coded loan records. Finally, we conclude the paper with a discussion of the 

work’s contribution towards a more complete and heterogeneous picture of user behavior in 

IP2PLS (an important emerging type of IS), and implications for researchers of other 



crowdfunding information systems and/or other emerging forms of IS-enabled collective 

action, as well as for system designers, users and providers. 

SOCIAL IDENTITY THEORY, IP2PLS AND INFORMATION SHARING 

A number of researchers have investigated the factors impacting on the likelihood of 

borrowers attracting investment (e.g. Iyer et al., 2009, Herzenstein et al., 2011a) and the 

likelihood of loans being repaid (e.g. Klafft 2008, Luo et al., 2011) in IP2PLS. In line with 

such studies, we argue that social identity and personal cues (via information sharing) are key 

factors effecting the behavior of users of such systems.  

Social Identity Theory and IP2PLS 

The construct of social identity (aka ‘collective identity’ (Ashmore et al. 2008)) emerges in 

its contemporary form from studies of inter-group conflict that revealed an individual’s 

appetite for social mobility vs. social change/competition was influenced by the extent to 

which they identified with their dominant in-groups (e.g. Tajfel 1979, Tajfel and Turner 

1980). This idea (sometimes referred to synonymously) was subsequently explored further 

and formalized as ‘social identity theory’ (SIT) positing that individuals comprise multiple 

identities, each relating to different social networks in which that person interacts (Stryker 

1980, Hoelter 1983). These within-network identities are role-based, the details of which are 

negotiated over the course of ongoing interaction with other network members (c.f. Stets and 

Burke 2000). While these roles vary in detail, recurring patterns have been identified based 

upon the self-image of network members, e.g. self-doubters vs. soldiers, strugglers vs. 

stencils (Alvesson 2010). As an individual’s roles become more embedded within the overall 

network dynamic, so their identification with that network and personal attachment to it 

increases (Stets and burke 1999).  



To date, the concept of social identity has featured in IP2PLS research in two ways. The first 

of these regards the inference of the reliability of borrowers, based on social networks within 

the IP2PLS in question (e.g. Berger and Gleisner 2009, Greiner and Wang 2009, Bachman et 

al., 2011). These studies assume that the social networks associated with borrowers, as well 

as the identity of borrowers within those networks, play an important role in explaining both 

lenders’ investment decisions and borrowers’ likelihood of repaying that investment. This 

assumption is supported by observations of lending and repayment behavior within the 

explicit borrower groupings facilitated on Prosper (Freedman & Jin 2008, Herrero-Lopez 

2009, Lin 2009). In these contexts, greater investment occurred because lenders made 

inferences about the identity of the borrower based upon known characteristics of the group, 

while greater repayment occurred as a result of the borrowers’ commitment to that group and 

consequently, their higher susceptibility to the normative pressures to repay. However, a 

more developed social identity is not always a positive predictor of behavior. Within the 

Korean lending platform Popfunding.com, it was shown that failed loan postings damage 

borrowers’ social identity in terms of their social and financial credibility, and so inhibit 

future investment in them (Jeong et al., 2012). Similarly, within PPDai, a large IP2PLS 

platform based in China, it has been shown that borrowers who observe their online friends 

default are twice as likely to default in the future (Lu et al., 2012).  

Second, social identity has been used to understand the inference of the reliability of 

borrowers based on offline, external social identities. The number of such identity claims is 

higher among borrowers with poor credit scores, suggesting the intention of borrowers may 

be to present a less finance-specific identity to lenders (Herzenstein et al., 2011b). However, 

the impact of these identity claims on lending is not always positive, even those apparently 

relevant to borrowers’ ability and/or intention to repay (c.f. Pötzsch and Böhme 2010, 

Herzenstein et al., 2011b, Larrimore et al., 2011). 



One key aspect of SIT that has not been addressed in existing IP2PLS research surrounds the 

role of language and information expectations in how lenders and borrowers interact. The 

greater an individual’s commitment to a network the more salient that role-identity becomes 

for the individual’s self-definition, compared to other roles they perform (Stryker and Serpe 

1994). Higher role-identity salience allows an individual to more effortlessly gauge role 

expectations from other members of the network and adjust their behavior accordingly 

(Callero 1985, Haslan et al., 1999, Shih et al., 1999). This adjustment is a mutual and 

reciprocal process that gradually accumulates within the interaction within a network, 

producing a culture of implicit and explicit communication signals (c.f. Eliasoph and 

Lichterman 2003). Thus, the behavior of an individual who is less embedded within some 

social network may be perceived as less competent that that of another individual, not 

because of rational judgments but because their method of interacting is more consistent with 

expectations (Stryker 1968, Haslan et al., 1999, Stets and Burke 2000). Put differently, one 

network member’s trust in another’s ability to perform a role may be influenced by their 

fluency with ‘structured symbolic interactions’ (Stryker 2008). This is illustrated in Figure 1. 

 

Figure 1. SIT and Information Sharing Expectations 

 

As network boundaries deepen and the movements of individuals from one network to 

another decrease, so between-network competition and discrimination are likely to occur 



(Tajfel and Turner 1980). In online communities, a more extreme version of this tendency 

has been observed in the formation of what is termed ‘xenonetworks’ by Reay Atkinson et al. 

(2013, 2014), whereby diversity-intolerant bubble communities form around some core 

indicators of likeness. Those authors note that such likeness among members is typically 

communicated within less structured information in the form of ‘weak’ signals (c.f. 

Granovetter 1973). These weak signals are often subsequently encoded in formal 

informational procedures for that network and hence act as useful predictors of future 

information structuring and governance developments (Ansoff 1975, Hiltunen 2008). 

Such a perspective explains accounts where functionally interchangeable behaviors are 

acceptable in some networks but not others. This has been observed in a variety of situations, 

for example within intra-organizational social relationships (Ashforth and Mael 1989, Dutton 

et al., 1994, Haslam et al., 2000), and in relationship marketing (Arnett et al., 2003, 

Bhattacharya and Sen 2003, Michalski and Helmig 2008). It has also been used to account for 

user participation in online communities in settings outside of IP2PLS, including general 

knowledge contribution (Shen et al., 2010), as well as consumer product discussion and 

reviews (Forman et al., 2008).  

From an IP2PLS perspective, this raises an important question as to whether the various 

platforms such as Zopa, Prosper, Lending Club, PPDai, Popfunding, and Smava share a 

common community/network of borrowers and lenders, or whether each possesses a distinct 

group of participants. As each of these platforms represents a competing marketplace, the 

latter appears more likely. Under such conditions where users of a network benefit from the 

number of other users present, network externalities act to create oligarchies from individual 

competitors, and eventually a monopoly (c.f. Katz and Shapiro 1985). This occurs because 

while the requirements for new markets are more open, standards emerge over time to 

increase market efficiency, resulting in social, economic, and technological convergence 



around market leaders (Katz 1996, Uzzi 1996). This has important implications for individual 

IP2PLS providers, as it suggests that as the market matures, IT capabilities will converge 

around a subset of platforms and between-network competition for mainstream survival and 

dominance will increase, to the detriment of social mobility among their users. Thus, IP2PLS 

providers are not only competing for market share, they are also competing to establish the 

future paradigm of IT capabilities dictating the types of explicit and implicit information 

expected by lenders (see Figures 2 and 3).  

 

Figure 2. Information Sharing Expectations within and between Systems 

 

This observation means that it is important to understand both the types of information 

explicitly and implicitly expected from/by users in of an IP2PLS, as well as the impact that 

information sharing through the IP2PLS has on user behavior.  
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Figure 3. Information Sharing Expectations for Some Specific System 

 

The types of explicitly expected ‘hard’ data that predict lending behavior 

The perceived risk associated with particular individuals is often a factor of the accumulation 

of past experience between transacting parties (Pavlou and Gefen 2004). However, the nature 

of P2PL means that such an accumulation of interactions may not be possible, as “most loans 

are ‘one-shot’ events, that is, borrowers usually apply for (and receive) a loan just once. 

Therefore, the main avenue available in relational settings to engender confidence in 

another’s behavior, i.e., through exemplary behavior over time, is not available” (Herzenstein 

et al., 2013, p.12). Hence, the standard required credit information used to portray a 

borrower’s financial identity in IP2PLS reflects accumulated financial interactions across a 

range of domains. One of the most prominent pieces of information in this regard is 

borrowers' credit scores, which are considered a useful means of predicting loan applicants’ 

likelihood of repayment in traditional lending decisions (c.f. Mester 1997). Such credit scores 

have been shown to impact positively upon both investment (Klafft 2008b, Iyer et al., 2009, 

Puro et al., 2011) and repayment (Freedman and Jin 2008, Livingston and Glassman 2009) in 

studies of behavior on Prosper. IP2PLS platforms may include both internally and externally 



generated credit scores. For example, Lending Club provides one credit score that it 

calculates based on the information provided by borrowers, but also a FICO credit score, 

which is generated by a US-based third party (see http://www.myfico.com/myfico/Credit 

Central/ScoringWorks.asp). It is anticipated that better credit scores, both internally and 

externally generated, will predict higher levels of both investment and repayment.  

