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Abstract. Hyperheuristics give us the appealing possibility of abstracting the solution method from the problem, since our 

hyperheuristic, at each decision point, chooses between different low level heuristics rather than different solutions as is 

usually the case for metaheuristics. By assembling low level heuristics from parameterised components we may create 

hundreds or thousands of low level heuristics, and there is increasing evidence that this is effective in dealing with every 

eventuality that may arise when solving different combinatorial optimisation problem instances since at each iteration the 

solution landscape is amenable to at least one of the low level heuristics. However, the large number of low level heuristics 

means that the hyperheuristic has to intelligently select the correct low level heuristic to use, to make best use of available 

CPU time. This paper empirically investigates several hyperheuristics designed for large collections of low level heuristics 

and adapts other hyperheuristics from the literature to cope with these large sets of low level heuristics on a difficult real-

world workforce scheduling problem. In the process we empirically investigate a wide range of approaches for setting tabu 

tenure in hyperheuristic methods, for a complex real-world problem. The results show that the hyperheuristic methods 

described provide a good way to trade off CPU time and solution quality. 

Keywords: Computational Analysis, Heuristics, Hyperheuristics, Machine Learning, Optimization, Scheduling, Tabu 

Search 

1  Introduction 

The term hyperheuristics (Chakhlevitch and Cowling, 2008) (Burke et al, 2010) was coined in (Cowling et al, 

2001) to denote a class of heuristics which searches a space of low level heuristics (LLHs), whereas 

metaheuristics typically search directly in the solution space. The hyperheuristic uses information about the 

performance of each low level heuristic (CPU time and solution quality metrics) to determine which low level 
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heuristic(s) to apply at each decision point. The hyperheuristic method does not need to be problem specific, and 

hence a single hyperheuristic method has the advantage that it can work generally across many problem models 

and instances, given the right set of low level heuristics and solution quality metrics. There is good evidence to 

date that hyperheuristics are effective across a range of problems, and this effectiveness arguably arises since 

having a large collection of low level heuristics means that the solution landscape for one or more of these low 

level heuristics is likely to provide a good search direction (Chakhlevitch and Cowling, 2005) (Colledge, 2009) 

(Remde et al, 2009). 

   In some cases low level heuristics are parameterised, or composed by “multiplying” together components 

(Remde et al, 2007) (Chakhlevitch and Cowling, 2005), which can give rise to hundreds or even thousands of 

heuristics (Cowling and Chakhlevitch, 2003). In such a case, deciding in reasonable time which heuristics to use 

may be difficult. However, there is evidence that having such a rich selection of low level heuristics may yield 

better results for complex problems in the long run, although it is difficult to know in advance which low level 

heuristics will prove effective (Chakhlevitch and Cowling, 2005). (Remde et al, 2007) studied the low level 

heuristics used by a greedy hyperheuristic HyperGreedy (which picks the best performing low level heuristic at 

each iteration) and found that a quarter of the low level heuristics were never used and half of the low level 

heuristics were effective less than one percent of the time. However, the low level heuristics which were 

effective varied from problem instance to problem instance, and it was difficult to predict which low level 

heuristics would prove effective. In this paper we investigate hyperheuristic approaches that attempt to learn 

which low level heuristics will perform poorly and ignore them to produce solutions of a quality similar to those 

produced using the full set of low level heuristics, in a fraction of the CPU time. This is particularly of interest 

since hyperheuristic methods have demonstrated their effectiveness at solving problems such as automated 

planograms (Bai and Kendall, 2005), examination scheduling (Burke et al, 2003), personnel scheduling 

(Cowling et al, 2003), workforce scheduling (Remde et al, 2007) and artificial intelligence in computer games 

(Nareyek, 2004). These applications have shown that hyperheuristics offer some of the solution quality we 

would associate with tailored methods, but that they are very flexible in dealing with different problem instances 

(and indeed different problems) and that they remain effective when the problem is changed in significant ways, 

without requiring substantial intervention from a human expert (Kendall and Hussin, 2005a). 

   In this paper we investigate a workforce scheduling problem, which we have studied for several years now in 

collaboration with Trimble MRM Ltd.. It contains as sub-problems the Resource Constrained Project 

Scheduling Problem (RCPSP) (Kolisch and Hartmann, 2006), Job Shop Scheduling Problem (JSSP) (Pinedo 
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and Chao, 1999) and Vehicle Routing Problem with Time Windows (VRPTW) (Toth and Vigo 2001). In this 

real-world situation we have several further constraints and objectives, and in particular we consider the notion 

of the degree of competence of a particular group of resources (e.g. engineers) which have been allocated to a 

particular task. Trimble MRM Ltd. develops scheduling solutions for very large, complex mobile workforce 

scheduling problems in a variety of industries, particularly telecommunications and utilities. The model which 

we investigate here encapsulates the main features common to these problems.  

   We use the problem and the hyperheuristic framework of (Remde et al, 2007) as a test bed for our 

investigation in this paper. The complexity of this problem means that quality evaluation of a perturbed solution 

takes a significant amount of CPU time, whereas limited amounts of CPU time are available to find good 

solutions in practice. Many of the low level heuristics in our hyperheuristic framework require the evaluation of 

hundreds of these perturbed solutions, due to them solving smaller parts of the problem optimally using 

systematic search or investigating a large neighbourhood. The available CPU time renders local search based 

hyperheuristics infeasible in our practical application, so that we will only consider constructive hyperheuristics 

in this paper. The number of low level heuristics available to the hyperheuristics is large compared to the 

number of those low level heuristics we will apply in constructing a solution, and new approaches are needed to 

learn the effectiveness of low level heuristics in this case. (Chakhlevitch and Cowling, 2005) find that when 

selecting a small random subset of low level heuristics results can be erratic across different problem instances 

indicating that a reduced subset is not as good as a large set. 

   Our approaches for deciding which low level heuristic to apply can be considered as tabu search based 

hyperheuristics where we learn appropriate tabu tenures. Binary Exponential Back Off (Remde et al, 2009), is a 

tabu search based hyperheuristic with dynamically adapting tabu tenures designed for very large 

neighbourhoods. It is based on an analogy with computer networks, where binary exponential back off or 

truncated binary exponential back-off is a randomized protocol for regulating transmission on a multiple access 

broadcast channel (Kwak et at, 2005). In this paper we carry out a thorough investigation of this approach 

alongside other approaches to setting tabu tenure in hyperheuristics from the literature. (Nareyek, 2004) and 

(Cowling et al, 2001) use reinforcement learning to estimate the future performance of a low level heuristic. 

