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Abstract

Data Envelopment Analysis (DEA) is basically a linear programming based technique used

for measuring the relative performance of organizational units, referred to as Decision Making

Units (DMUs). The flexibility in selecting the weights in standard DEA models deters the com-

parison among DMUs on a common base. Moreover, these weights are not suitable to measure

the preferences of a decision maker (DM). For dealing with the first difficulty, the concept of

common weights was proposed in the DEA literature. But, none of the common weights ap-

proaches address the second difficulty. This paper proposes an alternative approach we term

’preference common weights’ which is both practical and intellectually consistent with the DEA

philosophy. To do this, we introduce an MOLP model in which objective functions are in-

put/output variables subject to the constraints similar to the equations which define production

possibility set (PPS) of standard DEA models. Then by using the Zionts-Wallenius method, we

can generate common weights as the DM’s underlying value structure about objective functions.
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1 Introduction

Data Envelopment Analysis (DEA), introduced by Charnes et al. (1978), is a non-parametric

extremal method for evaluation of the relative efficiency of a group of similar units, called Decision

Making Units (DMUs). DEA gives a measure of efficiency, which is essentially defined as a ratio

of weighted outputs to weighted inputs. Charnes et al.’s idea is to define the efficiency measure

by assigning to each unit the most favorable weights as long as the efficiency scores of all DMUs

calculated from the same set of weights, do not exceed one.

This flexibility in selecting the weights deters the comparison among DMUs on a common base.

A possible answer to this difficulty lies in the specification of common weights, which was first

introduced by Roll et al. (1991). Research about the idea of common weights has developed

gradually in recent years. Some of the studies in this field are Roll and Golany (1993), Doyle

and Green (1996), Jahanshahloo et al. (2005), Kao and Hung (2005), Karsak and Ahiska (2005),

Zohrehbandian et al. (2010).

As an extension of the previous studies, this paper seeks to develop an interactive multiple

objective linear programming (MOLP) model that incorporates preference structures for obtain-

ing common weights in DEA. To achieve this goal, we introduce an MOLP model with objective

functions as input/output variables subject to the constraints similar to the equations that define

the production possibility set (PPS) of standard DEA models. Then by using the Zionts-Wallenius

method, we can generate common weights as the DM’s underlying value structure about objec-

tive functions. We term this approach ’preference common weights’ which is both practical and

intellectually consistent with the DEA philosophy.

For solving the proposed MOLP model by using the Zionts-Wallenius method, a DM is assumed

to have only an implicit utility function of these objective functions and no explicit knowledge of the

utility function that he wishes to maximize. The method uses an implicit function on an interactive

basis and to resolve the conflicts inherent in the given multiple objectives, the DM is required only

to provide answers to certain ’yes’ or ’no’ questions on feasible tradeoffs presented to him.

The plan for the rest of this paper is as follows. In section 2 we present a brief discussion

about Zionts-Wallenius method in solving the MOLP problems. The mathematical foundation of

our method for finding a common set of weights is discussed in Section 3. A numerical example is

presented in section 4 and finally, section 5 draws the conclusive remarks.
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2 MCDM Preliminaries

Although the DEA and MCDM approaches are different regarding how efficiency is measured in

practice, some of the authors have underlined the equivalence between the notion of efficiency

in DEA and MCDM; e.g. Giokas (1997) and Golany (1988). Furthermore, several authors have

pointed out some close connections between DEA and MCDM; see Belton and Vickers (1993),

Bouyssou (1999), Estellita et al. (2004), Giokas (1997), Golany (1988), Joro et al. (1998), Stewart

(1996), Xiao and Reeves (1999), Zhu (1996). Interestingly, Charnes and Cooper have also had a

significant impact on the development of MCDM through the development of goal programming.