IP2PLS also provide lenders with other historic data concerning applicants’ previous 

financial behavior. This may come in the form of the number of public records held by the 

applicant, as well as a record of any account delinquencies with which they are associated. As 

each of these reflects negative previous experiences that other lenders have experienced with 

the applicant, it is predicted that their frequency should be detrimental to both their likelihood 

of receiving and repaying investment. Such data are further contextualized with data 

describing the number of months since an applicant’s most recent record or delinquency. 

Given that lenders are more likely to be concerned with recent transgressions that those 

taking place several years ago (Guiral-Contreras et al., 2007), it is also predicted that a higher 

number of months since an applicant’s most recent record or delinquency will increase both 

their likelihood of receiving and repaying investment.  

Lenders in IP2PLS are also influenced by explicitly requested personal information about the 

borrower’s ongoing financial situation. This includes the borrower's income (Puro et al., 

2010, Lu et al., 2012), their homeownership status (Herrero-Lopez 2009, Larrimore et al., 

2011), and their number of years in employment (Livingston and Glassman 2009, Larrimore 

et al., 2011). These factors allow borrowers to demonstrate the strength of their financial 

identity, and so should support both investment and repayment.  

Borrowers' existing usage of credit from other parties have further been shown to impact 

upon decision making in IP2PLS, including data relating to the credit lines possessed by an 



applicant and an applicant’s current utilization of their revolving credit (Herrero-Lopez 2009, 

Iyer et al., 2009, Puro et al., 2010). Lenders may also infer borrowers’ difficulties in 

managing their debt using information such as those borrowers' debt-to-credit ratios and the 

number of credit inquiries for the borrower made by potential lenders (Klafft 2008a, Lin 

2009, Larrimore et al., 2011). These records afford an opportunity to validate a borrower’s 

financial identity by showing that they can manage debt appropriately.  

Finally, 'hard' data relating to the terms and conditions of the loan are typically presented in 

IP2PLS contexts. This includes the loan amount, the loan duration, the interest rate, and the 

monthly repayments. A higher loan amount and duration demand more investment to meet 

the loan requirements, meaning there is intuitively less chance of meeting investment goals 

and more difficulty in repayment. Given that lenders are at least partly motivated by financial 

returns, higher interest rates and monthly repayments are likely to attract greater investment. 

However, as these factors place additional financial responsibility on borrowers, they appear 

less likely to encourage repayment.  Interestingly, while the latter three pieces of data have 

been shown to impact upon lending behavior (Puro et al., 2010, Ceyhan et al., 2011, 

Herzenstein et al., 2011a), data on Prosper show no impact on either investment or repayment 

for the stated purpose of the loan (Pope and Syndor 2011).  

The types of implicitly anticipated ‘soft’ data that predict lending behavior 

In addition to the explicitly required information for borrowers on P2PL platforms, 

individuals have the opportunity to make other information transparent in the context of their 

loan descriptions. Viewed in trust terms, providing additional information may reduce 

information asymmetry between borrowers and lenders, and so can be interpreted as a gesture 

of benevolence intended to convey a borrower’s strong intentions of repayment (Pötzsch and 

Böhme 2010). This is supported by existing P2PL research, which shows that longer loan 

http://link.springer.com/search?facet-author=%22Stefanie+P%C3%B6tzsch%22


descriptions are generally associated with higher levels of lending (Larrimore et al., 2011). 

Yet, from a SIT perspective such disclosures may not necessarily be advantageous. This is 

because the provision of data that is not anticipated by lenders damage the sense of shared 

meaning (Burke and Reitzes 1991) and distance the applicant from the ‘identity standard’ 

(Burke 1991) for loan applicants possessed by lenders. Thus, deviating from the norm, even 

with the intention of demonstrating benevolence, may undermine lenders’ confidence in the 

applicants’ commitment to their role. This means that while the quality of required hard data 

is likely to determine its impact on lending behavior, it is the normalcy of optional soft data 

that may moderate its impact. This makes it challenging to determine in advance whether 

various forms of information will have positive or negative impacts on investment and 

repayment behavior. However, this study will begin with the assumption that the competitive 

nature of P2PL platforms means that implicitly expected information for some platforms will 

have a negative impact on investment and repayment behavior elsewhere. In the case of 

Lending Club, this implies all of the soft data observed to positively influence behavior on 

peer-to-peer lending in existing research should theoretically have a negative impact (because 

existing research to date targeted only competitors).  

The forms of optional soft data described in existing literature in P2PL range across three 

dimensions, namely additional credit information, personal or humanizing information, and 

direct appeals made to lenders. In the context of appeals made to lenders, these appear to 

have a negative effect, e.g. there is evidence from Prosper to suggest that justifications for a 

borrower’s current financial situation discouraged lenders (Larrimore et al., 2011). This may 

be because Prosper, unlike microfinance sites such as Kiva, presents itself as a financially 

motivated platform; hence, such claims may appear out of place. This is also supported by 

findings on Smava (Pötzsch and Böhme 2010), which show a negative response by lenders to 

statements arousing pity about the borrower’s situation.  



Conversely, positive additional credit information about one’s financial identity should have 

the opposite effect, as illustrated in the context of user narratives on Prosper (c.f. Herzenstein 

et al., 2011b) where positive claims concerning how an individual conducted themselves 

financially in the past, as well as how they intend to behave in the future, encouraged 

investment (though interestingly made repayment less likely). These positive claims have 

also been observed on Prosper in the form of explanations/acknowledgements of previous 

financial transgressions, or alternatively explanations/denials of previous financial 

transgressions – both of which positively influence lenders by reframing or qualifying 

negative information presented in borrowers’ credit histories and financial records 

(Sonenshein et al., 2011).  

Other soft data that can influence lending behavior relates to descriptions of borrowers’ 

employment status and occupation. This is interesting because, while Prosper began 

presenting a borrower’s occupation with that borrower’s listing in 2007 (Freedman and Jin 

2008), this information is not presented on other sites such as Lending Club. Yet, this 

information plays an important role in Prosper, particularly in the formation of advantageous 

borrower groups (Everett 2010). Such information also plays a role in demonstrating a 

Prosper borrower’s stability, which is considered a crucial predictor of repayment (e.g. 

Livingston and Glassman 2009). For similar reasons, borrowers also frequently list their 

educational background, although only this manifests only a marginal impact on lenders’ 

preferences on both Smava (Pötzsch and Böhme 2010) and on PPDai.org (Lu et al., 2012).  

The types of humanizing information that borrowers utilize to attract investment also varies 

significantly. As noted already, Prosper members typically use affiliations between members 

to build trust by association (Greiner and Wang 2009, Herrero-Lopez 2009, Bachman et al., 

2011). However, platform-external borrower data are also observed to have positive impacts 

on several platforms. For example, studies of photographs on Prosper show that lenders are 



influenced by borrowers’ age (Duarte et al., 2012, Ravina 2012), gender, ethnicity (Pope and 

Syndor 2011, Duarte et al., 2012), obesity, perceived happiness (Pope and Syndor 2011), 

marriage status, children/dependents (Duarte et al., 2012), and physical attractiveness 

(Ravina 2012). There is also some evidence to suggest that that claims of morality, 

religiousness, and political-mindedness can also benefit borrowers on Prosper (Herzenstein et 

al., 2011b), as are claims by borrowers on Smava of past or future kindness that were enabled 

by the loan and/or debt being consolidated (Pötzsch and Böhme 2010). While some of these 

claims appear to demonstrate lender prejudice, e.g. gender, ethnicity, others appear to be 

interpreted as accepted normative indicators of borrowers’ personal reliability and 

responsibility.  

STUDY DESIGN 

The previous sections have identified the relationships between different forms of 

information sharing and user behavior in IP2PLS (summarized in Figure 4).  
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Figure 4. Preliminary Model of Relationship between Information Sharing and User 

Behavior 

 

These relationships emerged from observations of user behavior made in existing research 

across a range of IP2PLS, including Prosper, Smava, Popfunding, and PPDai.org. It must 

now be investigated whether these relationships are consistent across IP2PLS (meaning the 

social networks of lenders and borrowers do not differ significantly across the range of 

platforms) or whether users of different IP2PLS interpret information sharing in 

fundamentally different ways. To address this question, this study first looks at the different 

IP2PLS, in order to find a suitable environment to compare against existing research 



situations. An approach to data gathering is then described through which to test these 

relationships. 

