
Journal of the Operational Research Society (2011) 62, 1423 --1430 © 2011 Operational Research Society Ltd. All rights reserved. 0160-5682/11

www.palgrave-journals.com/jors/

Erratum

A hybrid genetic algorithmic approach to the
maximally diverse grouping problem
ZP Fan1, Y Chen2∗, J Ma3 and S Zeng4

1Northeastern University, Shenyang, China; 2Shanghai University of Finance & Economics, Shanghai,
China; 3City University of Hong Kong, Kowloon, Hong Kong; and 4University of Arizona, USA

Correction to: Journal of the Operational Research Society (2010). doi:10.1057/jors.2009.168
Published online 6 January 2010

It has come to our notice that several aspects of the above paper were incorrect. The correct version
of the paper is reproduced here.

The maximally diverse grouping problem (MDGP) is a NP-complete problem. For such NP-complete problems,
heuristics play a major role in searching for solutions. Most of the heuristics for MDGP focus on the equal
group-size situation. In this paper, we develop a genetic algorithm (GA)-based hybrid heuristic to solve this
problem considering not only the equal group-size situation but also the different group-size situation. The
performance of the algorithm is compared with the established Lotfi–Cerveny–Weitz algorithm and the non-
hybrid GA. Computational experience indicates that the proposed GA-based hybrid algorithm is a good tool
for solving MDGP. Moreover, it can be easily modified to solve other equivalent problems.
Journal of the Operational Research Society (2011) 62, 1423–1430. doi:10.1057/jors.2010.92
Published online 23 June 2010

Keywords: genetic algorithm; maximally diverse grouping problem; local neighbourhood search

Introduction

The maximally diverse grouping problem (MDGP) refers
to the problem of grouping a given set of elements into
several mutually disjoint subsets (groups) to maximize the
overall diversity between elements. It arises in a wide range
of real-world settings. Firstly stressed by Weitz and Jelassi
(1992) in their work on forming student workgroups, MDGP
has a variety of applications in different contexts, such as
education, industry, scientific funding agencies or organiza-
tions. In business schools, it becomes increasingly co mmon
to create diverse student workgroups or training teams in
order to provide students a diverse environment (Weitz and
Lakshminarayanan, 1998). Moreover, in the very large scale
integration (VLSI) design, it needs to group highly connected
modules onto the same circuit. Because of the mathemat-
ical identity, VLSI design is considered as an application of

∗Correspondence: Y Chen, Department of Information Management and
Engineering, Shanghai University of Finance & Economics, Shanghai,
200433, China.

MDGP (Weitz and Lakshminarayanan, 1998). The MDGP
also appears in the project selection in scientific funding agen-
cies. In most cases, the decisions of project selection are made
based on the review results of peer reviewers. So, forming the
diverse group of reviewers is desired by the scientific funding
agencies to insure multiple perspectives are represented in the
review process (Hettich and Pazzani, 2006). In addition, the
workforce diversity is an increasing common phenomenon
in most organizations today. Bhadury et al (2000) suggested
a way of dealing with this heterogeneity by making people
with different backgrounds work on common projects so as
to facilitate their understanding and communication.

The MDGP can be formally stated as follows. Consider
P = {pi : i ∈ {1, 2, . . . , M}} a set of elements, and pik , k ∈
{1, 2, . . . , K }, the K attributes associated with each element
pi . Let ug denote the gth group, where g ∈ {1, 2, . . . , G}.
The size of each group ug is in the interval [ag, bg](ag �bg).
Let di j be the distance between elements pi and p j , which
is measured by a function applied on their attributes. For
example, di j = ∑K

k=1|pik − p jk |. It should be noticed that
the function can be defined according to requirements of



1424 Journal of the Operational Research Society Vol. 62, No. 7

practical problems. The problem then consists of partitioning
M elements in P into G groups in order to maximize the sum
of the distances between the elements:

Maximize Z =
G∑

g=1

M∑

i=1

M∑

j>i

di j xigx jg (1)

subject to
G∑

g=1

xig = 1 for i = 1, 2, . . . , M (2)

M∑

i=1

xig �ag for g = 1, 2, . . . , G (3)

M∑

i=1

xig �bg for g = 1, 2, . . . , G (4)

xig ∈ {0, 1} for i = 1, 2, . . . , M and

g = 1, 2, . . . , G (5)

where xig =1 indicates that the element pi has been allocated
to group ug . It should be mentioned that this formulation
covers two group-size situations of MDGP: one is the equal
group size, and another is the different group size. According
to our literature review, most of the related studies focus
on the MDGP with equal group size. For the MDGP with
different group size, to our knowledge, has not been stressed
until now.

