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Abstract 

A heuristic algorithm is described for vehicle routing and scheduling problems to minimise the total 

travel time, where the time required for a vehicle to travel along any road in the network varies 

according to the time of travel. The variation is caused by congestion that is typically greatest 

during morning and evening rush hours. The algorithm is used to schedule a fleet of delivery 

vehicles operating in the South West of the United Kingdom for a sample of days. The results 

demonstrate how conventional methods that do not take time-varying speeds into account when 

planning, except for an overall contingency allowance, may still lead to some routes taking too 

long. The results are analysed to show that in the case study using the proposed approach can lead 

to savings in CO2 emissions of about 7%. 

 

Keywords: Vehicle Routing, Distribution, Heuristics, Environment 

 

Introduction 

 

Vehicle Routing and Scheduling algorithms have traditionally been developed for road networks 

where the average speed of the vehicles on each road link is estimated as a constant value. 

Sometimes different average speeds are used for different types of road or roads in particular areas, 

but often the average speed is not altered over the planning period. In practice, traffic flows may be 

subject to congestion which leads to lower average speeds at particular times of the day or night. 

The average speeds may also vary due to the day of the week, the time of year and other influences 

such as weather conditions.  

 

There is now much more traffic information available that makes it possible to plan vehicle 

journeys taking account of congestion which is predictable from the traffic patterns of the past. This 
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approach will not be able to take account of unexpected events that may cause congestion such as 

an accident, but regular congestion due to volume of traffic or long-term road works can be 

predicted from past data. 

 

Such data can be used to create a Road Timetable that shows the shortest time between customers 

when the journey is started at different times. In some cases the shortest-time path may change at 

different times of day due to the pattern of congestion on the road network. Issues regarding the 

construction of such a Road Timetable are discussed in Eglese et al. (2006).  

 

This paper describes a vehicle routing and scheduling algorithm, called LANTIME,  that is able to 

accept data from a Road Timetable and will construct a set of vehicle routes that aims to minimise 

the total time required to deliver goods from a depot to a set of customers subject to a set of 

constraints. The possible constraints include the capacities of the vehicles, the times available for 

each driver and vehicle and time window constraints for the customer deliveries. 

 

The main aim of this paper is to present a case study where the algorithm has been applied using 

real data for a vehicle fleet delivering electrical wholesale items in the South West of the UK. The 

purpose of this case study is to analyse the effects of using Road Timetable data compared with 

routing and scheduling where this information is not available. The results are compared in terms of 

the total distances travelled, the time required for each vehicle route and the CO2 emissions.  

 

The paper is organised as follows. The next section discusses the academic literature relevant to 

vehicle routing and scheduling using time varying data. In the following section, the details of the 

LANTIME scheduler are described. The case study and results are described next followed by the 

conclusions and remarks on further research.  

 

Literature related to time varying vehicle routing models 

 

Vehicle Routing Problems have been studied extensively in the Operational Research literature. A 

good overview of exact and heuristic methods, together with descriptions of some application areas 

is to be found in Toth and Vigo (2002). Most models treat the time between customers as constant 

values, but a relatively small number of articles have been published  that consider these times as 

varying according to the time of travel. One example is the paper by Fleischmann et al. (2004).  

Modern traffic information systems are described and a framework is presented for using time-
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dependent travel times within dynamic vehicle routing problems of different types. Computational 

tests based on the traffic in Berlin show that the use of constant average travel times can lead to 

significant underestimation of the total travel times. The paper also reports on how this can lead to 

missing delivery time window constraints. Ichoua et al. (2003) examine a model for vehicle routing 

and scheduling based on time-dependent travel times. These travel times are derived from speeds 

that vary according to different times of the day and it is shown that this approach has the advantage 

of maintaining the FIFO (First In, First Out) property. This means that a vehicle starting to travel 

down a single road will always reach the end of the road before another similar vehicle that starts its 

journey down the same road at a later time. The model is tested on generated data and illustrates the 

benefits from taking time-varying travel times into account. Eglese et al. (2006) demonstrate how 

the use of time-varying data can affect results for a hypothetical distribution operation, using real 

speed data on a road network in the north of England. 