When a move performs well it is positively reinforced. When it performs poorly it is negatively reinforced. We 

investigate this reinforcement mechanism for a large collection of low level heuristics, as well as the step-by-

step reduction methods of (Chakhlevitch and Cowling, 2005). 



4 

   This paper is structured as follows: we present related work in Section 2. Our problem is presented in section 

3. Section 4 describes the hyperheuristic framework and hyperheuristics in detail. In section 5 we empirically 

investigate the techniques and compare them to Variable Neighbourhood Search, Greedy, Random and Tabu 

search based heuristics in terms of solution quality and computational time. We present conclusions in Section 

6. 

2   Related Work 

Many hyperheuristics are based on metaheuristic methods, including early work in (Fang, 1994) where a genetic 

algorithm evolved a chromosome which determined how jobs were scheduled in open shop scheduling. In (Bai 

and Kendall, 2005) simulated annealing is used to decide whether to accept the solution resulting from a 

randomly applied low level heuristic. (Kendall et al, 2002) uses a Genetic Algorithm to evolve good sequences 

of low level heuristics. (Chakhlevitch and Cowling, 2005) use a learning approach called Step-by-Step 

Reduction (SSR) and Warming Up (WU) to reduce the number of low level heuristics and show that SSR 

produced better results. SSR removes a percentage of the low level heuristics periodically to try and reduce the 

set to an elite few. This removes bad heuristics early on and saves CPU time that would have been used trying 

them, but suffers from the potential limitation that it does not allow the reintroduction of these heuristics later in 

the search. The work of (Remde et al, 2007) shows that a low level heuristic’s effectiveness is highly variable 

during search with some low level heuristics which are ineffective at the start of search proving highly effective 

at the end. 

   Tabu Search (Glover and Laguna, 1997) is used to stop the repeated application of poor moves or the undoing 

of good moves for a certain number of iterations (the tabu tenure). The optimal duration of tabu tenure has been 

tested in several papers and it is most likely a function of the neighbourhood size and the problem size (Laguna 

et al, 1999). Using random tabu tenures, where a move is made tabu for a period chosen uniformly at randomly 

between 1 and the maximum tabu tenure, tends to work better than fixed tabu tenures (Rolland et al, 1996). 

   Several papers have investigated tabu search based hyperheuristics. A tabu mechanism is used in (Kendall and 

Hussin, 2005a) where poorly performing low level heuristics are made tabu for a fixed tabu tenure. A small 

number of low level heuristics (13) are used with short tabu tenures (1-4 iterations) and good results are 

obtained in a large amount of CPU time. This is also considered in (Kendall and Hussin, 2005b) where the low 

level heuristic is repeated until no further improvements can be found before being made tabu and random tabu 
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tenures are utilised. Random tabu tenures provide results of similar quality to those with fixed tenure equal to 

the expected random tenure on the two examination timetabling problem instances they consider. They find that 

repeated application of a low level heuristic does not increase solution quality considerably, possibly due to an 

increased tendency to get stuck in large basins of attraction. A large set (95) of low level heuristics is used in 

(Cowling and Chakhlevitch, 2003) where the hyperheuristic allows a tabu low level heuristic to become 

aspirated and be used (Glover and Laguna, 1997) if it makes the best improvement. If no improving low level 

heuristic is available, a non-improving non-tabu low level heuristic is used and made tabu. Fixed tabu tenures of 

10, 30, 60 and 100 and adaptive tabu tenures are investigated, but results provide no clear advantage of using 

adaptive tabu tenures over fixed ones. A ranking system, based on reinforcement learning, is used for non-tabu 

low level heuristics in (Burke et al, 2003). At each iteration the non-tabu low level heuristic with the highest 

rank is applied. When a non-tabu low level heuristic performs well its rank is increased, otherwise its rank is 

decreased and the low level heuristic is put in the tabu list on a first in first out basis. If the highest ranked low 

level heuristic makes the solution worse, the tabu list is emptied. 

   Nareyek (Nareyek, 2004) experimentally investigates several variations of reinforcement learning in a 

hyperheuristic framework. Different reinforcement schemes are used in two different problems and it is 

concluded that high rates of negative reinforcement and low rates of positive reinforcement work best. The 

choice function (Cowling et al, 2001) is another machine learning hyperheuristic that attempts to estimate how 

well a low level heuristic is likely to perform based on its effect on the (single) objective function, the pair-wise 

interaction between low level heuristics and the time since it was last used. These two papers combine ideas 

from machine learning and tabu search.  

   The hyperheuristic framework of (Remde et al, 2007) proposes a method to break down the Trimble MRM 

workforce scheduling problem, by splitting it into smaller parts and solving each part using exact enumerative 

approaches. These smaller parts are the combination of a method to select a task and a method to select potential 

resources, including time, for the task. Reduced Variable Neighbourhood Search (rVNS) (Mladenovic and 

Hansen, 1997) and simple hyperheuristics are shown to be effective in deciding the order in which to solve sub-

problems.  

   As can be seen above, there has been a wealth of interesting work in the area of hyperheuristics, although 

there have only been limited comparative studies to date. One of the principal contributions of this paper is the 

first thorough empirical investigations of tabu/reinforcement learning/ranking methods alongside binary 

exponential back off and stepwise reduction methods for a difficult real-world problem. 
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3   Problem Description 

The workforce scheduling problem that we consider consists of four main components: Tasks, Resources, Skills 

and Locations. A task Ti is a job or part of a job. Each task must start and end at a specified location. Usually the 

start and end locations are the same, but they may be different. Each task has one or more time windows and 

some time windows have an associated penalty. We have a set {T1,T2,…,Tn} of tasks to be completed. Each task 

is executed by one or more resources {R1,R2,…,Rm}. A task requires resources with the appropriate skills from 

the set {S1,S2,…,Sk}. Task Ti requires skills ],...,,[TS )(21

i

it
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relative to an average competency. Each resource R travels from location to location at speed v(R). For tasks T1, 

T2, d(T1, T2) is the distance between the end location of T1 and the start location of T2.  

   There are three main groups of constraints: task constraints, resource constraints and location constraints:  

Task constraints 

 Each task can be worked on only within specified time windows.  

 Some tasks require other tasks to have been completed before they can begin (precedence constraints). 

 Some tasks require other tasks to be started at the same time (assist constraints). 

 Tasks may be split across breaks within a working day.  

 For a task to be scheduled it must have exactly one resource assigned to it for each of the skills it 

requires. 