IP2PLS Site Selection 

As noted, a variety of IP2PLS have been studied in existing research. This is reflected in 

Table 3, which lists the platforms studied in all existing academic research known to the 

authors, and in which the likelihood of lender investment and/or borrower repayment in P2PL 

is investigated.  

Table 3. The online platforms used for data gathering by existing research that 

investigates the likelihood of lender investment and/or borrower repayment 

Prosper Freedman and Jin (2008), Klafft (2008a), Klafft (2008b), Berger and 

Gleisner (2009), Duarte et al., (2009), Greiner and Wang (2009), 

Herrero-Lopez (2009), Iyer et al., (2009), Lin (2009), Livingston and 

Glassman (2009), Collier and Hampshire (2010), Greiner and Wang 

(2010), Puro et al., (2010), Wang and Greiner (2010), Bergovich 

(2011), Ceyhan et al.,(2011), Herzenstein et al., (2011a), Herzenstein 

et al., (2011b), Larrimore et al., (2011), Luo et al., (2011), Pope and 

Syndor (2011), Puro et al., (2011), Sonenshein et al., (2011), Chaffee 

and Rapp (2012), Chen and Han (2012), Duarte et al., (2012), Ravina 

(2012), Zhang and Liu (2012) 

Popfunding Do et al., (2012), Jeong et al., (2012), Lee and Lee (2012), Yum et al., 

(2012) 

Kiva Sinanan (2009), Barry (2012), Moodie (2013) 

PPDai Chen and Han (2012), Lu et al., (2012) 

Zopa Bachmann et al., (2011) 

My089 Chen and Han (2012) 

Smava Pötzsch and Böhme (2010) 

 

By far the most popular IP2PLS for researchers appears to be Prosper. Interestingly, Lending 

Club does not feature in any of these studies, although it is mentioned in some broader 

discussions of IP2PLS, e.g. in the context of legal regulations (Chaffee and Rapp 2012), or as 

a contrast to Prosper (Wang and Greiner 2011). This is surprising, given the scale and maturity 

of Lending Club as a platform, which, like Prosper, was launched in 2006. Although Zopa.com 



is often thought of as the first legitimate IP2PLS (Hulme and Wright 2006), Prosper is credited 

with encouraging most scientific interest in the subject by making the platform’s data public in 

2007 (Bachmann et al., 2011). Yet, in the past number of years, the number of loans issued by 

Lending Club has significantly surpassed that of Prosper (Cunningham 2013), as illustrated in 

Figure 5. 

 

Figure 5. The value of loans issued on the Prosper and Lending Club platforms 

 

In terms of loan value, both Prosper and Lending Club offer the ability to apply for a loan 

between $2,000 and $35,000. The minimum credit scores are also comparable, with Lending 

Club and Prosper requiring minimum scores of 660 and 640, respectively. Both Lending Club 

and Prosper charge borrowers a fee to take out a loan in the range of 1-5% depending on the 

borrower (Prosper calls this a “Closing Fee”, whereas Lending Club calls it an “Origination 

Fee”) and as of 2012, the returns for investors were similar (9.79% for Lending Club and 

9.26% for Prosper (LendStats.com, retrieved Dec 2014)).  

Yet, three significant differences exist in the lending mechanics employed by Prosper and 

Lending Club. Firstly, while interest rates in Lending Club are determined by the platform 

itself according to the borrowers’ credentials, Prosper adopts an auction system that allows 
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lenders to bid amounts at varying interest rates. Secondly, the listing mechanism for Prosper 

allows borrowers to post additional personal information, such as pictures of borrowers and 

their families. This has been demonstrated to introduce a number of significant social and 

cultural antecedents impacting upon lender and borrower behavior, such as a borrower’s 

gender, age, ethnicity, whether they have children, whether they are part of a couple, a 

borrower’s obesity, and a borrower’s physical attractiveness (Klafft 2008b, Pope and Syndor 

2011, Duarte et al., 2012). Thirdly, Prosper allows members to form groups, which means 

that established members can endorse borrowers, hence lenders can infer trustworthiness 

from borrowers’ social networks (Berger and Gleisner 2009, Greiner and Wang 2009, 

Herrero-Lopez 2009).  

While the auction mechanism is important for a number of economic reasons (c.f. Chen et al., 

2009), the latter two differences are especially important in the context of social identity. The 

ability to humanize the borrower and the ability to infer the borrower’s trustworthiness and 

identity from their social affiliations, inform the majority of IP2PLS studies concerned with 

social identity. Thus, several important and unanswered questions emerge surrounding a 

IP2PLS like Lending Club, which provides fewer system features for sharing personally and 

socially rich information; consequently it is not clear how a borrowers’ social identity can be 

inferred by lenders. This makes Lending Club a valuable source of comparison with the more 

commonly studied P2PL platforms, and in particular with Prosper.  

Data Gathering  

Given that Lending Club presents significantly less system support for personal information 

sharing as regards soft data, two possibilities must be considered. The first is that such soft 

data does not feature in any meaningful way on Lending Club, meaning that borrowers’ 

relevant social identity (and to an extent the behavior of Lender-users) is determined from 



only ‘hard’ data relating to the loan being requested. The second possibility is that ‘soft’ 

personal or social data is incorporated in some other format (unanticipated behavior by 

Borrower-users). To address these two possibilities, two iterations of data gathering and 

analysis were employed, each of which made use of publically available transactions records 

from Lending Club (downloaded from www.lendingclub.com on March 20th 2013). The 

purpose of the first iteration was to determine the explanatory power of the hard data and 

whether it alone is sufficient to explain user behavior on Lending Club. Conversely, the 

purpose of the second iteration was to determine the frequency with which different form of 

soft personal data was shared, as well as the relationship between this form of information 

sharing and user behavior.  

The first iteration used the complete set of available records to analyze the predictive power 

of borrowers’ hard data. These records included 119,419 loan applications from June 7, 2007, 

to June 19, 2013 (retrieved July 23rd 2013 via a publically available file download from the 

Lending Club website). Data cleaning required that 2,749 of these be removed to ensure the 

integrity of the overall data set, as these related to loans that did not meet current policy 

requirements. A further three listings were removed that did not contain standard required 

information, such as loan ID or applicant usernames.  

The second iteration analyzed the predictive power of borrower’s soft data sharing based on 

information voluntarily provided in the “Loan Description” field attached to loan requests. As 

described already, the Lending Club IP2PLS does not present users with the same 

opportunity as sites such as Prosper to divulge additional personal and social data. However, 

this Loan Description field offers borrowers some opportunity to divulge such information, if 

they so choose. Hence, these fields were manually coded by gathering a random sample of 

1,000 records. Records were coded independently by two research assistants in blocks of 10, 

40, 50, 100, 200, 200, 200, 250, and 150. When coding was completed for each block, the 



research assistants compared their results to identify incongruities. Resolution of these 

incongruities was straightforward in some cases, while others were resolved in consultation 

with the authors of this study. The authors also independently evaluated the results of coding 

by independently coding a random sub-set of each block to verify their accuracy and identify 

any additional issues. This random validation sampling demonstrated a coding consistency of 

>95% by the end of the process.  

Appendix A provides a detailed table of the codes used along with example text from loan 

descriptions. Eight codes reflected additional credit information. These were coded at three 

ordinal levels, namely “no new information,” “some new information,” and “substantial new 

information.” The codes were   

1. Additional loan purpose information 

2. Justification of financial situation 

3. Claims of future financial responsibility 

4. Claims of past financial responsibility 

5. Acknowledgement/Denial of financial transgressions 

6. Education details 

7. Employment status 

8. Occupation details 

Fourteen more codes reflected key types of personal or humanizing information that might be 

provided by borrowers. These were coded in binary terms, i.e. they were either present or 

they were not. These included 

1. Links to other members 

2. Links to other online presences 

3. Links to photographs 



4. Age 

5. Gender 

6. Ethnicity 

7. Marriage details 

8. Children and dependents 

9. Hobbies 

10. Health and obesity 

11. Religious or political views 

12. Claims of kindness 

13. Please or thanks 

14. Existence of follow-up comments 

These additional measures allowed us to explore relationships observed on IP2PLS such as 

Prosper, PPDai and Smava, as well as observations made by Lee and Lee (2012) on the 

Popfunding platform (namely that the number of postings made by borrowers on the Q&A 

board positively influenced lender-users’ behaviors).  

DATA ANALYSIS AND FINDINGS 

Iteration 1: How hard data predicts lending behavior on Lending Club  

Loan records (N =116,669) included an internal Lending Club credit grade ranging from a 

high of A1 to a low of G5, with a five-number summary of (A1, B1, B5, C5, G5). These 

numbers are represented numerically for the purposes of testing from 1-35, where A1 = 1 and 

G5 = 35. All but 2 of the listings (N =116,667) also include an external FICO range, varying 

from 660-664 to 846-850, with a five-number summary of [660-664, 680-684, 695-699, 725-



729, 846-850]. These FICO ranges were represented by the middle number in each range for 

the purposes of testing, e.g. such that 660-664 was replaced with 662.  