 

Van Woensel et al. (2008) describe an approach incorporating queueing models for vehicle routing 

where travel times may vary dynamically due to congestion. The models are built on the 

relationships between the speed, flow and density of the traffic on any road. The approach can be 

used where direct observations of speeds are not available, but data on flows can be obtained or 

easily estimated.  

 

There have also been developments in dynamic vehicle routing for adjustments to vehicle routes 

reacting to changing traffic conditions in real time. Examples include Ichoua et al. (2006) and 

Taniguchi and Shimamoto (2004). When the customer demands are for specific orders that need to 

be loaded at the depot, as occurs in our case study, then although these approaches may allow routes 

to be improved after a vehicle has left a depot, planning which customer is to be served on each 

vehicle route still needs to be determined when the vehicles are loaded based on expected travel 

times. 

 

Formulation and algorithm design 

 

The problem considered is a conventional single-depot Vehicle Routing Problem with Time 

Windows (VRPTW). The VRPTW, where the speeds over each arc or edge of a network are not 

varying with time, can be formulated in a variety of ways including a multi-commodity network 

flow model, where the binary variables indicate whether an arc between two nodes is traversed by a 

certain vehicle, or a set-partitioning formulation, where the variables used in the master problem 
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indicate possible paths. The formulation used in this paper is based on a different standard 

formulation that is capable of being expanded later to include more practical routing requirements 

as well variable travel time information. 

 

The set of customers is denoted by N and the set of vehicles by K. For each customer i  N, the 

service time requirement is s(i), the demand required is w(i) and a time window [ei , li] is specified 

for beginning of service. The set of vehicles K represents a homogeneous fleet of vehicles. For each 

vehicle k  K, its capacity is W, its starting time is τ, and its maximum working time is D. 

 

The travelling times between locations are all known and fixed and defined as c(i, j)  where {i , j}  

N  {0}, and where by convention 0 represents the depot. The cost associated with traversing an 

arc is represented as the travelling time. 

 

For each individual vehicle, k, ],...,[ 0
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The only constraint applied directly to each individual customer is that the service is started within 

the given time window. This is a time window on beginning of service and not on completion of 

service.  

 

ii liae )( ,  Ni         [3] 

 

The working time required on each route must be under the total work time available, D. In the 

VRPTW the working time includes travelling time, service time and waiting time. 
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Constraint [4] ensures that the vehicle returns to the depot on time. Equation [5] defines the variable 

kR
~

as the path of locations required to be serviced by the vehicle k with the depot stops removed. 
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The equality constraint 6 ensures that all customers N are dealt with by the individual customer 

sets R
~

.  
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Constraint [7] ensures the capacity of the vehicle is not exceeded by the demand requirements of the 

individual deliveries placed on route Rk. 

 

The objective function [8] is for a fixed fleet version of the problem where the objective is to 

minimise the travelling cost over all the routes.   
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Full details of the algorithm used can be found in Maden (2006). The main points are summarised 

below. 

 

An initial solution is created for the VRPTW using a parallel insertion algorithm following Potvin 

and Rousseau (1993). This initial solution is a starting solution from which tabu search explores 

neighbouring solutions. The insertion algorithm must ensure that the solution is feasible with 

respect to all constraints. 

 

The insertion algorithm forms a five step process as outlined below. 

 

Step 1: Seed the vehicles’ routes with one delivery each (using a seeding criterion). 

Step 2: For each remaining delivery, find the cost if a vehicle were to complete that delivery from 

the depot with no other customers on its route. 

Step 3: Find best location on best vehicle’s route for all remaining deliveries. 

Step 4: Make the best insertion based on a savings criterion 

Step 5: If all routes are full or all jobs are scheduled, terminate; else go to step 3. 

 

The initial vehicle route is started by seeding it with the delivery farthest from the depot, though 

other variations are possible. 

 

The initial solution is then improved using a tabu search algorithm.  