 All assigned resources have to be available at the task’s location for its whole duration regardless of 

their skill competency and task skill work requirement. 
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 Resources may only work and travel during specified time windows. 

 Resources can only work on one task at a time and only apply one skill at a time. 

Location constraints 

 Resources (generally engineers in vans or large pieces of equipment) must travel to the start location of 

each task they work on, and are unavailable during this travel time. 

 Resources must start and end each day at a specified “home” location and must have sufficient time to 

travel to and from their home location at the start and end of each day. 

 

When building a schedule many different and often contradictory business objectives are possible. In this paper 

we consider three objectives. The first objective is Schedule Priority (SP), given by 

 

 
(2) 

 

Maximising Schedule Priority maximises the value of the tasks scheduled and implicitly minimises the value of 

tasks unscheduled.  

   The second objective measures total Travel Time (TT) across all resources. Define A={(i1,i2,j):task Ti1 comes 

immediately before Ti2 in the schedule of resource Rj}.  
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   The third objective measures the inconvenience associated with completing tasks or using resources at an 

inconvenient time, which we have labelled Schedule Cost (SC). In order to express this accurately we express 

the time windows for Resource R using a function X (Baptiste et al, 2001) where X(R,t) is the cost per unit time 
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In this paper, the fitness of a schedule is given by a single weighted objective function, f = SP - 4SC - 2TT, 

where SP is the sum of the priority of scheduled tasks, SC is the sum of the resource and task time window costs 

in the schedule and TT is the total amount of travel time. This objective is to maximise the total priority of tasks 

scheduled while minimising travel time and cost. Values are scaled so that this expression is a realistic 

representation of solution quality for a large class of problems encountered in practice (Cowling et al, 2006). 

4   Hyperheuristic Approaches 

Previous hyperheuristic work on this workforce scheduling problem (Remde et al, 2007), (Remde et al, 2009) 

generated possible low level heuristics (LLHs) by combining two components: (1) selecting the next task to be 

scheduled and (2) allocating potential resources (including time) for that task. The task selector (table 1) chooses 

a task and the resource allocator (table 2) assigns resources for each skill required by the task, so that the total 

number of low level heuristics is the number of task selectors multiplied by the number of resource allocators 

(fig. 1 shows how the low level heuristics work). Note that where a resource allocator is parameterised, we 

consider each parameter set as an individual resource allocation heuristic. We combine each of the 9 different 

task selectors with each of the 27 different resource allocators to give a total of 243 low level heuristics. Our low 

level heuristics maintain a feasible solution – if the low level heuristic cannot make a legal move then the 

solution is not modified. 

   The hyperheuristic HyperRandom (Remde et al, 2007), selects at random a low level heuristic (i.e. a (task 

order, resource allocator) pair) to use at each iteration and applies it if the application will result in an 

improvement. This continues until no improvement has been found for a certain number of iterations. 

HyperGreedy (Remde et al, 2007) evaluates all the low level heuristics at each iteration and applies the best if it 

makes an improvement. This continues until no improvement is found. As might be expected, HyperGreedy is 

very CPU-intensive, but generates good quality results.  

   As the low level heuristics are constructive, we can only apply each one a small number of times before the 

schedule is full, since approximately 250 tasks can fit in the schedule of the problems we study, compared to 

243 low level heuristics. Hyperheuristics which rely on learning from the application of a low level heuristic 

during a single long search run would be ineffective, as the schedule would be full before significant 
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information has been learnt. Note that it is coincidental that the number of low level heuristics and the number 

of tasks is similar in this case. Reinforcement learning based hyperheuristics need to be modified in this case to 

learn from all different low level heuristics tried in a situation and not simply the one that was applied in the 

end, otherwise the vast majority of information gained about low level heuristics would be discarded. This paper 

investigates and empirically compares hyperheuristic performance in this situation.  

   Section 4.1, 4.2 and 4.3 describes the hyperheuristics which attempt to learn information about the low level 

heuristics and their potential to improve the solution.  

4.1   Binary Exponential Back Off 

Binary Exponential Back Off (BEBO) is a tabu search based hyperheuristic with dynamically adapting tabu 

tenures designed for very large neighbourhoods, inspired by the binary exponential back-off algorithm used as 

the industry standard to transmit packets in a network (Kwak et. at., 2005). It aims to increase network 

throughput by exponentially increasing the time between retransmits when a collision occurs. This happens 

when two or more computers try to transmit information on the same medium (a wire, a wireless frequency, etc) 

at the same time. When a collision occurs, the device will increase its backoff value by 1, and wait a random 

amount of time between 0 and 2backoff-1 before trying to retransmit. If the transmission is successful, the back off 

value is reset to 0, otherwise the back-off value is increased by 1 again and the process is repeated. Hence 

waiting time increases exponentially for low level heuristics in this case. 

   We use an analogous backing off method to exponentially increase the tabu tenure of low level heuristics 

which repeatedly yield no improvements, meaning the expected time between trials of bad heuristics increases 

exponentially. Pseudocode for the hyperheuristic is given in fig. 2. We use two methods to decide which of the 

low level heuristics, that were tried in the current iteration, to back off (those “deemed bad”): BEBO Best x: only 

the best x improving low level heuristics are not backed off, and, BEBO Prop x: all non-improving low level 

heuristics and those improving low level heuristics not in the top x% of the range of the fitness are backed off. 

   backoff_min is set to 4 as it provided good results in (Remde et al, 2009). Although no empirical investigation 

of different values exists, increasing this value decreases CPU time and fitness, and decreasing it increases CPU 

time and fitness. Incidentally, when this value is 0, the hyperheuristic is equivalent to HyperGreedy as low level 

heuristics will not be made tabu. 



10 

4.2   Reinforcement Learning 

Reinforcement learning is a machine learning technique that positively reinforces good choices and negatively 

reinforce bad choices (Kaelbling et al, 1996). Nareyek (Nareyek, 2004) proposes a reinforcement learning 

hyperheuristic framework to investigate several approaches to learning empirically. A utility value is associated 

with each choice which estimates its future potential. At each iteration a choice is made based on these utility 

values and then the utility value is adjusted depending on the outcome of that choice and the learning 

mechanism used. Five methods for positively reinforcing the utility and five methods for negatively reinforcing 

the utility are experimentally evaluated, and in general low rates of positive reinforcement and high rates of 

negative reinforcement gave best results. In our experiments, we will use the adaptation scheme which was 

found to be best in (Nareyek, 2004). For positive reinforcement ui:=ui+1 and ui:= √ui for negative reinforcement 

of low level heuristic i. 