Feo and Khellaf (1990) showed that the MDGP is NP-
complete. Several researchers focused on solving MDGP
using heuristics. Heuristics that can be used to solve MDGP
were developed by Weitz and Jelassi (1992), Weitz and
Lakshminarayanan (1996, 1998), Feo et al (1992), Lotfi
and Cerveny (1991), Arani and Lotfi (1989), Baker and
Benn (2001). Baker and Powell (2002) identified two basic
procedures of these heuristics. One is the construction proce-
dure and another is the improvement procedure. Weitz and
Lakshminarayanan (1998) compared five heuristics, and
found that method of Lotfi–Cerveny–Weitz (LCW), which
is provided by Weitz and Lakshminarayanan (1998) based
on the algorithm proposed by Lotfi and Cerveny (1991),
is the best performer. As mentioned above, most of these
heuristics were proposed to solve the MDGP with same
group size.

As one kind of heuristic, the genetic algorithm (GA)
concept was developed by Holland (1975). Whitley et al
(1991) presented applications of GA to the travelling
salesman problem. Davis (1985), Shi (1997), Etiler et al
(2004) discussed the use of GA for job shop scheduling
problems. Obviously, the wide applications of GA make it a
popular tool to solve the problems with computation diffi-
culties such as NP-complete problems. However, it is still a
new challenge to use GA to solve the MDGP. Therefore, the

research objective of this paper is to propose a GA to solve the
MDGP considering both of the same group-size situation and
the different group-size situation in order to provide useful
addition to the knowledge base of solutions for this type of
problem.

In this paper, the concepts of GA and local search (LS)
for MDGP will first be described. Then the GA-based hybrid
heuristic based on the special knowledge of the MDGP will
be proposed and applied to MDGP. The following section
analyses the performance of the GA-based heuristic by exper-
iments. The data in experiments are randomly generated.
Finally, conclusions are discussed.

GA-based heuristic

Genetic algorithm

GA has been used successfully to find solutions for a wide
variety of optimization problems (eg, Goldberg, 1989; Gen
and Cheng, 1997), since its introduction by Holland (1985).
GA is an intelligent stochastic optimization technique based
on the simulation of biological evolution. Azimi (2005)
provided a brief introduction of GA.

In general, GA often performs well in global search, but
is relatively slow in converging to local optima (Wang and
Wu, 2003, 2004). On the other hand, another heuristic,
the LS method can find the local optimum in a small
region of the search space, but they are typically poor in
a global search. Therefore, various strategies of hybridiza-
tion have been suggested to improve performance of
simple GA. Mühlenbein (1992) proved theoretically and
Gorges-Schleuter (1989) demonstrated empirically that LS
can play a key role in GA. Miller et al (1993) and Vasko et al
(2005) also discussed the combination of local improvement
operators in GA.

Local search for MDGP

LS is a widely used, general approach to solving hard opti-
mization problems (Yannakakis, 1990). Its basic idea is to
start from some initial solution that is constructed by some
other algorithms, or just generated randomly and from then
on it keeps moving to a better neighbouring solution, as long
as there is one, until finally it terminates at a locally optimal
solution, one that does not have a better neighbour. LS can
be dated back to the late 1950s, when Bock (1958) and Croes
(1958) developed their link-exchange procedures for the trav-
elling salesman problem. Ever since, a large variety of LS
algorithms have been proposed (eg, Vaessens et al, 1998;
Aarts and Lenstra, 2003).

Our LS for MDGP is an iterative procedure. In each itera-
tion, the procedure scans all neighbour solutions and selects
the best to replace the current solution. The neighbour solu-
tion is obtained by swapping any two elements from different
groups of the current solution. This procedure was also



ZP Fan et al—A hybrid genetic algorithmic approach 1425

described as an improvement procedure by Baker and Powell
(2002). The LS for MDGP is provided in the Appendix.