 

The algorithm described here uses four possible neighbourhood operations: CROSS Exchange, 

insertion/removal, one exchange and swap. The first of these is an adaptation of a neighbourhood 

moved proposed by Taillard et al. (1997). The four neighbourhoods are illustrated in Figure 1. 

 

The insertion/removal, one exchange and swap operators can be considered as special cases of the 

adapted Cross Exchange operator. They represent smaller neighbourhoods and so take less time to 

search completely than the adapted Cross Exchange. In all these moves, when a set of deliveries is 
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moved together, a check is carried out to discover whether it is better to reverse the sequence of 

deliveries for those moved. 

 

The algorithm randomly selects which neighbourhood to explore at each stage, according to 

probabilities assigned in advance. 

 

The tabu list is not fixed but varies as proposed by Gendreau et al. (1994); a move added to the tabu 

list at time t  remains restricted until time t where is randomly selected from an interval ],[ .  

Gendreau et al. (1994) suggests that this approach virtually eliminates the probability of cycling 

between solutions. A standard aspiration criterion overrides the restriction implied by the tabu list if 

the move leads to a new best solution. 

 

A long term memory structure is used to help diversify the search into new areas. The tabu search 

objective has an additional component to represent the long term memory cost )( trialxM of the 

proposed move that leads to solution trialx .  

 

         
                         Adapted CROSS Exchange                       Insertion/Removal Operator 

 

          
                          One Exchange Operator                                      Swap Operator                 

 

Figure 1 – The four types of neighbourhood move 
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)()( trialtrialtrial xfxMcost         [9]  

 

The long term memory factor reflects the number of times each delivery that is involved in the 

move, leading to the trial solution trialx , has been involved in previous completed moves. The 

memory structure keeps a tally of the number of times a delivery has been involved in a completed 

move. For a move only involving swapping a single delivery a value of 1 is added to that delivery 

tally; for a move involving more than one delivery, 1/(Num_deliveries_involved) is added to the 

tally for all deliveries involved in the completed move.  

 

The component )( trialxM for equation [9] is calculated using a sum of the tally counts of deliveries 

that are involved within the move, divided by the number of deliveries involved in the move; then 

this value is expressed as a fraction of the total number of iterations, iterationsnumtotal __ . is a 

constant used to control the effect that long term memory has on the cost function.  

 

1
__

___
)(

iterationsnumtotal

involveddeliveriesnumcounttally
xM trial    [10] 

 

The memory component of the cost function is set to equal 1 when determining if the possible 

solution meets the aspiration criteria. 

 

The tabu search objective tries to locate a solution x which leads to the minimum search cost. The 

search cost includes the original VRPTW objective f(x), the memory cost M(x), and the function 

P(x) which is a measure of the infeasibility of solution x.  

 

)()()( xPxfxM          [11] 

 

The parameter  is dynamically adjusted throughout the search.  is initially set at 1 and in the 

same way as Gendreau et al. (1994), every iterations, 2 if all previous solutions were 

infeasible, and 2/  if all previous  solutions were feasible.  

 

In expression [11] the cost of the solution f(x) is calculated using equation [8] and the memory cost 

is calculated using equation [10]. The penalty cost is calculated by determining by how much extra 
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time, the time windows for each delivery and in the working time allowance for each vehicle, is 

needed to complete the solution. The total extra time is denoted as P(x). 

 

The algorithm can be summarised as follows: 

 

Step 1: Initialisation  

 Generate initial solution, nowx , 

 Copy initial solution to best overall feasible solution, nowxx* , 

 Ensure tabu list is empty, and long term memory values are defaulted to zero 

 

Step 2: Neighbourhood Selection & Termination 

 If termination criterion is met End Search and Return *x , 

 Else Randomly select the neighbourhood N to be used this iteration 

 

Step 3: Choice 

 Randomly generate trialx from )( nowxN  

 If first trial value in neighbourhood, trialbest xx  

If 0)( trialxP and *)()( xfxf trial , (Aspiration Criterion) 