   Nareyek’s experiments ran for ten thousand iterations and the number of low level heuristics was very small 

(5 and 6 in the two different problems). This means that each heuristic could be applied many times giving the 

hyperheuristic time to learn. In the problem we study this ratio is drastically reduced and since our low level 

heuristics (choices) nearly always make a positive change in terms of fitness, this means that modification of the 

hyperheuristic will be needed. 

   At each iteration, a number of the low level heuristics with the highest utility will be tried instead of just one. 

The best performing of the selected low level heuristics will be positively reinforced and applied and the rest 

negatively reinforced. The percentage we try will give us the ability to trade off CPU time and solution quality. 

The pseudocode for the reinforcement learning hyperheuristic is given in fig. 3. In our computational 

experiments, the heuristic Nareyek x% signifies low level heuristics whose utility is in the top x% will be tried. 

4.3   Tabu Search Based Hyperheuristics 

The tabu search based hyperheuristics from the literature cannot be straightforwardly applied, since the number 

of low level heuristics is large here and the number of iterations is small. Our tabu search based hyperheuristics 

try all non-tabu low level heuristics at every iteration. The top x at every iteration will not be made tabu. This 

leaves a good number of good low level heuristics available for the next iteration and can be adjusted to trade 

off CPU time for solution quality. Hence we do not need to reset tabu tenures periodically as in (Burke et al, 

2003). We give the pseudocode in fig. 4. 
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   We try tabu tenures of t=5, 7, 10, 25, 50 each time a low level heuristic is tried and fails to give an 

improvement. We also investigate different methods of deciding which LLHs to make tabu. Tabu Best x t=y 

signifies that all but the top x improving low level heuristics will be made tabu with tenure y at each iteration. 

This is similar to the method used in (Burke et al, 2003), with larger tabu tenures since there are more low level 

heuristics in our case. We also investigated making all non-improving low level heuristics tabu however the 

results for these were very poor in terms of CPU time as nearly all of the low level heuristics make a positive 

improvement early in the search although this improvement is very small.  These results are not reported here. 

In addition to these fixed tenures, we try random tenures as used in (Kendall and Hussin, 2005a): rTabu Best x 

t=y is similar to Tabu Best x t=y, but with a random tenure between 0 and y each time a low level heuristic is 

made tabu. 

4.4   Other Methods 

We compare these adapted methods to existing ones designed for large neighbourhoods and problem specific 

heuristics. 

   rVNS is the best reduced Variable Neighbourhood Search method taken from (Remde et al, 2007) and is a 

hand crafted tailored heuristic for this problem. HyperRandom and HyperGreedy are the random and greedy 

hyperheuristics from (Remde et al, 2009). HyperGreedy will be the benchmark for all the tests as this is the 

most CPU-intensive approach and generally produces the best result. Sample x% is variation of HyperRandom. 

In this Hyperheuristic, x% of the low level heuristics are sampled uniformly at random and the best improving 

one is applied. 

   Step-by-Step reduction is presented in (Chakhlevitch and Cowling, 2005). The method SSR x% t=y reduces 

the set of low level heuristics by x% every y iterations. The ones which have performed the worst over the 

period, as measured by the objective value, are removed first, ties are broken randomly.  

5   Computational Experiments 

Each of the hyperheuristics was used ten times to solve five problem instances. In each run the hyperheuristic 

was given one attempt to construct a schedule, and the CPU time taken and the solution fitness were recorded. 

Note that each hyperheuristic has its own stopping criteria as given in the pseudocode. The instances require the 

scheduling of 400 tasks using 100 resources over one day using five different skills. Tasks require between one 
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and three skills and resources possess between one and five skills. The problems reflect realistic problems 

Trimble have identified and are generated using a commercial problem instance generator (Cowling et al, 2006). 

The size of the problems was chosen to be solvable in a reasonable amount of CPU time. Over 218 CPU days 

was needed to complete the all experiments for the problem instances, so the experiments were run in parallel on 

88 cores of 22 identical 4 core 2.0 GHz machines. Implementation was done using C# .NET under Microsoft 

Windows Vista. 

   We compare the average performance in terms of CPU time and solution quality of the 62 methods based on 9 

different hyperheuristic approaches with different parameters (rVNS, HyperGreedy, HyperRandom, 9 BEBO 

“Best x”, 7 BEBO “Prop x”, 15 “standard” Tabu, 7 Nareyek based, 16 Step-by-Step Reduction and 7 Random 

Sampling hyperheuristics). Table 3 summarises each of these categories of heuristics. The experimental results, 

average fitness and CPU time along with its parameter for each of these hyperheuritics, are presented in table 4. 

Note that only the best results in terms of CPU time and fitness are shown for BEBO, rTabu and Tabu due to the 

limited space. The complete results for these three approaches are given in reference (Remde et al, 2009). Fig. 5 

depicts some selected results for comparing the hyperheuristics performances. The table and graph show the 

results of the different solution methods with various parameters. The line connecting the points in fig. 5 is for 

the Sample heuristic which is a naïve approach to trading off CPU time and solution quality. Hyperheuristics 

which are making better-than-random choices of low level heuristics are above the line connecting the Sample 

points in fig. 5. For the Sample hyperheuristic, we can see that it can effectively use additional CPU time to 

generate higher quality solutions, and indeed that it provides a continuum of improving results with increased 

CPU time. Sample 80% produces better results than HyperGreedy in less CPU time, probably due to its 

avoiding consistently applying the same low level heuristics at each iteration, providing a useful and effective 

source of diversification. 

   From fig.5 and table 4 we can see that when only a small amount of CPU time is available, a carefully tailored 

heuristic (the rVNS approach) is clearly superior to hyperheuristic approaches which have to adapt during 

search, using very little problem specific information. Indeed the first of our hyperheuristics which achieves a 

better fitness is Nareyek 10% which uses 18 times as much as CPU time as rVNS. When more CPU time is 

available we can see that significantly better results are achievable. For a problem of this type, an improvement 

of 0.25% in fitness suggests the completion of an additional task (or an equivalent saving in terms of travel time 

and schedule cost) which is highly significant in practice. The CPU-intensive HyperGreedy approach generates 

a very high quality solution, on average, using large amounts of CPU time, although it appears to be somewhat 
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wasteful of this CPU time compared to other approaches. Sample 80% generates better solutions on average in 

slightly less CPU time, the BEBO Best 20 hyperheuristic generates better results in less than half the CPU time 

of HyperGreedy. Other hyperheuristics approach the solution quality of HyperGreedy in a fraction of the CPU 

time, notably BEBO Prop 0.01%, rTabu Best 10 t = 7, Nareyek 80% and SSR 5% t = 20, suggesting that all 

these approaches contain interesting ingredients. Still HyperGreedy remains a good benchmark against which to 

judge other approaches. 