111,046 (95.2%) of applicants possessed no records on file, while 5,230 (4.5%) possessed 

only one record on file, and only 343 (0.2%) possessed more than one record. A five-number 

summary of the 5,623 listings involving applicants possessing one or more public records is 

[1, 81, 95, 107, 129]. Only 54 applications (0.05%) were made by applicants who listed 

previous account delinquencies, with a five-number summary of the delinquent amount 

among these 54 applications of [17.00, 53.25, 862, 4526.75, 65000] and a five-number 

summary of the months since the delinquencies occurred of [0, 1, 1, 2, 11]. Full homeowners 

comprised 9,026 (7.7%) of the applications (not including those currently paying off 

mortgages), while a five-number summary of the current number of years in employment and 

monthly income listed among applications was [0, 1, 2, 5, 9] and [333.33, 3583.33, 5000.00, 

7083.33, 595148.17], respectively.  

To test the impact of the hard data available for lenders in the Lending Club platform, a 

multiple logistic regression was used to determine the impact of these variables on whether or 

not the full proportion of funding was received. Another multiple logistic regression was used 

to determine the impact of these variables on the likelihood of a loan being charged off. The 

results of these tests are illustrated in Table 4.  

Table 4. Regression Output for Hard Data  

 

 

 

Predictor Variables 

Explanatory Power for 

Proportion Funded 

(Nagerkerle R2 10.5%) 

B 

Explanatory Power for Loan 

Defaults (Nagerkerle R2 

12.1%) 

B 

Credit Grade -.106*** .136*** 

FICO Grade -.025** .026*** 

Public Records .327* -1.255 NS 

Months Since Last Record .005** .007 NS 

Delinquent Amounts <.001 NS -.002 NS 



Months Since Last 

Delinquency 

.002 NS .005 NS 

Home Ownership  -.016 NS .310* 

Monthly Income <.001 NS <.001** 

Employment Length .028 -.052 NS 

Debt to Income Ratio 
2.588** 

-1.556 NS 

Open Credit Lines .016 NS -.040 NS 

Total Credit Lines -.003 NS .023 NS 

Credit Inquiries Past 6 

Months 

.004 NS .112 NS 

Revolving Credit Balance <.001* <.001 NS 

Revolving Line Utilization -.405 NS .646 NS 

Loan Amount <.001*** <.001 NS 

Loan Length .046*** -.017 NS 

Interest Rate 2.558 * -9.576*** 

Monthly Payment .005*** <.001 NS 

 

* = p<0.05, ** = p<0.01, *** = p<0.001, NS = not significant 

 

The hard data explains 10.5% of the variance in funding. The data relating to borrowers show 

that an applicant’s likelihood of receiving all of the requested investment is positively 

correlated with a lower (better) credit grade, a lower (better) FICO range, fewer public 

records on file, more months since the most recent public record, a lower debt-to-income 

ratio, and a higher revolving credit balance. The data relating to the terms and conditions of 

the loan show that the loan amount, the loan duration, the interest rate, and the monthly 

repayments also impact an applicant’s likelihood of receiving investment. No other variables 

demonstrate any significant impact. 

The hard data on loan repayment explains 12.2% of the variance borrowers for whom loans 

have been charged off. The data relating to borrowers show that an applicant’s likelihood of 

defaulting on investment is negatively correlated with a lower (better) credit grade, a lower 

(better) FICO range, and a higher monthly income. The data relating to the terms and 

conditions of the loan show that an applicant’s likelihood of defaulting on investment is 

negatively correlated with higher interest rates. The data also show that the home ownership 



status of borrowers is a significant predictor of defaulting on loans. This was due to a slightly 

lower proportion of borrowers with mortgages were among those defaulting (39.6%) as 

opposed to those not defaulting (47.5%), and a slightly higher proportion of borrowers 

renting their homes defaulting (51.6%) as opposed to those not defaulting (44.7%). No other 

variables demonstrate any significant impact.  

The findings surrounding borrowers’ for whom loans were charged off show that little of the 

standard credit information for a borrower reliably predicts their likelihood of defaulting on 

investment. Similarly, from the quantitative terms and conditions of the loan, neither the loan 

amount, nor the loan duration, nor the monthly repayments predict borrowers' likelihood of 

defaulting.  

These findings are interesting for several reasons. Firstly, credit scores arguably represent a 

summary of all other data relating to the financial history and identity of a borrower, thus it is 

not surprising they present significant predictive power for lending. Yet, the general lack of 

support for data relating to specifics of borrowers’ financial histories suggests that borrowers 

are not concerned with the details of a borrower's past and present financial data. Secondly, 

the importance of the four factors relating to the terms and conditions of the loan illustrate 

that this may be of higher interest to lenders than the details of the borrowers themselves. 

Thirdly, many of the variables predicting investment do not actually predict repayment, with 

the exception of borrowers’ credit scores and the interest rate of the loan. Fifthly, and perhaps 

most interestingly, the overall explanatory power from all of these variables is surprisingly 

low, suggesting that lenders do not make decisions based on this hard data in isolation 

(assuming selections are not random and that lenders share some decision-making criteria). 

Thus, lending behavior on the Lending Club platform may only be moderately informed by 

hard data relating to the borrower in question and the loan being requested. All of this 



reinforces the possibility that soft data on Lending Club plays an important part in predicting 

lending behavior.  

Iteration 2: How soft data predicts lending behavior on Lending Club  

The data show that 44,982 (38.6%) of applicants chose to leave the loan description field 

blank, with the remainder of borrowers making some additional effort to contextualize their 

request. The provision of soft data by borrowers on Prosper has been argued to represent a 

desire to reduce information asymmetry and increase the perceived trustworthiness of those 

borrowers (Pötzsch and Böhme 2010, Herzenstein et al., 2011b). Similarly, longer loan 

descriptions may exaggerate this effect by representing even greater effort on the part of 

borrowers (Larrimore et al., 2011). Of those that provide loan descriptions on Lending Club, 

the lengths of these descriptions (measured in number of characters) vary notably, with a five 

figure summary of [1, 110, 207, 333, 3966]. However, contrary to findings on Prosper, a 

hierarchical regression shows that the provision (vs non-provision) of a loan description has 

no significant impact on a borrower’s likelihood of receiving investment for borrowers using 

Lending Club, and that the relative length of loan descriptions if provided has negligible 

explanatory power (see Table 5). This suggests that - if anything - it is the content of these 

descriptions that is important for lenders’ investment decisions; not their existence or length.  

Table 5. Summary of Hierarchical Regression Analysis for Variables Predicting 

The Proportion of a Loan Request Received 

Variable Model 1 Model 2 Model 3 

B B B 

Credit Grade  -.106*** -.106*** -.104*** 

FICO Grade  -.025** -.025** -.024** 

Public Records  
.327* 

.322* .316* 

Months Since Last Record .005** .005** .005** 

Delinquent Amounts <.001 NS <.001 

NS 

<.001 NS 



Months Since Last Delinquency .002 NS .002 NS .002 NS 

Home Ownership  -.016 NS -.017 NS -.024 NS 

Monthly Income  <.001 NS <.001 

NS 

<.001 NS 

Employment Length .028 .028 .028 

Debt to Income Ratio  
2.588** 

2.580** 2.471** 

Open Credit Lines  .016 NS .016 NS .016 NS 

Total Credit Lines  -.003 NS -.003 NS -.003 NS 

Credit Inquiries Past 6 Months  .004 NS .005 NS .004 NS 

Revolving Credit Balance  <.001* <.001* <.001* 

Revolving Line Utilization  -.405 NS -.398 NS -.372 NS 

Loan Amount  <.001*** <.001**

* 

<.001*** 

Loan Length  .046*** .046*** .045*** 

Interest Rate 2.558 * 2.528 * 2.427 * 

Monthly Payment  .005*** .005*** .005*** 

Loan Description Provided  -.068 NS .055 NS 

Length of Loan Description 

   
<.001* 

 

Nagerkerle R2 0.105 0.105 0.109 

* p < 0.05, ** p < 0.01, *** p < 0.001, NS = Not Significant 

 

Research on Prosper also suggests borrowers’ desire to reduce information asymmetry may 

have positive indications of their likelihood to repay investment (Herzenstein et al., 2011b, 

Sonenshein et al., 2011). Unlike the mixed impact of loan descriptions on investment within 

Lending Club, the impact of the provision of loan description on repayment is significant. 

However, unlike Prosper, the effect on Lending Club is negative, i.e. those providing loan 

descriptions were significantly more likely to default on loans. A hierarchical logistic 

regression demonstrates that both the provision of a loan description, as well as the length of 

that loan description, predict more loans being charged off (see Table 6).  