Copy trialbesttrialbesttrialbest xxxPxPxfxf ),()(),()(  Goto Step 4, 

Else if  move from nowx to trialx  is not set tabu   

  if )()()()()()( nownownowtrialtrialtrial xPxfxMxPxfxM ,  

Copy trialbesttrialbesttrialbest xxxPxPxfxf ),()(),()(  Goto Step 4, 

 Else if )()()()()()( bestbestbesttrialtrialtrial xPxfxMxPxfxM  

   Copy trialbesttrialbesttrialbesttrialbest xxxPxPxfxfxMxM ),()(),()(),()(  

 Continue step 3 until search of neighbourhood )( nowxN is exhausted 

 

Step 4: Update 

 bestnow xx  

Update Memory table and Tabu List, increment iteration count 

 If 0)( bestxP and *)()( xfxf now ; nowxx*  

 Restart Step 2  
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Experiments were carried out on standard benchmark VRPTW test problems from 

Solomon (1987) to determine the best values of the parameters to be used with this 

algorithm. Full details are in Maden (2006).  

 

Some further extensions were made to the algorithm so that it could be used in practice 

for case study problems. 

 

The most important extension is to allow the time to travel between locations c( i, j)  to 

vary according to the time that the journey is started. The optimum times, distances and 

routes were previously calculated and stored as a Road Timetable, using the approach 

described in Eglese et al. (2006).  

 

In addition, the algorithm was modified to ensure that the routes obeyed current driving 

legislation by inserting breaks for a driver when required. The law lays down several 

conditions: 

i) there must be a driving break of 45 mins every 4.5 hours (270 mins), 

ii) if the total working time is greater than 6 hours (360 mins) then a 30 minute break 

must be taken, 

iii) if the total working time is greater than 9 hours (540 mins) then a 45 minute break 

must be taken. 

The two types of break can be taken simultaneously. For example, if a driver takes a 45 

minute driving break then he will have taken enough rest to work over 9 hours. 

Conversely, if a driver works over 6 hours and takes a 30 minute break, then the next 

driving break need only be for 15 minutes. 

 

Finally, a penalty function is included in the objective if any deliveries are not included 

in the routes for the fixed vehicle fleet. However the final solutions produced need to 

service all deliveries. For the experiments in the case study, if any deliveries were not 

included then the vehicle fleet was increased until a feasible solution was found that 

included all deliveries. In other practical situations, some deliveries may have to be 

rescheduled for another time or passed on to another carrier. 
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The algorithm was also modified to allow a heterogeneous fleet, the capacity constraint 

was extended to cover two elements (e.g. weight and volume) and problems involving 

pick-ups and deliveries were included, but these extensions were not required for the 

case study described in this paper. 

 

The implementation of the algorithm changes significantly with the inclusion of 

variable travel time information. As highlighted in papers notably Malandraki and 

Daskin (1992) , Fleischmann et al. (2004) and Ichoua et al. (2003) there are other 

complications which need to be considered when extending an algorithm to make use of 

time dependent travel times. This is because a local neighbourhood move involving 

deliveries near the start of a route could have a significant effect on the timings later on 

and makes it more difficult to determine the effect of the neighbourhood move on the 

objective function efficiently. 

 

Ichoua et al. (2003) use an approach of approximating the effect on later jobs by using a 

similar approach to the one outlined when using static data, using the creation of an 

additional time window to give an approximation of the effect. The M best moves given 

by the approximation are then calculated exactly. The final selection is based on the 

exactly calculated values. 

 

Malandraki and Daskin (1992) determined that using a typical insertion algorithm with 

variable travel time information was too computer intensive to be of practical use, but as 

computer speeds and power increase, this problem becomes less acute. In this 

algorithm, the effect of a neighbourhood move on the objective function is determined 

exactly. 