  Step-by-Step Reduction (SSR) performs poorly in comparison to the other hyperheuristics. (Remde et al, 2007) 

provides evidence that some low level heuristics only begin to work well towards the end of a search and it is 

likely that SSR is discarding these due to low performance at the start of the search and then failing to find a 

good solution because these low level heuristics are needed toward the end of the search. It is notable that SSR 

approaches appear to have a near-linear improvement following a poor start, and that SSR approaches which 

discard only a small number of low level heuristics per iteration perform well, for modest CPU time savings 

compared to HyperGreedy. 

   The fixed tabu tenure hyperheuristics (Tabu) perform poorly in comparison to the random tabu tenure 

hyperheuristics (rTabu), supporting the conclusions of (Rolland et al, 1996) (Kendall and Hussin, 2005a). The 

Tabu results are all well below the threshold given by the Sample points, indicating that these approaches 

perform significantly worse than random choice per second of CPU time. The rTabu results are only slightly 

below the Sample threshold line, and they do give modest improvements with increasing CPU time, but are not 

competitive with Sample, Nareyek and BEBO approaches. 

The performance of Nareyek approaches is consistently better than that of the Sample approach with 

respect to CPU time and fitness. Nareyek approaches are capable of beating Sample using similar, small 

amounts of CPU time. The reinforcement learning technique used is shown to be effective, and certainly better 

than a random approach, in selecting good low level heuristics. The CPU times of the Sample and Nareyek 

hyperheuristics that consider a similar number of low level heuristics (Sample 1% and Nareyek 1%, Sample 10% 

and Nareyek 10% etc) are quite different due to the fact that some of the better low level heuristics take more 

CPU time and the Nareyek hyperheuristic identifies these and uses them more frequently than Sample. Hence 

Nareyek approaches offer some control of CPU time and are the best among those studied at low-to-moderate 

CPU times. 

   The BEBO hyperheuristics cover a smaller width of the CPU time scale, but consistently offer the best 

solution quality, for a given CPU time, when moderate to large amounts of CPU time are available. Our 
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implementation of BEBO cannot produce results in smaller amounts of CPU time. Increasing min_backoff could 

make this hyperheuristic faster, although our experiments show a decline in solution quality in this case. BEBO 

Prop is slightly less effective than BEBO Best for slightly more CPU time, which agrees with the conclusions of 

(Remde et al, 2009).  

   Table 5 and fig. 6 show the Pareto frontier of these results which contains the heuristics giving optimal trade-

offs between CPU time and solution quality. As mentioned earlier, the dominance of the tailored rVNS heuristic 

for small CPU time is apparent, then for low to moderate CPU time Nareyek and Sample dominate. The 

appearance of the random Sample approach in the Pareto frontier is unexpected, but an inspection of fig. 5 

shows that there are few approaches consuming CPU time in this range. The absence of a Nareyek 

hyperheuristic in this range is due to the difficulty of tuning the Nareyek parameters to obtain a precise CPU 

time when the hyperheuristic is choosing between low level heuristics which take very different amounts of 

CPU time. This difficulty of tuning the CPU time applies also to BEBO and Tabu approaches. BEBO dominates 

the other methods when more CPU time is available, indeed the BEBO Best 20 approach dominates approaches 

which consume more than twice as much CPU time (which are shown in fig. 5 but not in fig. 6). 

 The relative effectiveness of each hyperheuristic was investigated using Analysis of Variance (ANOVA) 

and Tukey comparisons (Miller 1997), and results are shown in table 6. The statistic considered for each 

hyperheuristic, labelled "fitness" in the table, is the absolute deviation of the best solution produced in a 

hyperheuristic run, from the best known solution. Using the problem instance as an explanatory variable 

produced a coefficient of determination of 0.004, indicating that only 0.4% of the variability can be explained 

by the problem instances, with 95% confidence, so that we are justified in considering different problem 

instances together. Performing ANOVA with the solution method as the explanatory variable showed that 

74.5% of the variance can be explained by the solution method used with 95% confidence. Table 6 shows the 

summary of the Tukey pairwise comparisons, using 95% confidence intervals. This table shows us that a variety 

of methods perform well, if we consider only the fitness of the best solution produced by each method. The 

methods in group A (as shown in table 6) cannot be separated with 95% confidence, based upon fitness alone. 

When we also consider solution quality per unit CPU time, the benefits of a more focused search in approaches 

such as BEBO Best 20, BEBO Prop 0.01%, Sample 40% and Nareyek 60% becomes clear. For this large, real-

world problem, CPU-efficient approaches are important, and since the data in the table already represent over 6 

months of CPU time, it would be very difficult in this case to find a smaller top-ranking group, with 95% 
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confidence. Overall, it appears that BEBO, Sample and Nareyek methods outperform SSR and Tabu 

hyperheuristics in terms of fitness alone, and even more so if we also consider CPU time.  

6   Conclusions 

This paper investigates and compares several hyperheuristic approaches which handle a large number of low 

level heuristics, on a difficult real-world scheduling problem. Our low level heuristics are generated by 

combining parameterised components for (i) choosing which task to schedule; and (ii) allocating resources to 

the chosen task, giving us a large set of over 200 low level heuristics. Since a large number of low level 

heuristics are available, our intuition suggests that at each step the solution landscape is amenable to at least one 

of the low level heuristics. Our results, in comparison to a tailored reduced Variable Neighbourhood Search 

approach, and an approach which greedily searches through all low level heuristics at each step, suggest that this 

is an effective way to produce high quality solutions, albeit in large amounts of CPU time. 

   The problem we consider contains features common to many real-world scheduling problems which deal with 

mobile resource management (occurring in pick up/delivery, project management, routing and maintenance 

applications). The approach to generating low level heuristics can generalise across these problems, so that our 

hyperheuristic approaches and results give an indication of the effectiveness of these techniques for a wide 

range of complex mobile workforce scheduling problems. 

   When using a large collection of low level heuristics, we must decide between different low level heuristics at 

each iteration rather than choosing directly between different solutions. Several methods are presented for 

choosing between low level heuristics, which are generally applicable since they make use only of fitness 

information. A thorough empirical investigation is undertaken to determine the effectiveness of these techniques 

in using increasing amounts of CPU time to effectively generate high quality solutions.  