The GA-based heuristic for MDGP

Encoding

A variety of encoding schemes have been developed based
on the characteristics of problems. For grouping problems,
Falkenauer (1998) proposed a special encoding scheme. His
encoding scheme consists of two sections: the object section
and the group section. The group section is appended to the
object section, and takes part in the crossover and mutation
operations.

MDGP is basically composed of two types of information,
the elements and the groups. Falkenauer’s (1998) encoding
scheme comprises both of the elements’ information and the
groups’ information. So, it is naturally adopted in our algo-
rithm. In the object section, each gene is assigned to a group
number, which indicates that the corresponding element is
allocated to that group. In the group section, all the group
numbers are listed in random order. The following notation
is used for our chromosome representation:

q1, q2, . . . , qM |Q1, Q2, . . . , QG

where qi ∈ {1, 2, . . . , G}denote the element pi is allocated
to group qi (1� i�M), and Qg is the existing group numbers
(1�g�G). For example, the chromosome 132 213|123 indi-
cates the grouping of allocating element p1 and p5 to group
u1, element p3 and p4 to group u2 and element p2 and p6 to
group u3.

Initialization

Davis and Steenstrup (1987) have noted that the initialization
process can be executed with either a randomly created popu-
lation or a well-adapted population. For the MDGP, because
of the existence of constraints, the random way will yield
a considerable number of infeasible solutions. So, in our
algorithm, a two-stage heuristic is proposed to initialize the
population. In the first stage, the groups are constructed
by consequently allocating the elements into groups. Each
element is allocated to only one group. If M/G is an integer,
all the groups have the same group size of M/G; otherwise
the first (M −1) groups have the same group size of �M/G�,
and the last group has the group size of (M − �M/G�G).
After the first stage, the constraints in Equation (2) are guar-
anteed, but other constraints may be violated. In the second
stage, the group size adjustment algorithm is performed by
moving elements from one group to another until each group
size is in the corresponding range. It should be noted that
the group size adjustment algorithm will also be performed
to repair the illegal offspring derived from the crossover
operation. Let pop si ze denote the size of the population,
and vk denote the kth chromosome, and S(g) denote the size
of group ug and S more denote the set of groups where
group size is larger than bg , and S less denote the set of

groups where group size is smaller than ag . The procedure
that generates the initial population follows:

Stage 1

1. for (k = 1 to pop si ze)
2. if (mod(M,G) = 0)
3. S = M/G
4. for (g = 1 to G)
5. Randomly select S elements from the rest

(M − S × (g − 1)) elements into group ug

6. end
7. else
8. S = floor (M/G)
9. for (g = 1 to (G − 1))

10. Randomly select S elements from the rest
(M − S × (g − 1)) elements into group ug

11. end
12. g = G
13. Put the rest (M − S × (G − 1)) elements into

group ug

14. end
15. Randomly sort the order of G groups
16. Create the vk according to above assignment
17. end

Stage 2

1. In vk :
2. for (g = 1 to G)
3. if (S(g)< ag)
4. Put ug into S less
5. else if (S(g)> bg)
6. Put ug into S more
7. end
8. end
9. if ((S more = null) & (S less = null))

10. break
11. if (S more �= null)
12. gmore = The index of randomly selected groups

from S more
13. else
14. gmore = The index of randomly selected groups

where S(g)�(ag + 1)
15. end
16. if (S less �= null)
17. gless = The index of randomly selected groups

from S less
18. else
19. gless = The index of randomly selected groups

where S(g)�(bg − 1)
20. end
21. Randomly select a element from group ugmore

22. Put this element into group ugless

23. Find out S more and S less from all G groups
24. end



1426 Journal of the Operational Research Society Vol. 62, No. 7

Selection

Our hybrid GA employs a rank-based roulette-wheel strategy
to select parents for crossover operation. Each chromosome
is assigned a portion of an imaginary roulette wheel, based on
its rank-based fitness value. The fitness value of each chromo-
some is calculated with the objective function. Chromosomes
that are more fit have higher rank-based fitness values and thus
receive a relatively larger proportion of the roulette wheel.
Prior to the selection of each parent, a percentage between 0
and 100 is randomly generated. The chromosome occupying
the part of the roulette wheel covered by the randomly gener-
ated percentage is chosen as parent one. Parent two is selected
in the same manner.