 

Another issue arises from the approximation of a continuous change in the time to travel 

between any two nodes on the network using a set of discrete time bands. The issue is 

similar to that of ensuring that the FIFO (First In, First Out) property holds when 

constructing the Road Timetable as described in Eglese et al. (2006). When travelling 

from A to B, the time of arrival at B could be earlier if the vehicle waits at A until the 

starting time falls in a time band where the speeds are faster. Although the construction 

of the Road Timetable ensures that this will not happen when the best route between A 

and B does not change, if the best route between A and B changes with the change to a 
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new time band, then this phenomenon can occur. In practice, delaying the departure 

from A should never lead to an earlier arrival at B for any particular route. If the time 

bands used in constructing the Road Timetable are relatively narrow, then this should 

not be a significant problem in practice. The experiments were all conducted using 15-

minute time bands which are narrow enough so that the changes in speed on a road 

between neighbouring time bands are generally small and provide a good approximation 

to the continuous case. Using narrower time bands would provide an even better 

approximation but increase the computational burden. 

 

 Case Study 

 

The case study is based on the distribution system of an electrical goods wholesaler. For 

its operation in the South West of the UK, items need to be taken from its regional 

distribution centre in Avonmouth to a set of customers. The area covered includes 

Worcester, Swindon and Portsmouth to the east, the whole of south Wales and the south 

west of England to the tip of Cornwall. The operation is carried out on a daily basis 

Monday to Friday. The vehicles used are all 3.5 tonne GVW box vans, so there are no 

restrictions on the roads on which they may travel. As the items of electrical equipment 

are relatively small and light there are no effective constraints on the capacity of the 

vans. However each driver is available only for a maximum 10 hour working day 

including the statutory breaks for driving time and working time. There are no time 

window constraints for the deliveries, other than that they must all be delivered on a 

particular day.  

 

Demand data were obtained for a sample of nine separate days. The number of 

customers served per day ranged between 40 and 64. The number of vans required is 

normally up to 7, though additional vans and drivers are available if required. 

 

In order to construct the corresponding Road Timetables, data were supplied from ITIS 

Holdings whose Floating Vehicle Database contains speeds of vehicles on roads that 

have been captured through tracking devices on the vehicles. Road Timetables were 

constructed for each day’s set of customers based on the speeds observed in 96 15-

minute time bins averaged over a three month period in 2007. For comparison purposes, 
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Road Timetables were also constructed using the speeds found at times of the day when 

the traffic was free-flowing or uncongested.  

 

 In cases where the location of a customer was off the main road network covered by the 

ITIS data (typically on an estate or very minor road) then the time for a vehicle to 

transfer between the location and the main road network was estimated based on the 

straight line distance to a node on the network in the way described in Eglese et al. 

(2006). This time was generally a very small proportion of the total journey time. 

 

For each day’s data, initially two runs were made using the LANTIME algorithm. The 

first set of runs (A) used the uncongested speeds which did not vary by time of day. The 

results from this correspond to what would be expected from a conventional vehicle 

routing and scheduling system where the speeds on each road are constant. The second 

set of runs (B) give the results of using the routes planned in (A), but with the varying 

speeds taking account of the effects of congestion at different times of day.  

 

The results are shown in Table 1. 

 

For each of the 9 days sampled, when the routes that were constructed using constant 

uncongested speeds from A were used and tested using the actual time-varying speeds 

in B, at least one of the routes constructed became infeasible, because the total time 

required exceeded the 10 hours allowed, sometimes by a considerable margin. These 

instances are indicated by bold type in the table. Over all the runs, the percentage of 

routes which went over time was 65% and the total extra time required to finish those 

routes was an average of 57 minutes. In practice this may require the payment of 

overtime payments and could also lead to delivery problems if some deliveries are 

delayed beyond the normal time when customers can accept deliveries. 

 

To overcome this problem, one strategy used by planners is to use constant speeds, but 

slower than the uncongested speeds to make an allowance for congestion. With a 

constant speed model, this will not reflect the actual variations in speed at different 

times of the day, but the approach might be expected to make sufficient allowance so 

that the actual route lengths do not exceed the 10 hours allowed. Using slower speeds 

may lead to plans requiring more vehicle routes and drivers than strictly necessary. 
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 In order to analyse this strategy, the algorithm was run again using constant speeds, 

where the original uncongested speeds were reduced by 10%. The resulting plans were 

then tested using the actual time-varying speeds in the same way as the previous set of 

runs in B. The results from these runs are shown in Table 2 and are labelled “P-10%”.  