   Tabu search based methods with fixed tabu tenures are significantly outperformed by tabu search based 

methods with random tenures in some fixed range. However, both of these tabu search based hyperheuristics 

underperform a random sampling approach, given similar CPU times, suggesting that their choice of low level 

heuristics is worse than choosing the best of a random sample of low level heuristics at each iteration.  Ranking 

methods which use adaptive reinforcement of low level heuristics, based upon their fitness performance, show 

much better performance. We study a method based on that of Nareyek, where positive reinforcement adds 1 to 

utility and negative reinforcement takes the square root of utility, and we choose preferentially low level 
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heuristics which have high utility. This method performs well when low to medium CPU time is available, and 

surpasses the random sampling method. The Binary Exponential Back Off method increases the tabu tenure for 

a poorly performing heuristic exponentially, and resets the penalty to a small value for low level heuristics 

which perform well. This approach is dominant for medium to high amounts of CPU time and again beats a 

random sampling approach on average for a given CPU time.  

   A Step by Step Reduction method, which discards poorly performing low level heuristics during search, does 

not perform well in this case where the number of iterations to generate a solution is small, since it appears to 

discard early on low level heuristics which are important later in the search. While this approach works 

reasonably well when the number of heuristics discarded is small and CPU time is high, it is outperformed by a 

random sampling technique when the number of low level heuristics discarded is high. 

   When analysing the Pareto frontier representing the best trade off between fitness and CPU time, the Nareyek-

based approaches dominate for smaller CPU times, and the Binary Exponential Back Off based approaches 

dominate for large amounts of CPU time. “Gaps” in the CPU time used, which arise due to difficulty in 

precisely controlling the total amount of CPU time of a hyperheuristic when choosing between low level 

heuristics which consume variable amounts of CPU time, are taken by random sampling approaches, in 

preference to step-by-step reduction and tabu search approaches. 

   Overall, the methods described in this paper show that hyperheuristics provide an effective way to trade off 

CPU time for solution fitness, when solving complex real-world scheduling problems, and provide empirical 

comparisons between a wide range of hyperheuristic approaches (62 parameter sets of 9 different hyperheuristic 

approaches). It will be interesting, in further work, to extend the range of hyperheuristics investigated to 

approaches which are effective when the user stops the search and the amount of CPU time is not known in 

advance.  
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Fig 1. Resource allocators. The dotted subset of resources possessing the required skill is chosen by a Resource allocator. 

The assignment (R2, R1) is chosen as the best insertion. 

 

Define: 
LLHi is a low level heuristic i (whose application leads to a valid solution). 
Δ(S,LLHi) returns the change in the objective function resulting from applying low level heuristic LLHi to 

solution S. 
apply(S,LLHi) returns the new solution we get after applying low level heuristic LLHi to solution S.  
 

tabui is the Tabu tenure of LLHi (0≤ Tabui≤backoffi)  
backoffi is the backoff value of LLHi (backoff_min≤ backoffi) 

Eligible = {LLHi: tabui=0} 
backoff_min is the minimum backoff value 

 
Initialise: 
create an initial solution S (in this paper the solution S is the empty solution). 
for all i: 
      backoffi ← backoff_min 

     choose tabui uniformly at random in {0,1,2,…, backoffi} 
Iterate: 
     while (Eligible ≠ {}) 
          bestΔ ← 0 
          for each low level heuristic LLHiEligible 

               if Δ(S,LLHi) > 0 

                    backoffi ← backoff_min 
                    if Δ(S,LLHi) > bestΔ 

                         bestΔ ← Δ(S,LLHi)   
                         besti ← i   
               else 
                    if LLHi is “deemed bad” (see text)  
                         backoffi ← 2 * backoffi  

                         choose tabui uniformly at random in {0,1,2,…, backoffi} 
          for each low level heuristic LLHiEligible 

               tabui ← tabui – 1 

          if bestΔ > 0 then  
               S ← apply(S,LLHbesti)  
                    go to Iterate 

Terminate: 
          for each low level heuristic LLHi 

               if Δ(S,LLHi) > 0 

                    S ← apply(S,LLHbesti) 
                    go to Iterate 

Fig. 2. The Binary Exponential Back Off (BEBO) hyperheuristic.  
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Define: 
LLHi, Δ(S,LLHi), apply(S,LLHi) as in Fig 2. 
 

utilityi is the utility value of LLHi 
Trial= {LLHi: utilityi is one of the highest x%} 

 
Initialise: 
create an initial solution S (in this paper the solution S is the empty solution). 
for all i: 
      utilityi ← 1 

Iterate: 
     bestΔ ← 0 
     for each low level heuristic LLHiTrial 

           utilityi ← √utilityi    // negative reinforcement 

           if Δ(S,LLHi) > bestΔ 

                bestΔ ← Δ(S,LLHi)   
                besti ← i 
     if bestΔ > 0 

          utilitybesti ← utilitybesti
2+1  // undo the negative reinforcement and positively reinforce 

          S ← apply(S,LLHbesti) 
          goto Iterate  

Terminate: (same as Fig 2.) 
Fig. 3. Reinforcement learning based hyperheuristic. 

 

 

Define: 
LLHi, Δ(S,LLHi), apply(S,LLHi) as in Fig 2. 
 
rank(i) is the rank of the Δ(S,LLHi) in descending order. 
tabui is the tabu tenure of LLHi 
keep is the number of best performing low level heuristics that will not be made tabu. 

 

Initialise: 
create an initial solution S (in this paper the solution S is the empty solution). 
for all i: 
      tabui ← 0 

Iterate: 
     bestΔ  ← 0 
     for each low level heuristic LLHi such that tabui=0 

           if Δ(S,LLHi) > bestΔ 

                bestΔ ← Δ(S,LLHi)   
                besti ← i 
    for each low level heuristic LLHi such that tabui>0 

          tabui ← tabui – 1 

     for each low level heuristic LLHi such that (tabui=0 and Δ(S,LLHi)  0 and  rank(i) > keep) 
           tabui ← tabu_tenure  // or choose tabui randomly from {1,2,…, tabu_tenure} 

     if bestΔ > 0 

          S ← apply(S,LLHbesti) 
          goto Iterate  

Terminate: (same as Fig 2.) 
Fig. 4. Tabu search  based hyperheuristic. 
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Fig. 5. Comparison of hyperheuristics which yield solutions having greater than 15000 fitness on average, with respect to 

CPU time and average solution quality. Each plotted point represents a parameter setting of the corresponding 

hyperheuristic.  
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Fig. 6. Pareto optimal set of hyperheuristics showing non-dominated solutions with respect to average CPU time and 

solution quality. 

