
This is a repository copy of An empirical study of hyperheuristics for managing very large
sets of low level heuristics.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/75049/

Version: Submitted Version

Article:

Remde, Stephen, Cowling, Peter I. orcid.org/0000-0003-1310-6683, Dahal, Keshav P. et
al. (2 more authors) (2012) An empirical study of hyperheuristics for managing very large
sets of low level heuristics. Journal of the Operational Research Society. pp. 392-405.
ISSN 1476-9360

https://doi.org/10.1057/jors.2011.48

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1

An Empirical Study of Hyperheuristics for Managing Very Large Sets of

Low Level Heuristics

Stephen Remde1, Peter Cowling1, Keshav Dahal1, Nic Colledge1, Evgeny Selensky2

1Artificial Intelligence Research Centre, University of Bradford, Bradford, BD7 1DP, United Kingdom

2 Trimble MRM Ltd. (EMEA), 1 Bath Street, IP City Centre, Ipswich, IP2 8SD, United Kingdom

{s.m.remde, p.i.cowling, k.p.dahal, n.j.colledge}@bradford.ac.uk, evgeny_selensky@trimble.com

Abstract. Hyperheuristics give us the appealing possibility of abstracting the solution method from the problem, since our

hyperheuristic, at each decision point, chooses between different low level heuristics rather than different solutions as is

usually the case for metaheuristics. By assembling low level heuristics from parameterised components we may create

hundreds or thousands of low level heuristics, and there is increasing evidence that this is effective in dealing with every

eventuality that may arise when solving different combinatorial optimisation problem instances since at each iteration the

solution landscape is amenable to at least one of the low level heuristics. However, the large number of low level heuristics

means that the hyperheuristic has to intelligently select the correct low level heuristic to use, to make best use of available

CPU time. This paper empirically investigates several hyperheuristics designed for large collections of low level heuristics

and adapts other hyperheuristics from the literature to cope with these large sets of low level heuristics on a difficult real-

world workforce scheduling problem. In the process we empirically investigate a wide range of approaches for setting tabu

tenure in hyperheuristic methods, for a complex real-world problem. The results show that the hyperheuristic methods

described provide a good way to trade off CPU time and solution quality.

Keywords: Computational Analysis, Heuristics, Hyperheuristics, Machine Learning, Optimization, Scheduling, Tabu

Search

1 Introduction

The term hyperheuristics (Chakhlevitch and Cowling, 2008) (Burke et al, 2010) was coined in (Cowling et al,

2001) to denote a class of heuristics which searches a space of low level heuristics (LLHs), whereas

metaheuristics typically search directly in the solution space. The hyperheuristic uses information about the

performance of each low level heuristic (CPU time and solution quality metrics) to determine which low level

2

heuristic(s) to apply at each decision point. The hyperheuristic method does not need to be problem specific, and

hence a single hyperheuristic method has the advantage that it can work generally across many problem models

and instances, given the right set of low level heuristics and solution quality metrics. There is good evidence to

date that hyperheuristics are effective across a range of problems, and this effectiveness arguably arises since

having a large collection of low level heuristics means that the solution landscape for one or more of these low

level heuristics is likely to provide a good search direction (Chakhlevitch and Cowling, 2005) (Colledge, 2009)

(Remde et al, 2009).

 In some cases low level heuristics are parameterised, or composed by “multiplying” together components

(Remde et al, 2007) (Chakhlevitch and Cowling, 2005), which can give rise to hundreds or even thousands of

heuristics (Cowling and Chakhlevitch, 2003). In such a case, deciding in reasonable time which heuristics to use

may be difficult. However, there is evidence that having such a rich selection of low level heuristics may yield

better results for complex problems in the long run, although it is difficult to know in advance which low level

heuristics will prove effective (Chakhlevitch and Cowling, 2005). (Remde et al, 2007) studied the low level

heuristics used by a greedy hyperheuristic HyperGreedy (which picks the best performing low level heuristic at

each iteration) and found that a quarter of the low level heuristics were never used and half of the low level

heuristics were effective less than one percent of the time. However, the low level heuristics which were

effective varied from problem instance to problem instance, and it was difficult to predict which low level

heuristics would prove effective. In this paper we investigate hyperheuristic approaches that attempt to learn

which low level heuristics will perform poorly and ignore them to produce solutions of a quality similar to those

produced using the full set of low level heuristics, in a fraction of the CPU time. This is particularly of interest

since hyperheuristic methods have demonstrated their effectiveness at solving problems such as automated

planograms (Bai and Kendall, 2005), examination scheduling (Burke et al, 2003), personnel scheduling

(Cowling et al, 2003), workforce scheduling (Remde et al, 2007) and artificial intelligence in computer games

(Nareyek, 2004). These applications have shown that hyperheuristics offer some of the solution quality we

would associate with tailored methods, but that they are very flexible in dealing with different problem instances

(and indeed different problems) and that they remain effective when the problem is changed in significant ways,

without requiring substantial intervention from a human expert (Kendall and Hussin, 2005a).

 In this paper we investigate a workforce scheduling problem, which we have studied for several years now in

collaboration with Trimble MRM Ltd.. It contains as sub-problems the Resource Constrained Project

Scheduling Problem (RCPSP) (Kolisch and Hartmann, 2006), Job Shop Scheduling Problem (JSSP) (Pinedo

3

and Chao, 1999) and Vehicle Routing Problem with Time Windows (VRPTW) (Toth and Vigo 2001). In this

real-world situation we have several further constraints and objectives, and in particular we consider the notion

of the degree of competence of a particular group of resources (e.g. engineers) which have been allocated to a

particular task. Trimble MRM Ltd. develops scheduling solutions for very large, complex mobile workforce

scheduling problems in a variety of industries, particularly telecommunications and utilities. The model which

we investigate here encapsulates the main features common to these problems.