Table 6. Summary of Hierarchical Logistic Regression for Variables Predicting 

the Likelihood of a Loan Being Charged Off 

Variable Model 1 Model 2 Model 3 



B B B 

Credit Grade  .136*** .142*** .138*** 

FICO Grade  .026*** .027*** .025*** 

Public Records  -1.255 NS -1.148 NS -1.121 NS 

Months Since Last Record .007 NS .007 NS .007 NS 

Delinquent Amounts -.002 NS -.002 NS -.002 NS 

Months Since Last Delinquency .005 NS .005 NS .005 NS 

Home Ownership  .320* .329* .345* 

Monthly Income  <.001* <.001* <.001* 

Employment Length -.052 NS -.051 NS -.053 NS 

Debt to Income Ratio  -1.556 NS -1.442 NS -1.166 NS 

Open Credit Lines  -.040 NS -.043 NS -.043 NS 

Total Credit Lines  .023 NS .025* .024* 

Credit Inquiries Past 6 Months  .112 NS .106 NS .105 NS 

Revolving Credit Balance  <.001 NS <.001 NS <.001 NS 

Revolving Line Utilization  .646 NS .538 NS .486 NS 

Loan Amount  <.001 NS <.001 NS <.001 NS 

Loan Length  -.017 NS -.018 NS -.017 NS 

Interest Rate -9.576*** -9.419*** -9.312*** 

Monthly Payment  <.001 NS -.001 NS -.001 NS 

Loan Description Provided  .872*** .668** 

Length of Loan Description 

 
  

.001** 

 

Nagelkerle R2 0.121 0.141 0.149 

* p < 0.05, ** p < 0.01, *** p < 0.001, NS = Not Significant 

 

However, it is difficult to draw conclusions based upon this finding, as this may be due to the 

increasing pressure for borrowers to address concerns when they are struggling to meet their 

repayments (and thus communicating with creditors through the loan description field). 

The mixed impact of loan descriptions on lenders’ investment decisions that is observed on 

Lending Club resonates with existing research of the impact of pictures in borrower profiles 

on Prosper. Studies have found that it is not necessarily the presence of pictures that 

influences lenders but rather the content of those pictures (Pope and Sydnor 2011, Duarte et 

al., 2012). This suggests the types of data shared in the Loan Description field are what 

determine the impact of personal transparency on lenders’ decision making. The frequency of 

each type of data shared in the loan descriptions in our data set is illustrated in Table 7.  

Table 7. Frequencies of codes in 1000 sample records 



Ordinal variables No new 

information 

Some new 

information 

Substantial new 

information 

Additional loan purpose 

information 

351 551 98 

Justification of financial 

situation 

925 56 19 

Claims of future financial 

responsibility 

882 107 11 

Claims of past financial 

responsibility 

769 200 31 

Acknowledgement of 

financial transgressions 

977 23 - 

Denial of financial 

transgressions 

994 5 1 

Education details 944 46 10 

Employment status 733 140 127 

Occupation 902 18 80 

Binary variables No mention Mentioned 

Links to other members 1000 - 

Links to other online 

presences 

1000 - 

Links to photographs 1000 - 

Age 997 3 

Gender 969 31 

Ethnicity 1000 - 

Marriage details 932 68 

Children and dependents 950 50 

Hobbies 995 5 

Health and obesity 955 45 

Religious or political views 998 2 

Claims of kindness 969 31 

Please or thanks 818 182 

Existence of follow-up 

comments 

826 174 

As for the previous investigation of hard data, the impact of the coded soft data was tested 

using a multiple logistic regression to determine the impact of these variables on whether or 

not the full proportion of funding was received. Another multiple logistic regression was used 

to determine the impact of these variables on the likelihood of a loan being charged off. The 

results of these tests are illustrated in Table 8. 

Table 8. Regression Output for Soft Data  

 

 

 

Predictor Variables 

Explanatory Power for 

Proportion Funded 

(Nagerkerle R2 12.5%) 

B 

Explanatory Power for 

Loan Defaults 

(Nagerkerle R2 

12.3%) 



B 

Additional loan purpose information -.371*** .389 NS 

Justification of financial situation -.085 NS .725* 

Claims of future financial 

responsibility 
-.190 NS 1.114** 

Claims of past financial responsibility .098 NS -.272 NS 

Acknowledgement of previous 

transgressions 
-.032 NS -1.191 NS 

Denial of previous transgressions -3.339 NS 1.560 NS 

Age -20.855 NS -19.271 NS 

Gender 
-.329 NS 

.153 NS 

Education details .164 NS -1.532 NS 

Employment status -.363** -.068 NS 

Occupation details -.401** .252 NS 

Hobbies -.424 NS -18.830 NS 

Marriage details -.287 * .111 NS 

Children and dependents .182 NS .081 NS 

Health and obesity .379 NS -.707 NS 

Religious or political views .466 NS -21.124 NS 

Claims of kindness .627 NS -.314 NS 

Please or thanks -.117 NS .608 NS 

Existence of follow-up comments 
.172 NS 

.128 NS 

 

* = p<0.05, ** = p<0.01, *** = p<0.001, NS = not significant 

 

This regression predicts 12.5% of the variance in funding. The data show that an applicant’s 

likelihood of receiving investment is negatively correlated with the mention of their marriage 

status, additional information concerning the purpose of the loan, the borrower’s occupation, 

or their current employment status. No other soft data demonstrate any significant impact.  

The four significant binary variables contain qualitatively different information. Breakdowns 

of the types of information coded are presented in Figure 6. These breakdowns illustrate two 

trends. Firstly, lenders not only responded more negatively to borrowers providing more 

information about the purpose of the loan, their occupation, and their employment status, this 

negative response increased as borrowers’ level of detail increased. Secondly, borrowers 

mentioning their marriage or intention to get married were less likely to receive investment.  



 
 

Information given regarding the 

purpose of the loan. 

Information given regarding borrower’s 

employment status. 

 
 

Information given regarding the 

borrower’s occupation. 

Information given regarding borrower’s 

marital status. 

Figure 6. Breakdown of binary variables in terms of proportion of funding received. 

 

The logistic regression for the soft data on loan repayment predicts 12.6% of the variance in 

the number of borrowers for whom loans are charged off. The data show that an applicant’s 

likelihood of repaying investment is negatively correlated with justifications of their current 

financial situation, claims of future responsibility, and statements of gratitude. No other 

variables demonstrate any significant impact. Where these statements of gratitude are broken 

down, the data suggest that borrowers who thank lenders in advance of their investment are 

those most likely to default on their loans, χ2 (5, N = 1,000) = 13.93, p = 0.001 (see Table 9). 

Table 9. Contingency table of borrowers’ statement of gratitude and loan default 
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 No mention Thanks  Please Total 

Loans not charged off 797 (82.7%) 153 (15.9%) 14 (1.5%) 964 

Loans charged off 21 (58.3%) 14 (38.9%) 1 (2.8%) 36 

Total 818 167 15  

CONCLUSIONS  

In this paper we have explored the relationships between user information sharing, 

information sharing expectations, and user behavior, through a two-iteration analysis of 

historical transactional data from Lending Club, a large Internet-enabled Peer-to-Peer 

Lending System (IP2PLS). Such systems are of key interest to the Information Systems 

research community, as they have emerged as a disruptive technological genre within the 

financial services area and are analogous to other Internet-based information systems 

supporting collective intelligence and action (such as open source software and innovation 

marketplaces) that have far reaching organizational and social implications.  

In line with extant research we conceptualize such systems in terms of their ability to support 

humanizing behaviors and exchanges, not simply financial transactions. Thus, our study was 

driven by the saliency of social identity, personal transparency, and information sharing in 

such systems (and the role played by the system in supporting such sharing.  Arguing that 

current knowledge is limited by bias towards particular IP2PLS providers, we chose to 

analyze a very large but under-researched platform. Our choice of site was driven specifically 

by the evidence that the functionalities and participants of different P2PL platforms vary 

widely (Wang et al., 2009, Bachmann et al., 2011).  

Our study makes several key contributions towards a more complete and heterogeneous 

picture of user behavior in IP2PLS, and has implications for researchers of other 

crowdfunding systems and/or other emerging forms of IS-enabled collective action, as well 

as for system designers, users and providers.  



Our final model, in which we theorize the impact of social identity and information provision 

on the behavior of users in the IP2PLS, is illustrated in Figure 7. It is noteworthy that our 

findings vary considerably from the observations of other IP2PLS previously investigated in 

the literature.  
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Figure 7. Revised Model of Relationship between Information Sharing and User 

Behavior in Lending Club 

First, we see that the kinds of hard financial data that have been identified as important on 

other platforms, have limited predictive power for Lending Club, both in terms of borrower 

repayment but especially in terms of lender-users behavior and investment decision-making. 