Crossover

Crossover is a step that really powers the GA. It produces
new individuals by combining the information contained
in parents. Standard GA crossover produces offspring by
exchanging portions of parent chromosomes. As pointed out
by Falkenauer (1998), this type of operation, when applied
to a grouping problem, may produce overlapping among the
groups. It means an offspring chromosome may contain one
or more groups that share some of the same elements. This
type of offspring would be invalid since grouping problems
require that each element be assigned with only one group.
So, a special crossover operation for grouping problem was
proposed by Falkenauer (1998).

In our hybrid GA, the crossover operation is consistent
with Falkenauer’s (1998). Firstly, select two crossing points
from the group section in each of two parents. Then inject the
contents between the crossing points of parent two into the
first crossing point of the parent one. In the following, delete
all elements that occur twice after injection from the groups
of parent one. After the crossover procedure, the generated
offspring may be still illegal since the group size could be out
of the corresponding range. In this situation, the group size
adjustment algorithm will be performed again to adjust the
group size.

An example will be presented to illustrate the crossover
and repair operation in our hybrid GA. Suppose there are 10
elements to be partitioned into three groups. The requirements
for group size are a1 = 3, b1 = 6, a2 = 2, b2 = 4, a3 = 3
and b3 = 5. Two legal parents are generated as shown in
Figure 1. Recall that the crossover operation is performed on
the group section of the parent chromosomes. The offspring
in our example results from injecting the content between the
crossing points from parent two into the first cross point of
parent one. Since the injected groups are numbered the same
as those in the first parent, we use gray colour to indicate
which groups are injected from parent two (Figure 1(a)).

Figure 1(b) shows the group composition details of the
offspring. After the crossover, it can be observed that some
elements appear twice. To indicate them, we underline these

Figure 1 (a) The injection of parent two to parent one in the
crossover operation; (b) The elimination of elements appearing
twice; (c) The resulting groups; (d) The composition of groups
after crossover and repair.

elements. Obviously, the resulting offspring is illegal. To
repair it, we firstly delete those underlined elements from the
groups of the first parent. The deleted elements are further
identified by inclined lines (Figure 1(b)). Then, we have five
groups, three groups from parent one and two groups from
parent two. For our case, we only need three groups. So, any
two groups will be combined with other groups. The resulting
groups are shown in Figure 1(c).

From Figure 1(c), we can see that the group size of group u2
and u3 are out of the range as predefined. Therefore, according
to our group size adjustment algorithm, we randomly select
three elements from group u1 and group u2 to fill in group
u3. Ultimately, the composition of the three groups of the
offspring is shown in Figure 1(d).

Mutation

The aim of mutation is to increase genetic diversity into
the population by introducing random variations into the
members of the population. This standard mutation of GA is
disruptive for grouping problems (Falkenauer, 1998). If an
element is transferred into a new group in which it shares no
similarities with current group members, then the quality of
the mutated solution may be greatly impacted. Falkenauer
(1998) proposed several mutation strategies like creating a
new group, eliminating an existing group or shuffling a few
elements among their respective groups.

The mutation operator used in our hybrid GA consists of
randomly selecting two groups and then selecting � elements
that belong to these groups, where � is the number of
genes that are mutated. The mutation involves swapping the
� elements into another chosen group. Continuing our
example, suppose � = 1 and the randomly selected groups



ZP Fan et al—A hybrid genetic algorithmic approach 1427

are group u1 and group u3. Then, two elements are randomly
selected and switched, say p6 in group u1 and p4 in group
u3. (See Figure 2).

Termination criterion

The most straightforward stopping criterion for a GA is the
number of generations (iteration). If the number of genera-
tions is low, the probability of finding the best result is low.
Otherwise if the number of generations is too high, the itera-
tion time is too long.