 We use the problem and the hyperheuristic framework of (Remde et al, 2007) as a test bed for our

investigation in this paper. The complexity of this problem means that quality evaluation of a perturbed solution

takes a significant amount of CPU time, whereas limited amounts of CPU time are available to find good

solutions in practice. Many of the low level heuristics in our hyperheuristic framework require the evaluation of

hundreds of these perturbed solutions, due to them solving smaller parts of the problem optimally using

systematic search or investigating a large neighbourhood. The available CPU time renders local search based

hyperheuristics infeasible in our practical application, so that we will only consider constructive hyperheuristics

in this paper. The number of low level heuristics available to the hyperheuristics is large compared to the

number of those low level heuristics we will apply in constructing a solution, and new approaches are needed to

learn the effectiveness of low level heuristics in this case. (Chakhlevitch and Cowling, 2005) find that when

selecting a small random subset of low level heuristics results can be erratic across different problem instances

indicating that a reduced subset is not as good as a large set.

 Our approaches for deciding which low level heuristic to apply can be considered as tabu search based

hyperheuristics where we learn appropriate tabu tenures. Binary Exponential Back Off (Remde et al, 2009), is a

tabu search based hyperheuristic with dynamically adapting tabu tenures designed for very large

neighbourhoods. It is based on an analogy with computer networks, where binary exponential back off or

truncated binary exponential back-off is a randomized protocol for regulating transmission on a multiple access

broadcast channel (Kwak et at, 2005). In this paper we carry out a thorough investigation of this approach

alongside other approaches to setting tabu tenure in hyperheuristics from the literature. (Nareyek, 2004) and

(Cowling et al, 2001) use reinforcement learning to estimate the future performance of a low level heuristic.

When a move performs well it is positively reinforced. When it performs poorly it is negatively reinforced. We

investigate this reinforcement mechanism for a large collection of low level heuristics, as well as the step-by-

step reduction methods of (Chakhlevitch and Cowling, 2005).

4

 This paper is structured as follows: we present related work in Section 2. Our problem is presented in section

3. Section 4 describes the hyperheuristic framework and hyperheuristics in detail. In section 5 we empirically

investigate the techniques and compare them to Variable Neighbourhood Search, Greedy, Random and Tabu

search based heuristics in terms of solution quality and computational time. We present conclusions in Section

6.

2 Related Work

Many hyperheuristics are based on metaheuristic methods, including early work in (Fang, 1994) where a genetic

algorithm evolved a chromosome which determined how jobs were scheduled in open shop scheduling. In (Bai

and Kendall, 2005) simulated annealing is used to decide whether to accept the solution resulting from a

randomly applied low level heuristic. (Kendall et al, 2002) uses a Genetic Algorithm to evolve good sequences

of low level heuristics. (Chakhlevitch and Cowling, 2005) use a learning approach called Step-by-Step

Reduction (SSR) and Warming Up (WU) to reduce the number of low level heuristics and show that SSR

produced better results. SSR removes a percentage of the low level heuristics periodically to try and reduce the

set to an elite few. This removes bad heuristics early on and saves CPU time that would have been used trying

them, but suffers from the potential limitation that it does not allow the reintroduction of these heuristics later in

the search. The work of (Remde et al, 2007) shows that a low level heuristic’s effectiveness is highly variable

during search with some low level heuristics which are ineffective at the start of search proving highly effective

at the end.

 Tabu Search (Glover and Laguna, 1997) is used to stop the repeated application of poor moves or the undoing

of good moves for a certain number of iterations (the tabu tenure). The optimal duration of tabu tenure has been

tested in several papers and it is most likely a function of the neighbourhood size and the problem size (Laguna

et al, 1999). Using random tabu tenures, where a move is made tabu for a period chosen uniformly at randomly

between 1 and the maximum tabu tenure, tends to work better than fixed tabu tenures (Rolland et al, 1996).

 Several papers have investigated tabu search based hyperheuristics. A tabu mechanism is used in (Kendall and

Hussin, 2005a) where poorly performing low level heuristics are made tabu for a fixed tabu tenure. A small

number of low level heuristics (13) are used with short tabu tenures (1-4 iterations) and good results are

obtained in a large amount of CPU time. This is also considered in (Kendall and Hussin, 2005b) where the low

level heuristic is repeated until no further improvements can be found before being made tabu and random tabu

5

tenures are utilised. Random tabu tenures provide results of similar quality to those with fixed tenure equal to

the expected random tenure on the two examination timetabling problem instances they consider. They find that

repeated application of a low level heuristic does not increase solution quality considerably, possibly due to an

increased tendency to get stuck in large basins of attraction. A large set (95) of low level heuristics is used in

(Cowling and Chakhlevitch, 2003) where the hyperheuristic allows a tabu low level heuristic to become

aspirated and be used (Glover and Laguna, 1997) if it makes the best improvement. If no improving low level

heuristic is available, a non-improving non-tabu low level heuristic is used and made tabu. Fixed tabu tenures of

10, 30, 60 and 100 and adaptive tabu tenures are investigated, but results provide no clear advantage of using

adaptive tabu tenures over fixed ones. A ranking system, based on reinforcement learning, is used for non-tabu

low level heuristics in (Burke et al, 2003). At each iteration the non-tabu low level heuristic with the highest

rank is applied. When a non-tabu low level heuristic performs well its rank is increased, otherwise its rank is

decreased and the low level heuristic is put in the tabu list on a first in first out basis. If the highest ranked low

level heuristic makes the solution worse, the tabu list is emptied.