Second, we find that the hard data that best predicts borrower repayment behavior in Lending 

Club is not necessarily the same data that predicts the likelihood of borrowers receiving 

investment. For example the home ownership status of borrowers is a useful predictor of 

repayment neglected in borrower decision making, whereas a borrower’s revolving credit 



balance appears to have little or no predictive power over repayment, yet demonstrates a 

significant influence on lenders. These first two sets of findings suggest that much of the hard 

financial data known to impact upon lending behavior in platforms such as Prosper, does not 

impact lending behavior on Lending Club.   

Third, we found that the ‘soft’ financial and personal data revealed by borrowers within 

descriptions of the proposed loans, it is highly noteworthy that this soft data explained more 

of the variance in investment behavior than lenders’ hard financial data, which demonstrated 

no significant predictive power with the smaller sample size (p = .696). However, and equally 

notable, the majority of the predictive factors identified on other lending platforms had no 

significant impact on Lending Club. Indeed while some soft data did demonstrate significant 

predictive power, much of the data that benefitted borrowers on other platforms was in fact 

harmful to both investment and repayment on Lending Club.  

Fourth, none of the factors that were predictive of lending were predictive for repayment.  

Fifth, soft data that humanize borrowers and/or characterize them as family-oriented, while 

beneficial on platforms such as Prosper, had the opposite impact on Lending Club. Rather 

than demonstrating the reliability and/or trustworthiness of a borrower, such data appeared to 

dilute that borrower’s financial identity on Lending Club, to the detriment of their likelihood 

of receiving investment.  

These findings, taken together, expand our understanding of the wide variety of IP2PLS user 

behaviors between systems. These observed variations are our primary data contribution and 

significantly extend our empirical knowledge of IP2PLS user behavior.  

More critically, they expand our conceptual understanding of IP2PLS, and demonstrate the 

usefulness of viewing IP2PLS, through the lens of Social Identity Theory, as systems that 



support user decision making by enabling humanizing/social information exchanges. This 

conceptualization forms our primary theoretical contribution. Specifically, and consistent 

with existing research on identity theory, our findings suggest that the impact of information 

sharing on user behavior is related to platform-specific sharing expectations. Indeed, we see 

that unlike on platforms such as Prosper, revealing detailed personal information appears to 

be outside of the norm on Lending Club (i.e. occurs in a minority of requests and is not 

explicitly supported by the platform).  

Thus, lender-users appear troubled by unexpectedly transparent borrowers who disclose such 

information, rather than simply presenting themselves in purely financial terms. Interestingly, 

we note again that this unexpected humanizing soft data that appears to deter investment 

behavior has no actual predictive power over borrowers’ likelihood of repayment. In other 

words, the poor reception received by borrower-users that share “too much” data cannot 

simply be understood as a financial risk response, but is instead to be understood as a 

violation of community expectations. 

Thus our study (1) challenges the assumption that IP2PLS are homogenous by revealing 

contrary findings, (2) transforms our understanding of IP2PLS from purely transactional 

market platforms to social identity and information exchange platforms, and (3) consequently 

extends our understanding of IP2PLS user behavior.  For future researchers, our work implies 

that a more heterogeneous view of IP2PLS is required, as well as a richer appreciation of the 

interplay between user identity behaviors, community expectations and platform 

functionalities. 

Our work thus also has practical implications for the designers, developers and managers of 

IP2PLS.  First, the heterogeneous nature of IP2PLS communities revealed by the comparison 

of our work to other IP2PLS studies suggests that there is not a one-size-fits-all ideal design 



for IP2PLS. Rather IP2PLS design and functionality must be driven by user information 

requirements and user information sharing expectations (that factors that are significant in 

one IP2PLS may not be significant in another (or indeed, may have an inverse relationship, 

where data are standard in one domain, but are unexpected in another). Second, the 

perspective shift from pure financial transaction platform to social identity platform suggests 

that the design of IP2PLS may better serve its users by facilitating more structured and thus 

“normal” presentation of social identity information within the platform. This would allow 

borrower-users to express identity in ways that may allow lender-users to evaluate them in a 

manner that is more reliable and less prone to cognitive bias.  

REFERENCES  

Ansoff, H. I. (1975) Managing Strategic Surprise by Response to Weak Signals. California 

Management Review 18(2): 21-33. 

Ashforth, B. E., & Mael, F. (1989) Social identity theory and the organization. Academy of 

management review, 14(1): 20-39. 

Bachmann, A., Becker, A., Buerckner, D., Hilker, M., Kock, F., Lehmann, M., Tiburtius, P. 

& Funk, B. (2011) Online Peer-to-Peer Lending -- A Literature Review. Journal of Internet 

Banking & Commerce 16(2): 1-18. 

Barry, J. J. (2012) Microfinance, the Market and Political Development in the Internet Age. 

Third World Quarterly 33(1): 125-141. 

Berger, S. C. & Gleisner, F. (2009) Emergence of Financial Intermediaries in Electronic 

Markets: The Case of Online P2P Lending. Business Research 2(1): 39-65. 



Benbasat, I., & Zmud, R. W. (2003). The Identity Crisis within the IS Discipline: Defining 

and Communicating the Discipline’s Core Properties. MIS Quarterly, 27(2), 183–194. P.186 

Bradford, C. S. (2012) Crowdfunding and the Federal Securities Laws. Columbia Business 

Law Review 2012(1): 1-150. 

Briceno Ortega, A. C. & Bell, F. (2008) Online social lending: Borrower-generated content. 

In: In: Proceedings of The Americas Conference For Information Systems, Toronto, Canada. 

Burke, P. J. (1991) Identity processes and social stress. American Sociological Review 56(6): 

836-849. 

Burke, P. J., & Reitzes, D. C. (1991) An identity theory approach to commitment. Social 

Psychology Quarterly 54(3): 239-251. 

Bushman, R., & Smith, A. (2003). Transparency, financial accounting information, and 

corporate governance. Financial Accounting Information, and Corporate Governance. 

Economic Policy Review 9(1): 65-87. 

Ceyhan, S., Shi, X. & Leskovec, J. (2011) Dynamics of bidding in a P2P lending service: 

effects of herding and predicting loan success. Proceedings of the 20th international 

conference on World wide web. Hyderabad, India. 

Chaffee, E. C. & Rapp, G. C. (2012) Regulating Online Peer-to-Peer Lending in the 

Aftermath of Dodd-Frank: In Search of an Evolving Regulatory Regime for an Evolving 

Industry. Washington and Lee Law Review 69(2): 485-533. 

Chen, D. & Han, C. (2012) A Comparative Study of online P2P Lending in the USA and 

China. Journal of Internet Banking & Commerce 17(2): 1-15. 



Chen, N., Ghosh, A. & Lambert, N. (2009) Social Lending. Proceedings of the 10th ACM 

conference on Electronic commerce. Stanford, California, USA. 

Collier, B. C. & Hampshire, R. (2010) Sending mixed signals: multilevel reputation effects in 

peer-to-peer lending markets. Proceedings of the ACM conference on Computer supported 

cooperative work. Savannah, Georgia, USA. 

Cunningham, S. (2013) Lending Club vs Prosper: The Ultimate Showdown. Lending Memo 

online publication 25 March, http://www.lendingmemo.com/lending-club-vs-prosper/ 

Dezső, L. & Loewenstein, G. (2012) Lenders’ blind trust and borrowers’ blind spots: A 

descriptive investigation of personal loans. Journal of Economic Psychology 33(5): 996-

1011. 

Do, H., Jeon, S., Banker, R., Lee, B. & Yoo, B. (2012) Is the Leaderboard Information Useful 

to Investors?: The Leaderboard Effect in P2P Lending. In: Proceedings of the International 

Conference for Information Systems, Orlando, USA. 

Duarte, J., Siegel, S. & Young, L. (2012) Trust and Credit: The Role of Appearance in Peer-

to-peer Lending. Review of Financial Studies 25(8): 2455-2483. 

Freedman, S., & Jin, G. Z. (2008). Do social networks solve information problems for peer-

to-peer lending? Evidence from prosper.com. . NET Institute Working Paper  (No. 08-43). 

Granados, N., Gupta, A., & Kauffman, R. J. (2010). Research Commentary—Information 

Transparency in Business-to-Consumer Markets: Concepts, Framework, and Research 

Agenda. Information Systems Research 21(2): 207-226. 

Granovetter, M. S. (1973) The strength of weak ties. American journal of sociology 78(6): 

1360-1380. 



Greiner, M. E. & Wang, H. (2009) The Role of Social Capital in People-to-People Lending 

Marketplaces. Proceedings of the International Conference for Information Systems. 

Phoenix, USA. 

Greiner, M. E. & Wang, H. (2010) Building Consumer-to-Consumer Trust in E-Finance 

Marketplaces: An Empirical Analysis. International Journal of Electronic Commerce 15(2): 

105-136. 