For our hybrid GA, the iteration number of both of the
LS and the GA should be considered. Let g LS denote the
iteration number of LS and g GA denote the iteration number
of GA. In order to determine the termination criterion, we
conducted some test experiments by solving different sizes of
problem at g LS = 1 and g GA = 30 and we found that the
Zmax (the maximum value of Z in Equation (1)) stable at less
than 15 generations (See Figure 3). Therefore, we chose 20
as the termination criterion.

Computational results

Extensive computational studies on the proposed hybrid GA-
based heuristic for MDGP have been carried out. The purpose
of these experiments is to evaluate the computational effort
and the performance of our hybrid GA across a variety of
situations. Two comparisons are made over these situations.

Figure 2 The mutation operation.

Figure 3 Improvements in the objective compared to the number of generations.

Firstly, the hybrid GA is compared with the established LCW
under the situation that each group has the same group size.
Since LCW is identified by Weitz and Lakshminarayanan
(1998) as the overall best performer of the five heuristics in
their experiments, in which, the group size is set as the same,
it is used in our experiments as a benchmark. Our hybrid GA
is also compared with the non-hybrid GA under the situations
that each group has the different group size. This comparison
is designed to observe the function of LS in the GA. In order
to clearly distinguish these three algorithms, we use LS GA
to denote the proposed hybrid GA, GA to denote the non-
hybrid GA and maintain denotation of the LCW.

The parameter settings used for LS GA include a popu-
lation size of 30, crossover rate of 1.0, and termination
criterion of 20 generations. These parameters are chosen
based on their success in preliminary testings. Such testing
is also conducted to determine the appropriate values for the
mutation probability and �. After testing several values of
both parameters, we choose mutation probability 0.01 and
� = 1.

To test the proposed LS GA, we develop the experiments
comprising six problem settings. For each problem setting,
we further generate two categories of problems. In one cate-
gory, the size of all groups is the same. In another one, the
size of each group is in the predefined range. The data of di j
is randomly simulated using a Uniform distribution U(0, 100)
(the notation U(a,b) represents uniform random numbers
between a and b). Noticed that the diversity between elements
would influence the solution of LCW, for each problem
setting, we generated D nine times, where D = [di j ]M×M .
We summarize the test problems in Table 1.

All of the heuristics are programmed in Matlab and run on
a Windows PC with a 1.29GHz Pentium R CPU. Each run
averaged less than 2 s of CPU time for the M= 10 and G= 2



1428 Journal of the Operational Research Society Vol. 62, No. 7

Table 1 Summary of problem settings tests

Problem M G Same group Different
setting size group size

ag bg ag bg bg − ag

1 10 2 5 5 3 7 4
2 12 4 3 3 2 5 3
3 30 5 6 6 5 10 5
4 60 6 10 10 7 14 7
5 120 10 12 12 8 16 8
6 240 12 20 20 15 25 10

Table 2 Comparison of LNS GA with LCW for Problem 1

Variance Average LCW Average LNS GA ZLNS GA/
of D solution solution ZLCW

1 1170.2 1173.9 1.003
2 1068.4 1068.9 1.000
3 1414.4 1442.5 1.020
4 1215.1 1235 1.016
5 1136 1141.2 1.002
6 1030.5 1033 1.002
7 1195 1196.8 1.008
8 1028 1208 1.175
9 957.8 966.0315 1.009

10 1309.4 1320 1.008

Averages 1152.48 1178.533 1.023

Table 3 Comparison of LNS GA with LCW for Problem 2

Variance Average LCW Average LNS GA ZLNS GA/
of D solution solution ZLCW

1 775 815.5 1.052
2 660.6 718.6 1.088
3 819.5 856.7 1.045
4 612.9 623.7 1.018
5 778.5 850.5 1.092
6 828.9 849.3 1.025
7 757.4 803.2 1.060
8 701.2 772.9 1.102
9 714.7 738.3 1.033

10 641.2 646.2 1.008

Averages 728.99 767.495 1.053

problems, to less than 17min of CPU time for the M = 240
and G = 12 problems.

For each run, the best solution is recorded and the average
best solution over 10 runs is calculated. Tables 2–7 display
the comparison of our LS GA with LCW for the six problem
settings. Table 8 shows the comparison of our LS GA with
GA for six problem settings.