 Nareyek (Nareyek, 2004) experimentally investigates several variations of reinforcement learning in a

hyperheuristic framework. Different reinforcement schemes are used in two different problems and it is

concluded that high rates of negative reinforcement and low rates of positive reinforcement work best. The

choice function (Cowling et al, 2001) is another machine learning hyperheuristic that attempts to estimate how

well a low level heuristic is likely to perform based on its effect on the (single) objective function, the pair-wise

interaction between low level heuristics and the time since it was last used. These two papers combine ideas

from machine learning and tabu search.

 The hyperheuristic framework of (Remde et al, 2007) proposes a method to break down the Trimble MRM

workforce scheduling problem, by splitting it into smaller parts and solving each part using exact enumerative

approaches. These smaller parts are the combination of a method to select a task and a method to select potential

resources, including time, for the task. Reduced Variable Neighbourhood Search (rVNS) (Mladenovic and

Hansen, 1997) and simple hyperheuristics are shown to be effective in deciding the order in which to solve sub-

problems.

 As can be seen above, there has been a wealth of interesting work in the area of hyperheuristics, although

there have only been limited comparative studies to date. One of the principal contributions of this paper is the

first thorough empirical investigations of tabu/reinforcement learning/ranking methods alongside binary

exponential back off and stepwise reduction methods for a difficult real-world problem.

6

3 Problem Description

The workforce scheduling problem that we consider consists of four main components: Tasks, Resources, Skills

and Locations. A task Ti is a job or part of a job. Each task must start and end at a specified location. Usually the

start and end locations are the same, but they may be different. Each task has one or more time windows and

some time windows have an associated penalty. We have a set {T1,T2,…,Tn} of tasks to be completed. Each task

is executed by one or more resources {R1,R2,…,Rm}. A task requires resources with the appropriate skills from

the set {S1,S2,…,Sk}. Task Ti requires skills],...,,[TS)(21

i

it

ii
TSTS with work requirements],...,, [)(21

i

it

ii
www where

i

qw is the amount of skill i

qTS required for task Ti. Task Ti also has an associated priority p(Ti). Resource Rj

possesses skills],...,,[RS)(21

j

jr

jj
RSRS . A function c(R,S) expresses the competence of resource R at skill S,

relative to an average competency. Each resource R travels from location to location at speed v(R). For tasks T1,

T2, d(T1, T2) is the distance between the end location of T1 and the start location of T2.

 There are three main groups of constraints: task constraints, resource constraints and location constraints:

Task constraints

 Each task can be worked on only within specified time windows.

 Some tasks require other tasks to have been completed before they can begin (precedence constraints).

 Some tasks require other tasks to be started at the same time (assist constraints).

 Tasks may be split across breaks within a working day.

 For a task to be scheduled it must have exactly one resource assigned to it for each of the skills it

requires.

 All assigned resources have to be available at the task’s location for its whole duration regardless of

their skill competency and task skill work requirement.

 If a task Ti with skill requirements],...,,[TS)(21

i

it

ii
TSTS and amounts],...,, [)(21

i

it

ii
www is carried out by

resources],...,,[R)(21

i

it

ii
RR then the time taken is

(1)

 (i.e. the greatest time taken for any single resource to complete a skill requirement).

Resource constraints

 A resource R travels from location to location at a fixed speed v(R).















),(
max

)}(,...,2,1{ i
q

i
q

i
q

itq TSRc

w

7

 Resources may only work and travel during specified time windows.

 Resources can only work on one task at a time and only apply one skill at a time.

Location constraints

 Resources (generally engineers in vans or large pieces of equipment) must travel to the start location of

each task they work on, and are unavailable during this travel time.

 Resources must start and end each day at a specified “home” location and must have sufficient time to

travel to and from their home location at the start and end of each day.

When building a schedule many different and often contradictory business objectives are possible. In this paper

we consider three objectives. The first objective is Schedule Priority (SP), given by

(2)

Maximising Schedule Priority maximises the value of the tasks scheduled and implicitly minimises the value of

tasks unscheduled.

 The second objective measures total Travel Time (TT) across all resources. Define A={(i1,i2,j):task Ti1 comes

immediately before Ti2 in the schedule of resource Rj}.

(3)

Travel to and from home locations is handled by considering dummy tasks fixed at the start and end of the

working day, at the home location of each resource.

 The third objective measures the inconvenience associated with completing tasks or using resources at an

inconvenient time, which we have labelled Schedule Cost (SC). In order to express this accurately we express

the time windows for Resource R using a function X (Baptiste et al, 2001) where X(R,t) is the cost per unit time

for resource R working at time t. We introduce a variable






otherwise0

 at time ng)or traveli task a(on busy is resource if1
),(

tR
tR

Similarly we introduce X’ where X’(T,t) is the cost per unit time for task T being executed at time t and






otherwise0

 at time executed being is task if1
),('

tT
tT


}scheduled is :{

)(
iTi

iTpSP





Ajii j

ii

Rv

TTd
TT

),2,1(

21

)(

),(

8

(4)

In this paper, the fitness of a schedule is given by a single weighted objective function, f = SP - 4SC - 2TT,

where SP is the sum of the priority of scheduled tasks, SC is the sum of the resource and task time window costs

in the schedule and TT is the total amount of travel time. This objective is to maximise the total priority of tasks

scheduled while minimising travel time and cost. Values are scaled so that this expression is a realistic

representation of solution quality for a large class of problems encountered in practice (Cowling et al, 2006).