Herrero-Lopez, S. (2009) Social interactions in P2P lending. Proceedings of the Workshop on 

Social Network Mining and Analysis. Paris, France. 

Herzenstein, M., Dholakia, U. M. & Andrews, R. L. (2011a). Strategic Herding Behavior in 

Peer-to-Peer Loan Auctions. Journal of Interactive Marketing 25(1): 27-36. 

Herzenstein, M., Sonenshein, S. & Dholakia, U. M. (2011b) Tell Me a Good Story and I May 

Lend You Money: The Role of Narratives in Peer-to-Peer Lending Decisions. Journal of 

Marketing Research 48: S138-S149. 

Hiltunen, E. (2008) The future sign and its three dimensions. Futures 40(3): 247-260 

Iacobuzio, T. (2006) Can’t get a bank loan? Try asking your online peers. Bank Technology 

News 19(7): 25-27. 

Iyer, R., Khwaja, A. I., Luttmer, E. F., & Shue, K. (2009). Screening in new credit markets: 

Can individual lenders infer borrower creditworthiness in peer-to-peer lending? John F. 

Kennedy School of Government Working Paper Series (No. w15242).  

Jeong, G., Lee, E. & Lee, B. (2012) Does borrowers' information renewal change lenders' 

decision in P2P lending?: an empirical investigation. Proceedings of the International 

Conference on Electronic Commerce. Singapore, Singapore. 

http://ideas.repec.org/s/ecl/harjfk.html


Kappel, T. (2008) Ex ante crowdfunding and the recording industry: A model for the us. 

Loyola of Los Angeles Entertainment Law Review 29(3): 375-385. 

Katz, M. L. (1996) Remarks on the economic implications of convergence. Industrial and 

Corporate Change (5:4): 1079-1095 

Katz, M. L., & Shapiro, C. (1985) Network externalities, competition, and compatibility. The 

American economic review 75(3): 424-440. 

Klafft, M. (2008a). Online peer-to-peer lending: a lenders' perspective. In Proceedings of the 

International Conference on E-Learning, E-Business, Enterprise Information Systems, and E-

Government, Las Vegas, USA. 

Klafft, M. (2008b). Peer to peer lending: Auctioning microcredits over the internet. In 

Proceedings of the International Conference on Information Systems, Technology and 

Management, Dubai, UAE. 

Kupp, M. & Anderson, J. (2007) Zopa: Web 2.0 meets retail banking. Business Strategy 

Review 18(3): 11-17. 

Larrimore, L., Jiang, L., Larrimore, J., Markowitz, D. & Gorski, S. (2011) Peer to Peer 

Lending: The Relationship Between Language Features, Trustworthiness, and Persuasion 

Success. Journal of Applied Communication Research 39(1): 19-37. 

Lee, E. & Lee, B. (2012) Herding behavior in online P2P lending: An empirical investigation. 

Electronic Commerce Research and Applications 11(5): 495-503. 

Lin, M. (2009) Peer-to-peer lending: An empirical study. In: Proceedings of The Americas 

Conference For Information Systems, San Francisco, USA. 



Lin, M., Prabhala, N. R. & Viswanathan, S. (2009) Can social networks help mitigate 

information asymmetry in online markets. In:  Proceedings of the International Conference 

for Information Systems, Phoenix, USA. 

Livingston, L. S. & Glassman, T. (2009) Creating A New Type Of Student Managed Fund 

Using Peer-To-Peer Loans. Business Education & Accreditation 1(1): 1-14. 

Lu, Y., Gu, B., Ye, Q. & Sheng, Z. (2012) Social Influence and Defaults in Peer-to-Peer 

Lending Networks. In:  Proceedings of the International Conference for Information Systems, 

Orlando, Florida. 

Luo, C., Xiong, H., Zhou, W., Guo, Y. & Deng, G. (2011) Enhancing investment decisions in 

P2P lending: an investor composition perspective. In: Proceedings of The 17th ACM 

SIGKDD International Conference on Knowledge Discovery and Data Mining. San Diego, 

USA. 

Moodie, M. (2013) Microfinance and the Gender of Risk: The Case of Kiva.org. Signs 38(2): 

279-302. 

Pope, D. G. & Sydnor, J. R. (2011) What's in a Picture? Evidence of Discrimination from 

Prosper.com. Journal of Human Resources 46: 53-92. 

Pötzsch, S. & Böhme, R. (2010) The role of soft information in trust building: evidence from 

online social lending. The 3rd International Conference on Trust and Trustworthy 

Computing, Berlin, Germany. 

Puro, L., Teich, J. E., Wallenius, H. & Wallenius, J. (2010) Borrower Decision Aid for 

people-to-people lending. Decision Support Systems 49(1): 52-60. 



Puro, L., Teich, J. E., Wallenius, H. & Wallenius, J. (2011) Bidding strategies for real-life 

small loan auctions. Decision Support Systems 51(1): 31-41. 

Reay Atkinson, S., Tavakoli Taba, S., Goodger, A., Caldwell, N. H., & Hossain, L. (2014) 

Synthetic Standards in Managing Health Lifecycles and Cyber Relationships. International 

Journal on Advances in Life Sciences 6(1 and 2): 41-51 

Reay Atkinson, S., Tavakoli Taba, S., & Hossain, L. (2014) Seeding Trusts and [In.] 

Tolerance in Cyber Communities. In: Proceedings of the Second ASE International 

Conference on Big Data Science and Computing, Stanford, USA. 

Sinanan, J. (2009) Lenders, borrowers and fellows: personal narrative and social 

entrepreneurship in online microfinance. In: Proceedings of the 21st Annual Conference of 

the Australian Computer-Human Interaction Special Interest Group: Design: Open 24/7, 

Melbourne, Australia. 

Sonenshein, S., Herzenstein, M. & Dholakia, U. M. (2011) How accounts shape lending 

decisions through fostering perceived trustworthiness. Organizational Behavior and Human 

Decision Processes 1  

Tajfel, H. (1979). Individuals and groups in social psychology*. British Journal of Social and 

Clinical Psychology, 18(2), 183-19015(1): 69-84. 

Tajfel, H., & Turner, J. C. (1979) An integrative theory of intergroup conflict. In W. G. 

Austin & S. Worchel (Eds.), The social psychology of intergroup relations (pp. 33–47). 

Brooks/Cole, USA 

Uzzi, B. (1996) The sources and consequences of embeddedness for the economic 

performance of organizations: The network effect. American sociological review 61(4): 674-

698 



Wang, H., Greiner, M. & Aronson, J. E. (2009) People-to-people lending: The emerging e-

commerce transformation of a financial market. In:  Proceedings of The Americas 

Conference For Information Systems, San Francisco, USA. 

Wang, H. & Greiner, M. E. (2010) Herding in Multi-winner Auctions. In Proceedings of the 

International Conference on Information Systems, St. Louis, USA. 

Wang, H. & Greiner, M. E. (2011) Prosper—The eBay for Money in Lending 2.0. 

Communications of the Association for Information Systems 29(1): 243-258. 

Yum, H., Lee, B. & Chae, M. (2012) From the wisdom of crowds to my own judgment in 

microfinance through online peer-to-peer lending platforms. Electronic Commerce Research 

and Applications 11(5): 469-483. 

Zhang, J. J. & LIU, P. (2012) Rational Herding in Microloan Markets. Management Science 

58(5): 892-912. 

APPENDICES 

Appendix 1. List of hypotheses predicting how explicitly expected hard data 

may impact investment and repayment 

H#1: A higher Lending Club credit score will have a positive impact on both a 

borrower’s likelihood of investment and likelihood of repayment 

H#2: A higher FICO credit score will have a positive impact on both a borrower’s 

likelihood of investment and likelihood of repayment 

H#3: A higher number of public records will have a negative impact on both a 

borrower’s likelihood of investment and likelihood of repayment 

H#4: A higher number of account delinquencies will have a negative impact on both a 

borrower’s likelihood of investment and likelihood of repayment 

H#5: A lower number of months since the last public record will have a negative impact 

on both a borrower’s likelihood of investment and likelihood of repayment 

H#6: A lower number of months since the last account delinquency will have a negative 

impact on both a borrower’s likelihood of investment and likelihood of repayment 

H#7: A higher monthly income will have a positive impact on both a borrower’s 

likelihood of investment and likelihood of repayment 



H#8: Homeownership will have a positive impact on both a borrower’s likelihood of 

investment and likelihood of repayment 

H#9: A higher number of years in employment will have a positive impact on both a 

borrower’s likelihood of investment and likelihood of repayment 

H#10: A higher number of total credit lines will have a positive impact on both a 

borrower’s likelihood of investment and likelihood of repayment 

H#11: A higher debt-to-income ratio will have a negative impact on both a borrower’s 

likelihood of investment and likelihood of repayment 

H#12: A higher number of open credit lines will have a negative impact on both a 

borrower’s likelihood of investment and likelihood of repayment 

H#13: A higher number of credit inquiries in the past 6 months will have a negative 

impact on both a borrower’s likelihood of investment and likelihood of repayment 

H#14: A higher revolving credit balance will have a negative impact on both a 

borrower’s likelihood of investment and likelihood of repayment. 