The average relative performances of LS GA and LCW
for the six problems are 1.023, 1.053, 1.055, 1.076, 1.039,
1.028, respectively, and those of LS GA and GA for the six
problems are 1.004, 1.125, 1.055, 1.061, 1.069, and 1.048,

Table 4 Comparison of LNS GA with LCW for Problem 3

Variance Average LCW Average LNS GA ZLNS GA/
of D solution solution ZLCW

1 3686 3884 1.054
2 4202.6 4356.4 1.037
3 4296.7 4481.9 1.043
4 4191.8 4382.9 1.046
5 4612.6 4965.8 1.077
6 3926.7 4169.4 1.062
7 3947 4152.7 1.052
8 4297.6 4510 1.049
9 4085.1 4371 1.070

10 3980.4 4212 1.058

Averages 4122.65 4348.61 1.055

Table 5 Comparison of LNS GA with LCW for Problem 4

Variance Average LCW Average LNS GA ZLNS GA/
of D solution solution ZLCW

1 8790.8 9324.7 1.061
2 8284.7 9101.3 1.099
3 7912.4 8613.2 1.089
4 7909.4 8464 1.070
5 8255.4 8717.9 1.056
6 8382.4 8862.8 1.057
7 8215.5 8805 1.072
8 7582.7 8513.4 1.123
9 7713.6 8295.1 1.075

10 7676.9 8188.2 1.067

Averages 8072.38 8688.56 1.076

Table 6 Comparison of LNS GA with LCW for Problem 5

Variance Average LCW Average LNS GA ZLNS GA/
of D solution solution ZLCW

1 36 032 37 230 1.033
2 36 478 37 831 1.037
3 35 810 37 155 1.038
4 36 369 37 530 1.032
5 33 279 34 690 1.042
6 34 840 36 213 1.039
7 35 600 37 446 1.052
8 33 226 34 532 1.039
9 35 622 37 094 1.041

10 37 525 39 057 1.041

Averages 35 478.1 36 877.8 1.039

respectively. The t-test indicates that except the smallest
Problem (M = 10,G = 2), the LS GA is significantly better
(�LCW

LNS GA ∈ {0.294, 0.079, 0.001, 0.036, 0.007}) than the
LCW (See Table 9). The exception is consistent with our
instinctive judgment that it is easier for the LCW heuristic
to get the global optimal solution for the very small size and
uncomplicated cases. In Table 9, from Problem 3 to Problem
6, the LS GA has significantly better performance than the



ZP Fan et al—A hybrid genetic algorithmic approach 1429

Table 7 Comparison of LNS GA with LCW for Problem 6

Variance Average LCW Average LNS GA ZLNS GA/
of D solution solution ZLCW

1 120 330 123 850 1.029
2 119 276 122 840 1.030
3 126 770 130 310 1.028
4 121 680 125 700 1.033
5 117 650 121 220 1.030
6 120 520 123 920 1.028
7 120 080 123 190 1.026
8 122 640 126 220 1.029
9 121 350 123 650 1.019

10 122 730 126 130 1.028

Averages 121 302.6 124 703 1.028

Table 8 Comparison of LNS GA with GA for six problem
settings

Problem Average Average Averaged
setting GA LNS GA ZLNS GA/

solution solution ZGA

1 1529.3 1535.7 1.004
2 1140 1283 1.125
3 4417.1 4658.1 1.055
4 16 432 17 438 1.061
5 38 703 41 386 1.069
6 126 330 132 340 1.048

Table 9 The t-test of LNS GA with LCW and GA

Problem setting �LCWLNS GA �GA
LNS GA

1 0.675 0.961
2 0.294 0.677
3 0.079 0.181
4 0.001 0.002
5 0.036 0.035
6 0.007 0.017

GA (�GA
LNS GA ∈ {0.181, 0.002, 0.035}), but not for the Prob-

lems 1 and 2 (M = 12,G = 4). This result indicates that the
LS heuristic will have a more positive influence on the GA
for sizeable problems than small-sized problems.