4 Hyperheuristic Approaches

Previous hyperheuristic work on this workforce scheduling problem (Remde et al, 2007), (Remde et al, 2009)

generated possible low level heuristics (LLHs) by combining two components: (1) selecting the next task to be

scheduled and (2) allocating potential resources (including time) for that task. The task selector (table 1) chooses

a task and the resource allocator (table 2) assigns resources for each skill required by the task, so that the total

number of low level heuristics is the number of task selectors multiplied by the number of resource allocators

(fig. 1 shows how the low level heuristics work). Note that where a resource allocator is parameterised, we

consider each parameter set as an individual resource allocation heuristic. We combine each of the 9 different

task selectors with each of the 27 different resource allocators to give a total of 243 low level heuristics. Our low

level heuristics maintain a feasible solution – if the low level heuristic cannot make a legal move then the

solution is not modified.

 The hyperheuristic HyperRandom (Remde et al, 2007), selects at random a low level heuristic (i.e. a (task

order, resource allocator) pair) to use at each iteration and applies it if the application will result in an

improvement. This continues until no improvement has been found for a certain number of iterations.

HyperGreedy (Remde et al, 2007) evaluates all the low level heuristics at each iteration and applies the best if it

makes an improvement. This continues until no improvement is found. As might be expected, HyperGreedy is

very CPU-intensive, but generates good quality results.

 As the low level heuristics are constructive, we can only apply each one a small number of times before the

schedule is full, since approximately 250 tasks can fit in the schedule of the problems we study, compared to

243 low level heuristics. Hyperheuristics which rely on learning from the application of a low level heuristic

during a single long search run would be ineffective, as the schedule would be full before significant





m

j
t

jj

n

i
t

ii dttRtRdttTtTSC

11

),(),(),('),(' 

9

information has been learnt. Note that it is coincidental that the number of low level heuristics and the number

of tasks is similar in this case. Reinforcement learning based hyperheuristics need to be modified in this case to

learn from all different low level heuristics tried in a situation and not simply the one that was applied in the

end, otherwise the vast majority of information gained about low level heuristics would be discarded. This paper

investigates and empirically compares hyperheuristic performance in this situation.

 Section 4.1, 4.2 and 4.3 describes the hyperheuristics which attempt to learn information about the low level

heuristics and their potential to improve the solution.

4.1 Binary Exponential Back Off

Binary Exponential Back Off (BEBO) is a tabu search based hyperheuristic with dynamically adapting tabu

tenures designed for very large neighbourhoods, inspired by the binary exponential back-off algorithm used as

the industry standard to transmit packets in a network (Kwak et. at., 2005). It aims to increase network

throughput by exponentially increasing the time between retransmits when a collision occurs. This happens

when two or more computers try to transmit information on the same medium (a wire, a wireless frequency, etc)

at the same time. When a collision occurs, the device will increase its backoff value by 1, and wait a random

amount of time between 0 and 2backoff-1 before trying to retransmit. If the transmission is successful, the back off

value is reset to 0, otherwise the back-off value is increased by 1 again and the process is repeated. Hence

waiting time increases exponentially for low level heuristics in this case.

 We use an analogous backing off method to exponentially increase the tabu tenure of low level heuristics

which repeatedly yield no improvements, meaning the expected time between trials of bad heuristics increases

exponentially. Pseudocode for the hyperheuristic is given in fig. 2. We use two methods to decide which of the

low level heuristics, that were tried in the current iteration, to back off (those “deemed bad”): BEBO Best x: only

the best x improving low level heuristics are not backed off, and, BEBO Prop x: all non-improving low level

heuristics and those improving low level heuristics not in the top x% of the range of the fitness are backed off.

 backoff_min is set to 4 as it provided good results in (Remde et al, 2009). Although no empirical investigation

of different values exists, increasing this value decreases CPU time and fitness, and decreasing it increases CPU

time and fitness. Incidentally, when this value is 0, the hyperheuristic is equivalent to HyperGreedy as low level

heuristics will not be made tabu.

10

4.2 Reinforcement Learning

Reinforcement learning is a machine learning technique that positively reinforces good choices and negatively

reinforce bad choices (Kaelbling et al, 1996). Nareyek (Nareyek, 2004) proposes a reinforcement learning

hyperheuristic framework to investigate several approaches to learning empirically. A utility value is associated

with each choice which estimates its future potential. At each iteration a choice is made based on these utility

values and then the utility value is adjusted depending on the outcome of that choice and the learning

mechanism used. Five methods for positively reinforcing the utility and five methods for negatively reinforcing

the utility are experimentally evaluated, and in general low rates of positive reinforcement and high rates of

negative reinforcement gave best results. In our experiments, we will use the adaptation scheme which was

found to be best in (Nareyek, 2004). For positive reinforcement ui:=ui+1 and ui:= √ui for negative reinforcement

of low level heuristic i.