 

 

Table 1. Task selectors 

Method Description 

Random Tasks are ordered at random. 

PriorityDesc Tasks are ordered by their priority in descending order 

RealPriortiyDescending Tasks are ordered by their priority multiplied by the number of resources required in descending 

order 

PriorityAsc Tasks are ordered by their priority in ascending order 

PrecedenceAsc Tasks are ordered by their number of precedences ascending  

PrecedenceDesc Tasks are ordered by their number of precedences descending  

PriOverReq Tasks are ordered by their estimated priority per hour assuming the task will take as long as the 

total skill requirement 

PriOverMaxReq Tasks are ordered by their estimated priority per hour assuming the task will take as long as the 

maximum skill requirement 

PriOverAvgReq Tasks are ordered by their estimated priority per hour assuming the task will take as long as the 

average skill requirement 
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Table 2. Resource allocators. Each parameter set yields a separate resource allocation heuristic (e.g. Best 1-5; Deviation 

25%). 

Name Description 

Best x-y Orders the available resources by their competency at the task then chooses the resources ranked from 

x to y in the list. (x-y values considered are: 1-5, 6-10, 11-15, 16-20, 21-25, 26-30, 31-35, 36-40, 1-10, 

11-20, 21-30, 31-40, 1-2, 3-4, 5-6, … etc, 2-3, 3-4, 4-5, …etc,  1-4, 3-6, 5-8, 7-10, … etc, 5-14, 15-24, 

25-34. 

Deviation x Resources complete a skill in a time dependent upon their competence. This selector attempts to find 

resources that will complete the different skills of task in the same amount of time by selecting 

resources with competencies that deviate x{50%, 25%, 12.5%, 6.25%} from the task’s skill 
requirement.  

xth Quarter This picks the x{1,2,3,4} quarter of task ranked by skill. Unlike the “Top x” task selectors, the 

number chosen is proportionate to the number of resources who can do the task. 

xth Eighth This picks the x{1…8} eighth of task ranked by skill.  

Dynamic x This selector picks larger sets of resources for the skills requiring more effort and less to those 

requiring less effort. It will create x{10, 50, 100, 1000}  combinations when enumerating the 

resulting sets. 

All Resources Considers all possible resources (and hence is very slow). 

 

 

 

Table 3. Summary of hyperheuristics. 

Heuristic Description 

rVNS The best of a selection of fast handcrafted reduced Variable Neighbourhood Search based 

heuristic from a large experimental study (Remde et al, 2007). 
HyperGreedy A Greedy Hyperheuristic that samples all low level heuristics at each iteration and applies the 

best one. 
BEBO Best A Binary Exponential Back-Off based hyperheuristic backing off all but a fixed number of the 

best performing low level heuristics. 
BEBO Prop A Binary Exponential Back-Off based hyperheuristic backing off all but the low level 

heuristics performing within a percentage of the best performing low level heuristic. 
Nareyek A Machine learning hyperheuristic based on (Nareyek, 2004) reinforcement learning 

experiments which tries a fixed number of low level heuristics with the highest utility. 
Sample A random hyperheuristic which tries a percentage of the low level heuristics at each iteration 

and applies the best one. 
SSR The Step-by-Step Reduction hyperheuristic of (Chakhlevitch and Cowling, 2005) which 

removes a percentage of the poorest performing low level heuristics every few iterations. 
Tabu A Tabu search based hyperheuristic that selects the best non-tabu low level heuristic and 

makes a number of non-tabu poor performing low level heuristic tabu for a fixed number of 

iterations. 
rTabu As Tabu, with random tabu tenures. 
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Table 4. Average fitness and CPU time of each hyperheuristic and parameters. Only the best results for BEBO, rTabu, Tabu 

in terms of CPU time and Fitness are shown. Full results for these hyperheuristics can be found in (Remde et al, 2009). 

Results show 95% confidence intervals. 