 

The results from these runs show that even with this allowance, many of the routes 

planned still exceed the 600 minutes time limit. The percentage of routes that went over 

time is 44% and the total extra time required to finish these routes is an average of 20 

minutes. In this case, the allowance has not been enough to provide a set of routes that 

are likely to be satisfactory. 

 

Another set of runs was then carried out, again using constant speeds, but this time 

where the speeds were reduced by 20%. The resulting plans were then tested using the 

actual time-varying speeds as before. The results from these runs are shown in Table 3 

and are labelled “P-20%”.  

 

Table 1 - Results for run sets A and B 

 

     Work Time per vehicle (min)   

Date N Run 

Total 
dist. 
(km) 

Total 
time 
(min) 1 2 3 4 5 6 

9/6/2008 53 A 1990 2295 599 581 557 598   

  B  2619 660 680 631 648   

11/6/2008 51 A 2037 2377 180 485 599 573 541  

  B  2736 198 539 729 640 630  

12/6/2008 64 A 2466 2934 538 571 573 598 152 501 

  B  3342 605 628 637 716 168 587 

13/6/2008 49 A 1964 2337 595 596 569 577   

  B  2620 668 674 628 649   

16/6/2008 55 A 2458 2853 472 555 593 397 588 249 

  B  3186 518 622 648 450 666 282 

17/6/2008 57 A 1987 2454 195 514 575 589 582  

  B  2744 214 570 637 651 671  

18/6/2008 48 A 2076 2393 160 457 589 590 597  

  B  2672 179 505 662 656 670  

19/6/2008 40 A 1523 1782 438 574 195 575   

  B  2018 481 654 218 666   

20/6/2008 43 A 1668 2045 593 511 390 551   

  B  2381 754 567 445 615   

 

 



15 

 

 

A final set of runs (C) show the results from planning the routes using the LANTIME 

algorithm with the time-varying speed data and these are also given in Table 3. 

 

When the change in speeds is further reduced by 20% for planning, then in all instances 

apart from three, the routes are within the 600 minutes maximum and the extra time 

required is only an average of 8 minutes. However on each sample day, this requires the 

use of an additional van route compared to run set P-10%.  

 

In contrast with the previous results, using the LANTIME algorithm with the time-

varying speeds (set C) produced results where all routes were completed within the 10 

hour limit. As for run sets P-10% and P-20%, in many cases an additional van route was 

needed compared to the original plans in run sets A and B. The results from set C 

demonstrate that using LANTIME provides a more reliable basis for planning routes in 

terms of the time needed to complete each route.  

 

Table 2 -Results for run set P-10% 
 

   
Work Time per vehicle (min) 

 

Date 

Total 
dist. 
(km) 

Total 
time 
(min) 1 2 3 4 5 6 

09/06/2008 1979 2659 236 582 620 640 581 
 

11/06/2008 2328 2966 624 500 606 602 634 
 

12/06/2008 2875 3665 631 600 653 572 600 608 

13/06/2008 1884 2633 450 603 636 435 508 
 

16/06/2008 2513 3213 547 595 240 608 643 579 

17/06/2008 1995 2757 604 597 593 634 328 
 

18/06/2008 2034 2670 609 324 627 506 604 
 

19/06/2008 1485 2003 607 286 502 607 
  

20/06/2008 1679 2328 598 578 583 570 
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Table 3 also presents an estimate of the CO2 emissions for each of the run sets. These 

have been calculated using the speed along each road in the route using the emissions 

function provided in the National Atmospheric Emissions Inventory. This can be 

accessed online (at www. naei.org.uk). For this case study, the figures used are for Euro 

II Diesel LGVs. The tables provided allow an estimate to be made of various emission 

factors in terms of emissions per kilometre for different average speeds. They may not 

fully reflect actual emissions which may be affected by the amount of irregularity in 

speed, weight of load, road inclines and other factors. For this case, as the customer 

orders are relatively light compared to the weight of the van, no attempt has been made 

to modify the function for the weight of goods carried at each stage of the route. A good 

discussion of the issues involved in the estimation of CO2 emissions from road freight 

transport can be found in McKinnon and Piecyk (2009). The evaluations could have 

been made for other harmful pollutants, but only CO2 emissions have been evaluated as 