An MOLP problem is a case of MCDM problems, which can be written as follows:

Max F (x) = {fi(x) = Cix, i = 1, · · · , p}

s.t. x ∈ X = {x ∈ Rn
+ | aix = bi, i = 1, · · · ,m} (1)

In order to solve the above problem (identifying the efficient solutions), there are many different

methods in the literature. One of these methods is an interactive programming method proposed

by Zionts and Wallenius (1976). In this method, it is assumed that the utility function U is a linear

function of the objective function variables ui = fi(x), i = 1, · · · , p, but the precise weights in such

a function are not known explicitly. Below, we introduce the steps of this well known method.

Step 0: The Zionts-Wallenius method, first, chooses an arbitrary set of positive multipliers or

weights, γi ≥ ε satisfying
∑p

i=1 γi = 1, and generates a composite objective function. The composite

objective function is then optimized to produce an extreme efficient solution x∗ to the problem.

Step 1: For each nonbasic variable xl, compute the value of the wil i = 1, · · · , p, as

wil =
fi(x

∗)− fi(x)

xl
, (2)

where x is an optimal solution of model (3).

Max xj

s.t. x ∈ X = {x ∈ Rn
+ | aix = bi, i = 1, · · · ,m} (3)

Step 2: Solve model (4), where NBV is the set of nonbasic variables.

Min
p∑

i=1

wilγi

s.t.
p∑

i=1

wijγi ≥ 0 j 6= l, j ∈ NBV (4)
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p∑
i=1

γi = 1

γi ≥ 0, i = 1, · · · , p

Test 1 If the optimal value of model (4) is negative, the variable xl is efficient,

Test 2 If the optimal value of model (4) is nonnegative, the variable xl is not efficient.

Step 3: For each efficient variable, the DM is asked: Here is a trade. Are you willing to accept

a decrease in objective function u1 of w1j , a decrease in objective function u2 of w2j , · · ·, and a

decrease in objective function up of wpj? Respond ’yes’, ’no’ or ’indifferent’ to the trade.

If the responses are all no for all efficient variables, terminate the procedure and take γi’s as

the bast set of weights. Otherwise, using the DM’s responses, we construct constraints to restrict

the choice of the weights γi to be used in finding a new efficient solution.

Step 4: For each ’yes’ response construct an inequality of the form

p∑
i=1

wijγi ≤ −ε. (5)

For each ’no’ response, construct an inequality of the form

p∑
i=1

wijγi ≥ ε. (6)

For each response of indifference, construct an equality of the form

p∑
i=1

wijγi = 0. (7)

A feasible solution to the following set of constraints is found:

All previously constructed constraints of the form (5), (6), (7) and

p∑
i=1

γi = 1, (8)

γi ≥ ε i = 1, · · · , p.

Step 5: The process is then repeated by the resulting set of γi’s and optimization of composite

objective function to produce a new extreme efficient solution to the problem. Go to step 1.

In this manner, convergence to an overall optimal solution with respect to the DM’s implicit

utility function is assured and finally, the overall optimal solution of γi’s are the weights of objective

functions with respect to the DM’s implicit utility function.
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3 Producing preference common weights

Consider n production units, or DMUs, each of which consume varying amounts of m inputs in the

production of s outputs. Suppose xij ≥ 0 denotes the amount consumed of the i-th input measure

and yrj ≥ 0 denotes the amount produced of the r-th output measure by the j-th DMU. The PPS

of obviously most widely used DEA model, CCR with constant returns to scale characteristic, is

defined as semi-positive vectors (x,y) as follows:

Tc = {(x, y)| x ≥
∑n

j=1 λjxj , y ≤
∑n

j=1 λjyj , λj ≥ 0 j = 1, . . . , n}

Classical DEA models rely on the assumption that inputs have to be minimized and outputs

have to be maximized. In other words, they evaluate DMUs and specify reference points due to

this assumption. Here we notice that based on this assumption, a DEA model could be expressed

as an MOLP problem applied to minimization of input variables and maximization of output

variables subject to the constraints similar to the equations which define the PPS of standard DEA

models. Hence, we propose following MOLP model which is intellectually consistent with the DEA

philosophy:

Max −x1
...