Method Average Fitness Average Time (s)  
Fitness % of 

HyperGreedy 

Time % of 

HyperGreedy 

rVNS 21974.9 ±65.3 19.3 ±0.4 88.21% 0.25% 

HyperGreedy 24911.3 ±69.0 7807.2 ±547.4 100.00% 100.00% 

BEBO Best 1 24324.6 ±129.7 1446.1 ±69.1 97.64% 18.52% 

BEBO Best 20 24993.8 ±76.8 3150.9 ±97.5 100.33% 40.36% 

BEBO Prop 0.01% 24756.3 ±90.2 2341.1 ±71.8 99.38% 29.99% 

BEBO Prop 0.05% 24737.2 ±77.4 2260.3 ±116.2 99.30% 28.95% 

rTabu Best 5 t=50 22872.2 ±569.6 2271.5 ±94.0 91.81% 29.10% 

rTabu Best 10 t=7 24459 ±84.0 4834.1 ±255.2 98.18% 61.92% 

Tabu Best 5 t=50 19139.1 ±599.4 1784.8 ±110.5 76.83% 22.86% 

Tabu Best 10 t=25 20143.4 ±669.9 2534.1 ±94.8 80.86% 32.46% 

Nareyek 1% 18308.6 ±541.2 123.5 ±3.9 73.50% 1.58% 

Nareyek 5% 21753.9 ±238.0 297.9 ±12.3 87.33% 3.82% 

Nareyek 10% 22106 ±231.1 353 ±21.7 88.74% 4.52% 

Nareyek 20% 24077.5 ±103.5 1436.4 ±133.2 96.65% 18.40% 

Nareyek 40% 24298.4 ±83.2 1652.5 ±130.9 97.54% 21.17% 

Nareyek 60% 24682 ±85.5 2899.5 ±225.1 99.08% 37.14% 

Nareyek 80% 24899.4 ±68.7 4986.7 ±444.1 99.95% 63.87% 

Sample 1% 732.9 ±124.6 6.2 ±1.7 2.94% 0.08% 

Sample 5% 20796.4 ±305.8 317.2 ±24.1 83.48% 4.06% 

Sample 10% 22422.4 ±196.7 572.8 ±47.2 90.01% 7.34% 

Sample 20% 23641.1 ±100.8 1211.2 ±59.3 94.90% 15.51% 

Sample 40% 24508.9 ±62.1 2598.5 ±127.1 98.38% 33.28% 

Sample 60% 24730.8 ±53.6 4034.3 ±194.2 99.28% 51.67% 

Sample 80% 24976.3 ±46.2 5708.9 ±269.3 100.26% 73.12% 

SSR 5% t=1 20061 ±706.9 1949.9 ±63.6 80.53% 24.98% 

SSR 5% t=5 22090.3 ±342.1 3997.8 ±156.7 88.68% 51.21% 

SSR 5% t=10 23860.4 ±149.9 5663.7 ±359.9 95.78% 72.54% 

SSR 5% t=20 24595.6 ±70.7 6099.4 ±476.8 98.73% 78.13% 

SSR 10% t=1 19952.1 ±751.9 1585.5 ±41.6 80.09% 20.31% 

SSR 10% t=5 19892.3 ±411.8 2678.9 ±101.3 79.85% 34.31% 

SSR 10% t=10 22454.8 ±312.2 4178.9 ±153.3 90.14% 53.53% 

SSR 10% t=20 23968.5 ±120.4 4847.3 ±324.3 96.22% 62.09% 

SSR 20% t=1 18749.5 ±687.2 1231.9 ±44.7 75.26% 15.78% 

SSR 20% t=5 17491 ±659.8 1991.8 ±73.2 70.21% 25.51% 

SSR 20% t=10 18894.4 ±378.8 2824.4 ±91.1 75.85% 36.18% 

SSR 20% t=20 21389.3 ±324.9 3786.8 ±194.7 85.86% 48.50% 

SSR 50% t=1 18039.5 ±943.5 685.6 ±61.2 72.42% 8.78% 

SSR 50% t=5 15787.8 ±719.9 1173.1 ±41.6 63.38% 15.03% 

SSR 50% t=10 16460.3 ±667.0 1708.1 ±57.1 66.08% 21.88% 

SSR 50% t=20 19006.9 ±610.8 2674.3 ±75.8 76.30% 34.25% 
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Table 5. Pareto optimal methods with respect to average fitness and CPU time. 

Method 
Average 

Fitness 

Average Time 

(s) 

rVNS 21974.9 19.3 

Nareyek 1% 123.5 18308.6 

Nareyek 5% 297.9 21753.9 

Nareyek 10% 353.0 22106.0 

Sample 10% 572.8 22422.5 

Sample 20% 1211.2 23641.1 

Nareyek 20% 1436.4 24077.5 

BEBO Best 1 1446.1 24324.6 

BEBO Best 2 1775.4 24588.6 

BEBO Best 3 2043.6 24774.3 

BEBO Best 10 2572.5 24782.8 

BEBO Best 15 2825.4 24869.2 

BEBO Best 20 3150.9 24993.8 
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Table 6. Tukey analysis of hyperheuristic methods using a 95% confidence interval. CPU times are also shown. 

Category Fitness Average CPU Time   Groups 

BEBO Best 20 -1010.0 ████████████████ A 

Sample 80% -1072.2 █████████████████████████████ A 

HyperGreedy -1092.5 ████████████████████████████████████████ A 

Nareyek 80% -1104.4 ██████████████████████████ A 

SSR 5% t=20 -1125.3 ███████████████████████████████ A 

Nareyek 60% -1227.3 ███████████████ A 

BEBO Prop 0.05% -1250.4 ████████████ A 

Sample 60% -1305.6 █████████████████████ A 

BEBO Prop 0.01% -1333.3 ████████████ A 

rTabu Best 10 t=7 -1508.5 █████████████████████████ A 

Sample 40% -1526.7 █████████████ A 

BEBO Best 1 -1679.2 ███████ A B 

Nareyek 40% -1705.4 ████████ A B 

SSR 10% t=20 -1897.6 █████████████████████████ A B C 

Nareyek 20% -1926.3 ███████ A B C 

SSR 5% t=10 -2177.9 █████████████████████████████ A B C D 

Sample 20% -2362.7 ██████ A B C D 

rTabu Best 5 t=50 -2897.9 ████████████ A B C D E 

Sample 10% -3486.9 ███ B C D E F 

SSR 10% t=10 -3780.3 █████████████████████ C D E F 

Nareyek 10% -3897.7 ██ D E F 

rVNS -3957.8 D E F 

SSR 20% t=20 -4087.8 ███████████████████ D E F G 

SSR 5% t=5 -4212.5 ████████████████████ E F G 

Nareyek 5% -4249.9 ██ E F G 

Sample 5% -5022.1 ██ F G H 

Tabu Best 5 t=50 -5983.4 █████████ G H I 

SSR 10% t=5 -6309.9 ██████████████ H I J 

Tabu Best 10 t=25 -6527.9 █████████████ H I J 

SSR 20% t=10 -6968.2 ██████████████ I J 

SSR 5% t=1 -6977.6 ██████████ I J 

SSR 10% t=1 -7596.1 ████████ I J K 

Nareyek 1% -7695.2 █ I J K L 

SSR 50% t=20 -7723.6 ██████████████ I J K L 

SSR 20% t=5 -8229.8 ██████████ J K L M 

SSR 20% t=1 -8233.9 ██████ J K L M 

SSR 50% t=10 -8969.4 █████████ K L M 

SSR 50% t=1 -9603.9 ████ L M 

SSR 50% t=5 -9968.9 ██████ M 

Sample 1% -25098.6                               N 
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Fig 1. Resource allocators. The dotted subset of resources possessing the required skill is chosen by a Resource allocator. 

The assignment (R2, R1) is chosen as the best insertion. 

 

Fig. 2. The Binary Exponential Back Off (BEBO) hyperheuristic. 

 

Fig. 3. Reinforcement learning based hyperheuristic. 

 

Fig. 4. Tabu search based hyperheuristic. 

 

Fig. 5. Comparison of hyperheuristics which yield solutions having greater than 15000 fitness on average, with respect to 

CPU time and average solution quality. Each plotted point represents a parameter setting of the corresponding 

hyperheuristic.   

 

Fig. 6. Pareto optimal set of heuristics showing non-dominated solutions with respect to average CPU time and solution 

quality. 

 

Table 1. Task selectors. 

 

Table 2. Resource allocators. Each parameter set yields a separate resource allocation heuristic (e.g. Best 1-5; Deviation 

25%).  

 

Table 3. Summary of hyperheuristics.  

 

Table 4. Average fitness and CPU time of each hyperheuristic and paramaters. Only the best results for BEBO, rTabu, Tabu 

in terms of CPU time and Fitness are shown. Full results for these hyperheuristics can be found in (Remde et al, 2009). 

Results show 95% confidence intervals. 

 

Table 5. Pareto optimal hyperheuristics with respect to average fitness and CPU time.  

 

Table 6. Tukey analysis of hyperheuristic methods using a 95% confidence interval. CPU times are also shown. 

 