In summary, our LS GA overall outperforms the other two
algorithms for the MDGP. For the MDGP with same group
size, LS GA is better than LCW. For the MDGP with different
group size, LS GA is better than GA. Especially for large
MDGP with both group-size situations, the LS GA exhibits
significant performance.

Conclusions and future study

In this paper, we develop a GA-based hybrid algorithm for
solving the MDGP. In the algorithm, we integrate the local
search in the GA and also design problem-specific heuris-
tics for initialization, crossover and mutation operations.

The performance of the proposed heuristic is evaluated by
comparing it with the LCW algorithm and the non-hybrid
GA using simulation data. Computational results show that
the proposed hybrid GA is more effective than the other two
algorithms.

The proposed GA-based hybrid heuristic for MDGP offers
several benefits. First, the proposed heuristic is designed and
developed to solve the MDGP with equal group size and
different group size, which make it suitable for practical prob-
lems. Second, the crossover and mutation operations that
followed Falkenauer’s (1998) reduce redundant search of the
solution space and guarantee offspring with characteristics of
their parents. Third, the algorithm begins with an initial popu-
lation that is generated using a problem-specific heuristic. It
seems to jump start the algorithm and improve its perfor-
mance. In addition, the integrated LS power the GA to get
quality solutions efficiently and effectively. Lastly, trade-offs
between computational effort and solution quality can be
made by adjusting a termination criterion or by choosing not
to integrate the LS.

In theory, the proposed hybrid genetic algorithms can give
the optimal solution. However, experimental factors such as
the time constraint and selection of parameters usually make
it produce a near optimal solution. So, in the future work, it is
a good idea to study the method of optimizing the parameters
including population size, number of generations and proba-
bilities of genetic operations in order to make the algorithm
more effective and efficient. In addition, it is also interesting
to test our algorithm with other similar meta-heuristic tech-
niques to find more tools for solving the MDGP.

Acknowledgements—This work was partly supported by the National
Science Fund for Distinguished Young Scholars of China (Project No.
70525002), National Science Fund for Excellent Innovation Research
Group of China (Project No. 70721001). Leading Academic Discipline
Program, 211 Project for Shanghai University of Finance and Economics
(the 3rd phase).

References

Aarts E and Lenstra JK (eds) (2003). Local Search in Combinatorial
Optimization. Princeton University Press: New Jersey.

Arani T and Lotfi V (1989). A three phased approach to final exam
scheduling. IIE T 21: 86–96.

Azimi ZN (2005). Hybrid heuristics for examination timetabling
problem. Appl Math C 163: 705–733.

Baker BM and Benn C (2001). Assigning pupils to tutor groups in a
comprehensive school. J Opl Res Soc 52: 623–629.

Baker KR and Powell SG (2002). Methods for assigning students to
groups: A study of alternative objective functions. J Opl Res Soc
53: 397–404.

Bhadury J, Mighty EJ and Damar H (2000). Maximizing workforce
diversity in project teams: A network flow approach. Omega 28:
143–153.

Bock F (1958). An algorithm for solving ‘traveling salesman’ and
related network optimization problems. Talk given at the 14th
ORSA Meeting, St. Louis, 23 October, 1958.

Croes GA (1958). A method for solving traveling salesman problems.
Operns Res 6: 791–812.



1430 Journal of the Operational Research Society Vol. 62, No. 7

Davis L (1985). Job shop scheduling with genetic algorithms.
In: Grenfenstette JJ (ed). Proceedings of the First International
Conference on Genetic Algorithms. L. Erlbaum Associates:
Hillsdale, NJ, pp 136–140.

Davis L and Steenstrup M (1987). Genetic algorithms and simulated
annealing: An overview. In: Davis L (ed). Genetic Algorithm and
Simulated Annealing. Morgan Kaufmann Publishers: San Mateo:
CA, pp 1–11.

Etiler O, Toklu B, Atak M and Wilson J (2004). A genetic algorithm
for flow shop scheduling problems. J Opl Res Soc 55: 830–835.

Falkenauer E (1998). Genetic Algorithms for Grouping Problems.
Wiley: New York.

Feo T and Khellaf M (1990). A class of bounded approximation
algorithms for graph partitioning. Networks 20: 181–195.