Max −xm

Max y1

...

Max ys

s.t. Xλ ≤ x (9)

Y λ ≥ y

λ ≥ 0

Like any MOLP model, the above model has no unique solution. But it is notable that its

efficient solutions are defined analogously to the efficient frontier of CCR model. Now and due to

the objective functions of this model, if we solve it by Zionts-Wallenius method, we can specify a

proper set of preference weights that reflect the relative degree of DM’s underlying value structure

about inputs and outputs. In other words, we produce a preference common weights and then

efficiency score of DMUj , j=1,...,n, can be obtained by using these common weights as

∑s
r=1 u

∗
r yrj∑m

i=1 v
∗
i xij

.
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Roll et al. (1991) indicate that a general requirement for the common set of weights is that

at least one DMU must attain efficiency 1 with the common weights. If there is no DMU with

efficiency score 1, then it is obvious that the efficiencies are under-estimated in the sense of relative

comparison. In this sense and based on the following theorem, the efficiency scores obtained from

our proposed method are not under-estimated and satisfied the general requirement.

Theorem There is a DMUp, p∈ {1, ..., n} for which we have

∑s
r=1 u

∗
r yrp∑m

i=1 v
∗
i xip

=1.

Proof Suppose that we generate a composite objective function using (u∗, v∗) multipliers and

subject to the same constraints of (9). Then based on the duality, optimal objective value of

this model is equal to zero. Hence, for all feasible solutions (λ, x, y) of the model we have:
s∑

r=1

u∗r yr −
m∑
i=1

v∗i xi ≤ 0, and there is an optimal solution (λ∗, x∗, y∗) of the model for which we

have:
s∑

r=1

u∗r y
∗
r −

m∑
i=1

v∗i x
∗
i = 0. In other words, the equation of the form

s∑
r=1

u∗r yr −
m∑
i=1

v∗i xi = 0

defines a supporting hyperplane that contains PPS in only one of the halfspaces and support it at

virtual DMU (x∗, y∗). But such a supporting hyperplane must support PPS at an observed DMU;

e.g. DMUp. Therefore, we have:
s∑

r=1

u∗r yrp −
m∑
i=1

v∗i xip = 0, or

∑s
r=1 u

∗
r yrp∑m

i=1 v
∗
i xip

= 1 2

Note that by slight manipulation of the proposed model (e.g. adding the constraint for sum of

λj), we can develop the concept of producing a preference common weights to other DEA models.

4 Numerical Example

To illustrate the idea of the proposed approach, an example is utilized with 25 DMUs. Where each

DMU uses 4 inputs to produce 3 outputs. Table 1 shows the value of these inputs and outputs.

The results of using the presented approach in section 3 for obtaining a preference common

weights in Variable Returns to Scale (VRS) context is as follows:

Iteration 1 We first choose an arbitrary set of weights γ = (0.143, 0.143, 0.143, 0.143, 0.143, 0.143,

0.143). The composite objective function was then optimized which produced (x1, x2, x3, x4, y1, y2, y3)

= (4236, 3145, 3334, 4504, 8423, 9821, 8821) with λ4 = 1 as an extreme efficient solution to the

problem. The set of nonbasic variables were λi, i = 1, · · · , 25, i 6= 4 and solving model (2), by

maximization of the nonbasic variable λi, i = 1, · · · , 25, i 6= 4, caused to the optimal solution

(xi1, xi2, xi3, xi4, yi1, yi2, yi3) with optimal value equals to 1. Determination of efficient variables

were based on the estimation of wij values which were introduced in table (2).