H#15: Higher revolving line utilization will have a negative impact on both a borrower’s 

likelihood of investment and likelihood of repayment 

H#16: A higher loan amount will have a negative impact on both a borrower’s likelihood 

of investment and likelihood of repayment 

H#17: A higher length of loan duration will have a negative impact on both a borrower’s 

likelihood of investment and likelihood of repayment 

H#18: A higher interest rate will have a positive impact on a borrower’s likelihood of 

investment but a negative impact on their likelihood of repayment 

H#19: A higher monthly repayment will have a positive impact on a borrower’s 

likelihood of investment but a negative impact on their likelihood of repayment 

 

Appendix 2. List of hypotheses predicting how possible implicitly expected 

soft data may impact investment and repayment 

H#20: Additional information about a loan’s purpose will have a negative impact on a 

borrower’s likelihood of investment and likelihood of repayment 

H#21: Justifications for a borrower’s current financial situation will have a negative 

impact on a borrower’s likelihood of investment and likelihood of repayment 

H#22: Claims of future financial responsibility will have a negative impact on a 

borrower’s likelihood of investment and likelihood of repayment 

H#23: Claims of past financial responsibility will have a negative impact on a borrower’s 

likelihood of investment and likelihood of repayment 

H#24: Acknowledgement of financial transgressions will have a negative impact on a 

borrower’s likelihood of investment and likelihood of repayment 

H#25: Denial of financial transgressions will have a negative impact on a borrower’s 

likelihood of investment and likelihood of repayment 

H#26: Denial of a borrower’s education will have a negative impact on a borrower’s 

likelihood of investment and likelihood of repayment 

H#27: Denial of a borrower’s occupation will have a negative impact on a borrower’s 

likelihood of investment and likelihood of repayment 

H#28: Denial of a borrower’s employment status will have a negative impact on a 

borrower’s likelihood of investment and likelihood of repayment 

H#29: Links to other members will have a negative impact on a borrower’s likelihood of 

investment and likelihood of repayment 

H#30: Links to other online presences possessed by the borrower will have a negative 

impact on a borrower’s likelihood of investment and likelihood of repayment 



H#31: Links to photographs will have a negative impact on a borrower’s likelihood of 

investment and likelihood of repayment 

H#32: Details of the borrower’s age will have a negative impact on a borrower’s 

likelihood of investment and likelihood of repayment 

H#33: Details of the borrower’s gender will have a negative impact on a borrower’s 

likelihood of investment and likelihood of repayment 

H#34: Details of the borrower’s ethnicity will have a negative impact on a borrower’s 

likelihood of investment and likelihood of repayment 

H#35: Details of the borrower’s marriage status will have a negative impact on a 

borrower’s likelihood of investment and likelihood of repayment 

H#36: Details of the borrower’s children and dependents will have a negative impact on 

a borrower’s likelihood of investment and likelihood of repayment 

H#37: Details of the borrower’s hobbies will have a negative impact on a borrower’s 

likelihood of investment and likelihood of repayment 

H#38: Details of the borrower’s health or obesity will have a negative impact on a 

borrower’s likelihood of investment and likelihood of repayment 

H#39: Details of the borrower’s religious or political views will have a negative impact 

on a borrower’s likelihood of investment and likelihood of repayment 

H#40: Claims of borrower kindness associated with the loan will have a negative impact 

on a borrower’s likelihood of investment and likelihood of repayment 

H#41: Expressions of gratitude will have a negative impact on a borrower’s likelihood of 

investment and likelihood of repayment 
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APPENDIX A. MANUAL CODING EXAMPLES 

Code Category 

 

No New 

Information 

Some New 

Information 

Substantial New 

Information 

Nothing, or 

simply 

repeats 

structured 

data found 

elsewhere in 

request. 

Terse or 

vague 

information 

not found 

elsewhere in 

request. 

Longer or more 

specific 

information not 

found elsewhere 

in request. 

Additional loan purpose 

information 

No mention or 
restates loan 
category. 
 

"Funds to be 
used for 
Development 
and Pre-
Production costs 
on a feature 
film" 
 

 

"Seeking a 
consolidation loan 
for 3 debts totalling 
$1141.83 and 
current monthly 
minimum payments 
of $564.85" 

 

Justification of financial 

situation 

No mention or 
restates loan 
category. 

 

“Just finished 
year one of 
my career 
and it 
involved a lot 
of moving 
and 
relocating 
and large 
miscellaneous 
purchases” 

“I have been 
helping my oldest 
daughter pay 
down her student 
loan from 
college- she 
works full time, 
but low-paying 
job.  My son 
(graduating 
college this May) 
also works, but 
getting fewer and 
fewer hours, so 
my mom and I 
share helping him 
with his living 
expenses.  He 
was able to get 
scholarships and 
grants for the 
first 3 years of 
college, but I am 
paying the loan 
on his senior year 
and 1/2 his 
rent/room/board.  
My middle 



daughter has also 
been relying on 
my help.  Her 
husband has 
abandoned her 
and their 3-year 
old daughter.  
She is working 
full time, but 
cannot afford her 
apartment but 
also was not 
allowed out of 
her lease” 

Claims of future financial 

responsibility 

No mention. 

 

"This (loan) will 
enable me to 
spread the 
repayment of 
these loans over 
a longer period 
so that I can 
free up cash" 

"I make $2350 every 
2 weeks and only 
have car and rent 
payment” 

Claims of past financial 

responsibility 

No mention or 
restates credit 
rating. 

 

"All of the 
cards...have 
never missed a 
payment or 
been late" 

 

"I have knocked 
down $15,000 in 
debt in less than 4 
years" 

 

Acknowledgement/Denial 

of financial transgressions 

No Mention "Large part of 
the debt has 
come from poor 
decisions 
regarding a 
house we 
purchased in 
2005" 

"The loan terms 

were not favorable 

looking out a few 

years, but I 

expected to be able 

to refinance my 

way out before it 

got bad. I was 

working as an IT 

manager and my 

credit record was 

steadily improving. 

Unfortunately, my 

company's parent 

company sold us, 

and I was laid off 

in the process. I 

took a chance and 

tried to go into 

private consulting 

with a partner. 



Without going into 

detail, the 

partnership didn't 

work - we hardly 

made money. We 

broke up, and I 

was left with his 

share of six 

months' expenses, 

which I had 

covered.  I also had 

to deal with the 

eviction of a bad 

tenant and the 

associated 

financial 

pain.  Meanwhile, 

my $300k 1st 

mortgage rate 

climbed to 8%, 

nearly as high as 

my equity loan 

($33k at 9%).  I 

focused on keeping 

the mortgage 

payments current, 

which meant I 

made some hard 

(bad?) decisions to 

get by, including 

running up credit 

card debt, delaying 

payments, and 

becoming late on 

my property taxes 

(which were not 

escrowed.)" 
 

Education details No Mention "I hold a finance 
degree" 

"I recently received 
my CPC and 
graduated class 
valedictorian... In 
the professional 
school I had 
attended" 

Employment status No Mention "have been 
steadily 
employed for 
the past 8 
years" 

"Employed as a 
Director at 
COMPANY X for six 
years" 



 

Occupation No Mention "I am in the 
medical field 
and have my 
own practice" 

 

“I am a GS-11 Step 
5 Information 
Technology 
specialist” 

Code Category 

 

Not Present Present 

Links to other members Absent Listed account names, real names, 

URLs. 

Links to other online 

presences 

Absent Listed account names and URLs 

Links to photographs Absent Not found in sample 

Age Absent Explicitly Stated Age 

Gender Absent Explicitly Stated Gender 

Ethnicity Absent Not found in sample 

Marriage details Absent Explicitly stated or implied, e.g. "My 
wife and I keep seperate accounts…" 

 

Children and dependents Absent Explicitly stated or implied, e.g. 
"Ever since she had our first child..." 

Hobbies Absent  Explicitly stated or implied, e.g. "I 
am a huge Suze Orman fan" 

Health and obesity Absent Explicitly stated or implied, e.g. 
"Over 12 years, I have averaged taking 
less than 2 sick days per year" 

Religious or political 

views 

Absent Explicitly stated or implied, e.g. "We 
are old school Americans who believe in 
paying off their debt vs. bankruptcy" 

Claims of kindness Absent Explicitly stated or implied, e.g. 
"One of the reasons I am moving is so I 
can...start helping the poor in my 
community" 

Please or thanks Absent Explicitly stated, e.g. "Please assist 
me" 

Existence of follow-up 

comments 

Absent Follow up comments existed 

 