Feo T, Goldschmidt O and Khellaf M (1992). One-half approximation
algorithms for the k-partition problem. Opns Res 40: 170–173.

Gen M and Cheng R (1997). Genetic Algorithms and Engineering
Design. Wiley: New York.

Goldberg DE (1989). Genetic Algorithms in Search, Optimization and
Machine Learning. Addison-Wesley: MA.

Gorges-Schleuter M (1989). ASPARAGOS: An asynchronous parallel
genetic optimization strategy. In: Schaffer J (ed). Proceedings of
the Third International Conference on Genetic Algorithms. Morgan
Kaufmann Publishers: San Mateo, CA, pp 422–427.

Hettich S and Pazzani MJ (2006). Mining for element reviewers:
Lessons learned at the national science foundation. In: Proceedings
of the KDD’06. ACM: New York, NY, pp 862–871.

Holland JH (1975). Adaptation in Natural and Artificial Systems.
University of Michigan Press: Ann Arbor, USA.

Lotfi V and Cerveny R (1991). A final-exam-scheduling package.
J Opl Res Soc 42: 205–216.

Miller J, Potter W, Gandham R and Lapena C (1993). An evaluation
of local improvement operators for genetic algorithms. IEEE T Syst
Man Cybern 23: 1340–1351.

Mühlenbein H (1992). How genetic algorithms really work: Part I.
Mutation and hill-climbing. In: Männer R and Manderick B (eds).
Parallel Problem Solving from Nature: PPSN II. Elsevier Science
Publishers: North-Holland, pp 15–26.

Shi G (1997). A genetic algorithm applied to a classic job-shop
scheduling problem. Int J Sys Sci 28: 25–32.

Vaessens RJM, Aarts EH and Lenstra JK (1998). A local search
template. Comput Opns 25: 969–979.

Vasko FJ, Knolle PJ and Spiegel DS (2005). An empirical study of
hybrid genetic algorithms for the set covering problem. J Opl Res
Soc 56: 1213–1223.

Wang HF and Wu KY (2003). Modeling and analysis for multi-period,
multi-product and multi-resource production scheduling. J Intell M
14: 297–309.

Wang HF and Wu KY (2004). Hybrid genetic algorithm for
optimization problems with permutation property. Comput Opns
31: 2453–2471.

Weitz RR and Jelassi MT (1992). Assigning students to groups:
a multi-criteria decision support system approach. Dec Sci 23:
746–757.

Weitz RR and Lakshminarayanan S (1996). On a heuristic for the
final exam scheduling problem. J Opl Res Soc 47: 599–600.

Weitz RR and Lakshminarayanan S (1998). An empirical comparison
of heuristic methods for creating maximally diverse groups. J Opl
Res Soc 49: 635–646.

Whitley D, Starkwether T and Shaner D (1991). The traveling
salesman and sequence scheduling problems: Quality solutions
using genetic edge recombination. In: Davis L (ed). Handbook
of Genetic Algorithms. Van Nostrand Reinhold: New York: USA,
pp 350–372.

Yannakakis M (1990). The analysis of local search problems and their
heuristics. In: Choffrut C and Lengauer T (eds). Proceedings 7th
Annual Symposium on Theoretical Aspects of Computer Science
(STACS 90), Lecture Notes in Computer Science, Vol. 415.
Springer-Verlag: London, pp 298–311.

Appendix

Procedure: LS

1. for (i = 1 to M)
2. � is the set whose elements are from different

groups with pi
3. �ti is the change of objective value by swapping pi

and pt , where pt ∈ �
4. find �max

ti = max{�ti |pt ∈ �}
5. if �max

ti > 0
6. swap pt with pi
7. end
8. end

Received August 2007;
accepted August 2009 after two revisions


	A hybrid genetic algorithmic approach to the maximally diverse grouping problem
	Introduction
	GA-based heuristic
	Genetic algorithm
	Local search for MDGP

	The GA-based heuristic for MDGP
	Encoding
	Initialization
	Selection
	Crossover
	Mutation
	Termination criterion

	Computational results
	Conclusions and future study
	Acknowledgements
	Notes
	References
	Appendix