 Nareyek’s experiments ran for ten thousand iterations and the number of low level heuristics was very small

(5 and 6 in the two different problems). This means that each heuristic could be applied many times giving the

hyperheuristic time to learn. In the problem we study this ratio is drastically reduced and since our low level

heuristics (choices) nearly always make a positive change in terms of fitness, this means that modification of the

hyperheuristic will be needed.

 At each iteration, a number of the low level heuristics with the highest utility will be tried instead of just one.

The best performing of the selected low level heuristics will be positively reinforced and applied and the rest

negatively reinforced. The percentage we try will give us the ability to trade off CPU time and solution quality.

The pseudocode for the reinforcement learning hyperheuristic is given in fig. 3. In our computational

experiments, the heuristic Nareyek x% signifies low level heuristics whose utility is in the top x% will be tried.

4.3 Tabu Search Based Hyperheuristics

The tabu search based hyperheuristics from the literature cannot be straightforwardly applied, since the number

of low level heuristics is large here and the number of iterations is small. Our tabu search based hyperheuristics

try all non-tabu low level heuristics at every iteration. The top x at every iteration will not be made tabu. This

leaves a good number of good low level heuristics available for the next iteration and can be adjusted to trade

off CPU time for solution quality. Hence we do not need to reset tabu tenures periodically as in (Burke et al,

2003). We give the pseudocode in fig. 4.

11

 We try tabu tenures of t=5, 7, 10, 25, 50 each time a low level heuristic is tried and fails to give an

improvement. We also investigate different methods of deciding which LLHs to make tabu. Tabu Best x t=y

signifies that all but the top x improving low level heuristics will be made tabu with tenure y at each iteration.

This is similar to the method used in (Burke et al, 2003), with larger tabu tenures since there are more low level

heuristics in our case. We also investigated making all non-improving low level heuristics tabu however the

results for these were very poor in terms of CPU time as nearly all of the low level heuristics make a positive

improvement early in the search although this improvement is very small. These results are not reported here.

In addition to these fixed tenures, we try random tenures as used in (Kendall and Hussin, 2005a): rTabu Best x

t=y is similar to Tabu Best x t=y, but with a random tenure between 0 and y each time a low level heuristic is

made tabu.

4.4 Other Methods

We compare these adapted methods to existing ones designed for large neighbourhoods and problem specific

heuristics.

 rVNS is the best reduced Variable Neighbourhood Search method taken from (Remde et al, 2007) and is a

hand crafted tailored heuristic for this problem. HyperRandom and HyperGreedy are the random and greedy

hyperheuristics from (Remde et al, 2009). HyperGreedy will be the benchmark for all the tests as this is the

most CPU-intensive approach and generally produces the best result. Sample x% is variation of HyperRandom.

In this Hyperheuristic, x% of the low level heuristics are sampled uniformly at random and the best improving

one is applied.

 Step-by-Step reduction is presented in (Chakhlevitch and Cowling, 2005). The method SSR x% t=y reduces

the set of low level heuristics by x% every y iterations. The ones which have performed the worst over the

period, as measured by the objective value, are removed first, ties are broken randomly.

5 Computational Experiments

Each of the hyperheuristics was used ten times to solve five problem instances. In each run the hyperheuristic

was given one attempt to construct a schedule, and the CPU time taken and the solution fitness were recorded.

Note that each hyperheuristic has its own stopping criteria as given in the pseudocode. The instances require the

scheduling of 400 tasks using 100 resources over one day using five different skills. Tasks require between one

12

and three skills and resources possess between one and five skills. The problems reflect realistic problems

Trimble have identified and are generated using a commercial problem instance generator (Cowling et al, 2006).

The size of the problems was chosen to be solvable in a reasonable amount of CPU time. Over 218 CPU days

was needed to complete the all experiments for the problem instances, so the experiments were run in parallel on

88 cores of 22 identical 4 core 2.0 GHz machines. Implementation was done using C# .NET under Microsoft

Windows Vista.

 We compare the average performance in terms of CPU time and solution quality of the 62 methods based on 9

different hyperheuristic approaches with different parameters (rVNS, HyperGreedy, HyperRandom, 9 BEBO

“Best x”, 7 BEBO “Prop x”, 15 “standard” Tabu, 7 Nareyek based, 16 Step-by-Step Reduction and 7 Random

Sampling hyperheuristics). Table 3 summarises each of these categories of heuristics. The experimental results,

average fitness and CPU time along with its parameter for each of these hyperheuritics, are presented in table 4.

Note that only the best results in terms of CPU time and fitness are shown for BEBO, rTabu and Tabu due to the

limited space. The complete results for these three approaches are given in reference (Remde et al, 2009). Fig. 5

depicts some selected results for comparing the hyperheuristics performances. The table and graph show the

results of the different solution methods with various parameters. The line connecting the points in fig. 5 is for

the Sample heuristic which is a naïve approach to trading off CPU time and solution quality. Hyperheuristics

which are making better-than-random choices of low level heuristics are above the line connecting the Sample

points in fig. 5. For the Sample hyperheuristic, we can see that it can effectively use additional CPU time to

generate higher quality solutions, and indeed that it provides a continuum of improving results with increased

CPU time. Sample 80% produces better results than HyperGreedy in less CPU time, probably due to its

avoiding consistently applying the same low level heuristics at each iteration, providing a useful and effective

source of diversification.