For each nonbasic variable λi, i = 1, · · · , 25, i 6= 4, model (4) was solved and variables

λ1, λ6, λ9, λ10, λ11, λ15, λ16, λ17, λ18, λ19, λ22, λ23, λ25, were determined as efficient variables. Then
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DMUs I1 I2 I3 I4 O1 O2 O3 Efficiency

DMU1 3422 4012 4353 3525 8921 5842 7512 1.05942

DMU2 3899 4316 4528 4656 5618 7343 6200 1.43594

DMU3 3478 4802 3874 3270 5468 5698 5102 1.40834

DMU4 4236 3145 3334 4504 8423 9821 8821 1.12505

DMU5 4821 3910 4140 4756 9181 6879 7305 1.40201

DMU6 4110 3487 3546 3123 6752 6521 9700 1.08162

DMU7 3980 4512 3487 3676 8315 8400 7546 1.18137

DMU8 4741 4231 4123 4523 6458 5600 9000 1.37730

DMU9 3422 3568 3961 3999 8010 5000 5887 1.22153

DMU10 4802 3154 4215 3792 7039 6015 5642 1.56621

DMU11 3050 4988 3971 4823 9253 8433 5897 1.14583

DMU12 3645 3753 4270 4219 5812 4999 6658 1.31994

DMU13 4910 3999 4190 3190 7314 5488 4599 1.70783

DMU14 4720 3491 3564 4802 6541 8324 7895 1.39392

DMU15 3879 4258 3500 3613 8741 9541 7291 1.13478

DMU16 4512 4908 4208 3692 9718 9291 8102 1.21120

DMU17 3691 4325 3222 5000 5642 7518 9941 1.12987

DMU18 4321 3867 3224 4003 10000 6465 9429 1.10821

DMU19 3784 3312 3989 3722 9758 6128 6709 1.14007

DMU20 3465 4657 3874 4918 7302 7312 7032 1.23246

DMU21 4410 4415 4632 3558 8821 6218 8245 1.22949

DMU22 3333 3720 4228 3292 5912 7324 8914 1.00000

DMU23 3784 4666 4220 4818 7543 8499 9214 1.12713

DMU24 4825 4777 3890 4391 6100 7666 4521 1.82717

DMU25 4325 3525 4471 3517 7415 7946 7415 1.25152

Table 1: The raw data set accompany with efficiency values
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NBV w1i w2i w3i w4i w5i w6i w7i

λ1 -814 867 1019 -979 -498 3979 1309

λ2 -337 1171 1194 152 2805 2478 2621

λ3 -758 1657 540 -1234 2955 4123 3719

λ5 585 765 806 252 -758 2942 1516

λ6 -126 342 212 -1381 1671 3300 -879

λ7 -256 1367 153 -828 108 1421 1275

λ8 505 1086 789 19 1965 4221 -179

λ9 -814 423 627 -505 413 4821 2934

λ10 566 9 881 -712 1384 3806 3179

λ11 -1186 1843 637 319 -830 1388 2924

λ12 -591 608 936 -258 2611 4822 2163

λ13 674 854 856 -1314 1109 4333 4222

λ14 484 346 230 298 1882 1497 926

λ15 -357 1113 166 -891 -318 280 1530

λ16 276 1763 874 -812 -1295 530 719

λ17 -545 1180 -112 496 2781 2303 -1120

λ18 85 722 -110 -501 -1577 3356 -608

λ19 -452 167 36555 -782 -1335 3693 2112

λ20 -771 1512 541 414 1121 2509 1789

λ21 174 1270 1298 -946 -398 3603 576

λ22 -903 575 894 -1212 2511 2497 -93

λ23 -452 1521 886 314 880 1322 -393

λ24 3589 1632 556 -113 2323 2155 4300

λ25 89 380 1137 -987 100 1875 1406

Table 2: The value of wij ’s in iteration 1
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the DM was asked to indicate the acceptability of the trade-offs and based on the DM’s responses, a

new set of weights for objective functions was obtained as γ = (0.5250, 0.0970, 0.0001, 0.1383, 0.0671,

0.0321, 0.1405).