Table 3 -Results for run sets P-20% and C 

 

          Work Time per vehicle (min)       

 

Date Run 

Total 
dist. 
(km) 

Total 
time 
(min) 

Total 
CO2 
(kg) 1 2 3 4 5 6 7 8 

09/06/2008 P-20% 2309 3005 497 565 613 463 541 545 279   

   C 2155 2862 463 586 438 247 600 397 594   

 
11/06/2008 P-20% 2558 3237 548 484 516 607 519 552 560   

   C 2458 3076 528 580 536 505 332 528 595   

 
12/06/2008 P-20% 3546 4373 763 542 577 548 551 539 551 533 532 

  C 2802 3632 604 596 198 597 566 501 595 578 
 

13/06/2008 P-20% 2027 2801 438 557 475 505 593 557 113   

   C 1955 2692 424 588 499 520 505 580     

 
16/06/2008 P-20% 3171 3928 680 541 554 582 557 516 589 589 

   C 3153 3864 676 513 600 482 589 544 596 540 
 

17/06/2008 P-20% 2145 2945 465 299 448 563 560 516 559   

   C 2226 3064 483 452 460 546 583 512 512   

 
18/06/2008 P-20% 2581 3257 557 536 593 564 538 484 543   

   C 2210 2896 477 458 600 173 592 514 559   

 
19/06/2008 P-20% 1749 2300 376 493 604 362 296 545     

   C 1504 2002 324 596 318 582 506       

 
20/06/2008 P-20% 1710 2386 370 206 541 576 467 596     

   C 1777 2361 383 593 299 600 532 337     
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a major contributor to the greenhouse effect. All the calculations have been made in 

grams and then rounded in the results to the nearest kilogram.  

 

When the total emissions per day are compared for run sets P-20% and C, the total 

emissions for run set C were usually lower than those for run set P-20%, though not in 

every case. 

 

Table 4 summarises the total distance, total time required and the total CO2 emissions 

for run sets P-20% and C. It shows that the total distance travelled and the total time 

required for run set C were less than those for P-20%. The reduction is about 7% when 

compared with the P-20% run set. This is because the LANTIME algorithm using the 

time-varying speed data tends to avoid routes where congestion is high, speeds are low 

and CO2 emissions are relatively high. By searching for the fastest routes, it tends to 

avoid congestion and only uses longer routes when the vehicles can travel faster at a 

speed closer to the optimum for emissions per kilometre. 

 

Conclusions and further research 

 

The case study results demonstrate the effect that consideration of time-varying speeds 

can have on a real distribution operation. Ignoring this issue can lead to routes that 

suffer delays producing duties for drivers that are unacceptably long. In this case, there 

were no time window constraints on service deliveries, but where these are important 

then ignoring time-varying speeds can lead to missing delivery time windows as well. 

 

The analysis has shown that being able to plan routes using traffic information that 

provides time-varying speeds for the roads in the network can also lead to some 

reduction in the levels of CO2 emissions produced compared with plans based on 

Table 4 - Summary Statistics 

 

Run  

Total 
dist. 
(km) 

Total 
time 
(min) 

Total 
CO2 
(kg) 

P-20% 21796 28232 4694 

C 20236 26431 4363 
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constant speeds and a general contingency allowance for congestion. The reduction 

observed for the case study was about 7% when compared with a planning method 

using constant speeds and a common contingency allowance for all roads. 

 

Although this study suggests that finding the set of routes that minimise the total time in 

a network with time-dependent travel times may lead to reductions in emissions 

compared to conventional approaches, the LANTIME algorithm still does not plan 

routes which directly minimise pollution. The next step in this research is to modify the 

algorithm to find the set of routes that will produce the set of routes that directly 

minimise the pollution, still taking account of the time varying speeds due to patterns of 

congestion.  
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