 From fig.5 and table 4 we can see that when only a small amount of CPU time is available, a carefully tailored

heuristic (the rVNS approach) is clearly superior to hyperheuristic approaches which have to adapt during

search, using very little problem specific information. Indeed the first of our hyperheuristics which achieves a

better fitness is Nareyek 10% which uses 18 times as much as CPU time as rVNS. When more CPU time is

available we can see that significantly better results are achievable. For a problem of this type, an improvement

of 0.25% in fitness suggests the completion of an additional task (or an equivalent saving in terms of travel time

and schedule cost) which is highly significant in practice. The CPU-intensive HyperGreedy approach generates

a very high quality solution, on average, using large amounts of CPU time, although it appears to be somewhat

13

wasteful of this CPU time compared to other approaches. Sample 80% generates better solutions on average in

slightly less CPU time, the BEBO Best 20 hyperheuristic generates better results in less than half the CPU time

of HyperGreedy. Other hyperheuristics approach the solution quality of HyperGreedy in a fraction of the CPU

time, notably BEBO Prop 0.01%, rTabu Best 10 t = 7, Nareyek 80% and SSR 5% t = 20, suggesting that all

these approaches contain interesting ingredients. Still HyperGreedy remains a good benchmark against which to

judge other approaches.

 Step-by-Step Reduction (SSR) performs poorly in comparison to the other hyperheuristics. (Remde et al, 2007)

provides evidence that some low level heuristics only begin to work well towards the end of a search and it is

likely that SSR is discarding these due to low performance at the start of the search and then failing to find a

good solution because these low level heuristics are needed toward the end of the search. It is notable that SSR

approaches appear to have a near-linear improvement following a poor start, and that SSR approaches which

discard only a small number of low level heuristics per iteration perform well, for modest CPU time savings

compared to HyperGreedy.

 The fixed tabu tenure hyperheuristics (Tabu) perform poorly in comparison to the random tabu tenure

hyperheuristics (rTabu), supporting the conclusions of (Rolland et al, 1996) (Kendall and Hussin, 2005a). The

Tabu results are all well below the threshold given by the Sample points, indicating that these approaches

perform significantly worse than random choice per second of CPU time. The rTabu results are only slightly

below the Sample threshold line, and they do give modest improvements with increasing CPU time, but are not

competitive with Sample, Nareyek and BEBO approaches.

The performance of Nareyek approaches is consistently better than that of the Sample approach with

respect to CPU time and fitness. Nareyek approaches are capable of beating Sample using similar, small

amounts of CPU time. The reinforcement learning technique used is shown to be effective, and certainly better

than a random approach, in selecting good low level heuristics. The CPU times of the Sample and Nareyek

hyperheuristics that consider a similar number of low level heuristics (Sample 1% and Nareyek 1%, Sample 10%

and Nareyek 10% etc) are quite different due to the fact that some of the better low level heuristics take more

CPU time and the Nareyek hyperheuristic identifies these and uses them more frequently than Sample. Hence

Nareyek approaches offer some control of CPU time and are the best among those studied at low-to-moderate

CPU times.

 The BEBO hyperheuristics cover a smaller width of the CPU time scale, but consistently offer the best

solution quality, for a given CPU time, when moderate to large amounts of CPU time are available. Our

14

implementation of BEBO cannot produce results in smaller amounts of CPU time. Increasing min_backoff could

make this hyperheuristic faster, although our experiments show a decline in solution quality in this case. BEBO

Prop is slightly less effective than BEBO Best for slightly more CPU time, which agrees with the conclusions of

(Remde et al, 2009).

 Table 5 and fig. 6 show the Pareto frontier of these results which contains the heuristics giving optimal trade-

offs between CPU time and solution quality. As mentioned earlier, the dominance of the tailored rVNS heuristic

for small CPU time is apparent, then for low to moderate CPU time Nareyek and Sample dominate. The

appearance of the random Sample approach in the Pareto frontier is unexpected, but an inspection of fig. 5

shows that there are few approaches consuming CPU time in this range. The absence of a Nareyek

hyperheuristic in this range is due to the difficulty of tuning the Nareyek parameters to obtain a precise CPU

time when the hyperheuristic is choosing between low level heuristics which take very different amounts of

CPU time. This difficulty of tuning the CPU time applies also to BEBO and Tabu approaches. BEBO dominates

the other methods when more CPU time is available, indeed the BEBO Best 20 approach dominates approaches

which consume more than twice as much CPU time (which are shown in fig. 5 but not in fig. 6).

 The relative effectiveness of each hyperheuristic was investigated using Analysis of Variance (ANOVA)

and Tukey comparisons (Miller 1997), and results are shown in table 6. The statistic considered for each

hyperheuristic, labelled "fitness" in the table, is the absolute deviation of the best solution produced in a

hyperheuristic run, from the best known solution. Using the problem instance as an explanatory variable

produced a coefficient of determination of 0.004, indicating that only 0.4% of the variability can be explained

by the problem instances, with 95% confidence, so that we are justified in considering different problem

instances together. Performing ANOVA with the solution method as the explanatory variable showed that

74.5% of the variance can be explained by the solution method used with 95% confidence. Table 6 shows the

summary of the Tukey pairwise comparisons, using 95% confidence intervals. This table shows us that a variety

of methods perform well, if we consider only the fitness of the best solution produced by each method. The

methods in group A (as shown in table 6) cannot be separated with 95% confidence, based upon fitness alone.