Iteration 2 The composite objective function was optimized which produced (x1, x2, x3, x4, y1, y2, y3)

= (3333, 3720, 4228, 3292, 5912, 7324, 8914) with λ22 = 1 as an extreme efficient solution to the

problem. The set of nonbasic variables were λi, i = 1, · · · , 25, i 6= 22 and solving model (2), by

maximization of the nonbasic variable λi, i = 1, · · · , 25, i 6= 22, resulted in the optimal solution

(xi1, xi2, xi3, xi4, yi1, yi2, yi3) with optimal value equal to 1. Determination of efficient variables were

based on the estimation of wij values which were introduced in table (3).

For each nonbasic variable λi, i = 1, · · · , 25, i 6= 22, model (4) were solved and variables

λ4, λ6, λ7, λ9, λ10, λ11, λ13, λ14, λ15, λ18, λ19, λ21, λ23, λ25, were determined as efficient variables. Then

the DM was asked to indicate the acceptability of the trade-offs. Since all the responses were no

for all efficient variables, we terminated the procedure and introduced γ = (v∗1 = 0.5250, v∗2 =

0.0970, v∗3 = 0.0001, v∗4 = 0.1383, u∗1 = 0.0671, u∗2 = 0.0321, u∗3 = 0.1405) as the best set of weights

for inputs and outputs 2

Furthermore, normalization of these optimal preference common weights is associated to coef-

ficients (−v∗, u∗, w∗) ∈ <4 ×<3 × 1 of a supporting hyperplane that contains Tv in only one of the

halfspaces and pass among at least one of the points of it. Therefore, we can find the value of w∗

based on the values of v∗i ’s and u∗r ’s accompany with the input/output values of observed DMUs.

It is sufficient to solve the following model which can be performed based on simple comparisons.

Max w

s.t. w ≤ −
s∑

r=1

u∗r yrj +
m∑
i=1

v∗i xij j = 1, · · · , n (10)

For this example we find w∗=681.736. In this manner and due to the fact that the value of

vector (−v∗, u∗, w∗) is at hand, the output oriented efficiency score of DMUj , j=1,...,n, can be

obtained by using these common weights as

∑m
i=1 v

∗
i xij∑s

r=1 u
∗
r yrj + w∗

. These efficiency values are depicted

in table 1.

5 Conclusion

For assessment of all the DMUs on the same scale, this paper examines the application of the

Zionts-Wallenius method for generating common weights under the DEA framework. The proposed
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NBV w1i w2i w3i w4i w5i w6i w7i

λ1 89 292 125 233 -3009 1482 1402

λ2 566 596 300 1364 294 -19 2714

λ3 154 1082 -350 -22 444 1626 3812

λ4 1903 -575 -890 1212 -2511 -2497 93

λ5 1488 190 -88 1464 -3269 445 1609

λ6 777 -233 -682 -169 -840 803 -786

λ7 647 792 -741 384 -2403 -1076 1368

λ8 1408 511 -105 1231 -546 1724 -86

λ9 89 -152 -267 707 -2098 2324 3027

λ10 1469 -566 -13 500 -1127 1309 3272

λ11 -283 1268 -257 1531 -3341 -1109 3017

λ12 312 33 42 927 100 2325 2256

λ13 1577 279 -38 -102 1402 1836 4315

λ14 1387 -229 -664 1510 -629 -1000 1019

λ15 546 538 -728 321 -2829 -2217 1623

λ16 1179 1188 -29 1708 -3806 -1967 812

λ17 358 605 -1006 711 270 -194 -1027

λ18 988 147 -1004 430 -4088 859 -515

λ19 451 -408 -239 1626 -3846 1196 2205

λ20 132 937 -350 316 -1390 12 1882

λ21 1077 695 408 266 -2909 1106 669

λ23 451 946 -8 1526 -1631 -1175 -300

λ24 1492 1057 -338 1099 -188 -342 4393

λ25 992 -195 243 225 -1503 -622 1499

Table 3: The value of wij ’s in iteration 2
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approach is based on solution of an MOLP model which is intellectually consistent with the DEA

philosophy. Meanwhile, the Zionts-Wallenius method does not require explicit knowledge of the

DM’s utility function, but uses it on an interactive basis with the DM by asking certain ’yes’ or

’no’ questions.

There are other methods in the literature which are also able to generate common weights.

None of them are suitable to measure the preferences of a decision maker, and most of them are

based on the solution of nonlinear problems. Hence, because of interactively solution of an MOLP

problem that incorporates preference structures of a decision maker about input/output factors,

use of our approach has an advantage over the general approaches in the literature.

When the weights of the input/output factors are available, efficiency scores can be measured.

Moreover, all the DMUs can be ranked in terms of a common base. Finally, the proposed method,

simply and with appropriate modifications, can be generalized to the other DEA models.

References

Belton V and Vickers SP (1993). Demystifying DEA-A visual inreractive approach based on

multiple criteria analysis. Journal of the Operational Research Society 44: 883-896.

Bouyssou D (1999). Using DEA as a tool for MCDM: some remarks. Journal of the Operational

Research Society 50(9): 974-978.

Charnes A, Cooper WW and Rhodes E (1978). Measuring the efficiency of decision making

units. European Journal of Operational Research 2: 429-444.

Doyle JR and Green RH (1994). Efficiency and cross-efficiency in DEA: derivatives, meanings

and uses. Journal of the Operational Research Society 45: 567-578.

Estellita Lins MP, Angulo Meza L and Moreira da Silva AC (2004). A multi-objective approach

to determine alternative targets in data envelopment analysis. Journal of the Operational Research

Society 55: 1090-1101.

Giokas D (1997). The use of goal programming and data envelopment analysis for estimating

efficient marginal costs of outputs. Journal of the Operational Research Society 48(3): 319-323.

Golany B (1988). An interactive MOLP procedure for the extension of DEA to effectiveness

analysis. Journal of the Operational Research Society 39(8): 725-734.



REFERENCES 12

Jahanshahloo GR, Memariani A, Lotfi FH and Rezai HZ (2005). A note on some of DEA models

and finding efficiency and complete ranking using common set of weights. Applied Mathematics

and Computation 166: 265-281.

Joro T, Korhonen P and Wallenius J (1998). Structural comparison of data envelopment anal-

ysis and multiple objective linear programming. Management Science 44: 962-970.

Kao C and Hung HT (2005). Data envelopment analysis with common weights: the compromise

solution approach. Journal of the Operational Research Society 56: 1196-1203.

Karsak EE and Ahiska SS (2005). Practical common weight multi-criteria decision-making

approach with an improved discriminating power for technology selection. International Journal

of Production Research 43(8): 1537-1554.

Roll Y, Cook WD and Golany B (1991). Controlling factor weights in data envelopment analysis.

IIE Transactions 23(1): 2-9.

Roll Y and Golany B (1993). Alternate methods of treating factor weights in DEA. Omega

21(1): 99-109.

Stewart TJ (1996). Relationships between data envelopment analysis and multicriteria decision-

analysis. Journal of the Operational Research Society 47(5): 654-665.

Xiao Bai L and Reeves GR (1999). A multiple criteria approach to data envelopment analysis.

European Journal of Operational Research 115: 507-517.

Zhu J (1996). Data Envelopment Analysis with Preference Structure. Journal of the Operational

Research Society 47: 136-150.

Zionts S and Wallenius J (1976). An Interactive Programming Method for Solving the Multiple

Criteria Problem. Management Science 22(6): 652-663.

Zohrehbandian M, Makui A and Alinezhad A (2010). A compromise solution approach for

finding common weights in DEA: An improvement to Kao and Hung’s approach. Journal of the

Operational Research Society 61: 604-610.