When we also consider solution quality per unit CPU time, the benefits of a more focused search in approaches

such as BEBO Best 20, BEBO Prop 0.01%, Sample 40% and Nareyek 60% becomes clear. For this large, real-

world problem, CPU-efficient approaches are important, and since the data in the table already represent over 6

months of CPU time, it would be very difficult in this case to find a smaller top-ranking group, with 95%

15

confidence. Overall, it appears that BEBO, Sample and Nareyek methods outperform SSR and Tabu

hyperheuristics in terms of fitness alone, and even more so if we also consider CPU time.

6 Conclusions

This paper investigates and compares several hyperheuristic approaches which handle a large number of low

level heuristics, on a difficult real-world scheduling problem. Our low level heuristics are generated by

combining parameterised components for (i) choosing which task to schedule; and (ii) allocating resources to

the chosen task, giving us a large set of over 200 low level heuristics. Since a large number of low level

heuristics are available, our intuition suggests that at each step the solution landscape is amenable to at least one

of the low level heuristics. Our results, in comparison to a tailored reduced Variable Neighbourhood Search

approach, and an approach which greedily searches through all low level heuristics at each step, suggest that this

is an effective way to produce high quality solutions, albeit in large amounts of CPU time.

 The problem we consider contains features common to many real-world scheduling problems which deal with

mobile resource management (occurring in pick up/delivery, project management, routing and maintenance

applications). The approach to generating low level heuristics can generalise across these problems, so that our

hyperheuristic approaches and results give an indication of the effectiveness of these techniques for a wide

range of complex mobile workforce scheduling problems.

 When using a large collection of low level heuristics, we must decide between different low level heuristics at

each iteration rather than choosing directly between different solutions. Several methods are presented for

choosing between low level heuristics, which are generally applicable since they make use only of fitness

information. A thorough empirical investigation is undertaken to determine the effectiveness of these techniques

in using increasing amounts of CPU time to effectively generate high quality solutions.

 Tabu search based methods with fixed tabu tenures are significantly outperformed by tabu search based

methods with random tenures in some fixed range. However, both of these tabu search based hyperheuristics

underperform a random sampling approach, given similar CPU times, suggesting that their choice of low level

heuristics is worse than choosing the best of a random sample of low level heuristics at each iteration. Ranking

methods which use adaptive reinforcement of low level heuristics, based upon their fitness performance, show

much better performance. We study a method based on that of Nareyek, where positive reinforcement adds 1 to

utility and negative reinforcement takes the square root of utility, and we choose preferentially low level

16

heuristics which have high utility. This method performs well when low to medium CPU time is available, and

surpasses the random sampling method. The Binary Exponential Back Off method increases the tabu tenure for

a poorly performing heuristic exponentially, and resets the penalty to a small value for low level heuristics

which perform well. This approach is dominant for medium to high amounts of CPU time and again beats a

random sampling approach on average for a given CPU time.

 A Step by Step Reduction method, which discards poorly performing low level heuristics during search, does

not perform well in this case where the number of iterations to generate a solution is small, since it appears to

discard early on low level heuristics which are important later in the search. While this approach works

reasonably well when the number of heuristics discarded is small and CPU time is high, it is outperformed by a

random sampling technique when the number of low level heuristics discarded is high.

 When analysing the Pareto frontier representing the best trade off between fitness and CPU time, the Nareyek-

based approaches dominate for smaller CPU times, and the Binary Exponential Back Off based approaches

dominate for large amounts of CPU time. “Gaps” in the CPU time used, which arise due to difficulty in

precisely controlling the total amount of CPU time of a hyperheuristic when choosing between low level

heuristics which consume variable amounts of CPU time, are taken by random sampling approaches, in

preference to step-by-step reduction and tabu search approaches.

 Overall, the methods described in this paper show that hyperheuristics provide an effective way to trade off

CPU time for solution fitness, when solving complex real-world scheduling problems, and provide empirical

comparisons between a wide range of hyperheuristic approaches (62 parameter sets of 9 different hyperheuristic

approaches). It will be interesting, in further work, to extend the range of hyperheuristics investigated to

approaches which are effective when the user stops the search and the amount of CPU time is not known in

advance.

References

Bai R and Kendall G (2005). An Investigation of Automated Planograms using a Simulated Annealing Based

Hyperheuristics. In: Ibaraki T, Nonobe K, and Yagiura M (eds). Meta-heuristics: Progress as Real Problem Solvers,

Selected Papers from the 5th Metaheuristics International Conference (MIC 2003), Springer, 87-108.

Baptiste P, Le Pape C and Nuijten W (2001). Constraint Based Scheduling. Kluwer Academic Publishers: London.

Burke E, Kendall G and Soubeiga E (2003). A Tabu-search Hyperheuristic for Timetabling and Rostering. Journal of

Heuristics 9 (6): 451-470.

17

Burke E, Hyde M, Kendall G, Ochoa G, Özcan E and Woodward J (2010). A Classification of Hyperheuristic Approaches.

In: Gendreau M and Potvin J-Y (eds). Handbook of Metaheuristics, Springer, 449-468.

Chakhlevitch K and Cowling P (2005). Choosing the Fittest Subset of Low Level Heuristics in a Hyperheuristic Framework.

In: Raidl G, Gottlieb J (eds). Proc. of Evolutionary Computation in Combinatorial Optimization. Springer LNCS 3448,

23-33.

Chakhlevitch K and Cowling P (2008). Hyperheuristics: Recent Developments. In: Cotta C, Sevaux M and Sorensen K

(eds). Adaptive and Multilevel Metaheuristics, Studies in Computational Intelligence vol 136, Springer, 3-29.

Colledge N (2009). Evolutionary Approaches to Dynamic Mobile Workforce Scheduling. PhD Thesis. University of

Bradford, UK.

Cowling P, Kendall G and Soubeiga E (2001). A Hyperheuristic Approach to Scheduling a Sales Summit, In: Proc. of

selected papers from the 3rd International Conference on the Practice and Theory of Automated Timetabling (PATAT

2000), Springer LNCS 2079, 176-190.

Cowling P and Chakhlevitch K (2003). Hyperheuristic for Managing a Large Collection of Low Level Heuristics to

Schedule Personnel. In: Proc. of the 2003 IEEE Congress on Evolutionary Computation (CEC2003). IEEE Press, 1214-

1221.

Cowling P, Colledge N, Dahal K and Remde S (2006). The Trade Off between Diversity and Quality for Multi-objective

Workforce Scheduling. In: Jens G, Günther R (eds). Proc. of Evolutionary Computation in Combinatorial

Optimization, Springer LNCS 3906, 13-24.

Fang H, Ross P and Corne D (1994). A Promising Hybrid GA/Heuristic Approach for Open-Shop Scheduling Problems. In

Hölldobler S, Lutz C, Wansing H (eds). Proc. of the 11th European Conference on Artificial Intelligence, 590-594.

Glover F and Laguna M (1997). Tabu Search. Springer.

Kaelbling L, Littman M and Moore A (1996). Reinforcement Learning: A Survey. Journal of Artificial Intelligence Research

4: 237–285.

Kendall G, Han L, and Cowling P (2002). An Investigation of a Hyperheuristic Genetic Algorithm Applied to a Trainer

Scheduling Problem. In: Fogel D, El-Sharkawi M, Yao X, Greenwood G, Iba H, Marrow P and Shackleton M (eds).

Proc. of Congress on Evolutionary Computation 2002, IEEE Press, 1185-1190.

Kendall, G and Hussin, N (2005a). A Tabu Search Hyperheuristic Approach to the Examination Timetabling Problem at the

MARA University of Technology. In: Burke E and Trick M (eds). Proc. of selected papers from the 5th International

Conference on the Practice and Theory of Automated Timetabling (PATAT 2004), Springer LNCS 3616, 270-293.

Kendall, G and Hussin, N (2005b). An Investigation of a Tabu Search Based Hyperheuristic for Examination Timetabling.

In: Kendall G, Burke E and Petrovic S (eds). Proc. of the Multidisciplinary Scheduling: Theory and Applications

conference, 309–328.

18

Kolisch R and Hartmann S (2006): Experimental Investigations of Heuristics for RCPSP: An Update. European Journal of

Operational Research 174(1): 23-37.

Kwak B, Song N and Miller L (2005). Performance Analysis of Exponential Backoff, IEE-ACM Transactions on

Networking 13(2): 343-355.

Laguna M, Marti R and Campos V (1999). Intensification and Diversification with Elite Tabu Search Solutions for the

Linear Ordering Problem. Computers & Operations Research 26 (12): 1217-1230.

Mladenovic N and Hansen P (1997). Variable Neighborhood Search. Computers & Operations Research 24 (11): 1097-1100.

Miller R (1997). Beyond ANOVA: Basics of Applied Statistics. Texts in Statistical Science Series, Chapman Hall, London.

Nareyek A (2004). Choosing Search Heuristics by Non-stationary Reinforcement Learning. In: De Sousa J (eds). Applied

Optimization 86: 523-544.

Pinedo M and Chao X (1999). Operations Scheduling with Applications in Manufacturing and Services. McGraw-Hill, New

York.

Remde S (2009). Enhanching the Performance of Heuristic Search. PhD Thesis, University of Bradford, UK.

Remde S, Cowling P, Dahal K and Colledge N (2007). Exact/Heuristic Hybrids using rVNS and Hyperheuristics for

Workforce Scheduling. In: Cotta C, van Hemert J (eds). Proc. of Evolutionary Computation in Combinatorial

Optimization. LNCS 4464, 188-197.

Remde S, Cowling P, Dahal K, and Colledge N (2009). Binary Exponential Back Off for Tabu Tenure in Hyperheuristics.

In: Cotta C, Cowling P (eds). Proc. of Evolutionary Computation in Combinatorial Optimization. LNCS 5482, 109-

120.

Rolland E, Schilling D and Current J (1996). An Efficient Tabu Search Procedure for the p-median Problem. European

Journal of Operational Research 96: 329–342.

Toth P and Vigo D (2001). The Vehicle Routing Problem. SIAM Monographs on Discrete Mathematics and Applications,

Philadelphia, PA, USA.

http://www.citeulike.org/user/lillejul/article/4142818

19

Fig 1. Resource allocators. The dotted subset of resources possessing the required skill is chosen by a Resource allocator.

The assignment (R2, R1) is chosen as the best insertion.

Define:
LLHi is a low level heuristic i (whose application leads to a valid solution).
Δ(S,LLHi) returns the change in the objective function resulting from applying low level heuristic LLHi to

solution S.
apply(S,LLHi) returns the new solution we get after applying low level heuristic LLHi to solution S.

tabui is the Tabu tenure of LLHi (0≤ Tabui≤backoffi)
backoffi is the backoff value of LLHi (backoff_min≤ backoffi)

Eligible = {LLHi: tabui=0}
backoff_min is the minimum backoff value

Initialise:
create an initial solution S (in this paper the solution S is the empty solution).
for all i:
 backoffi ← backoff_min

 choose tabui uniformly at random in {0,1,2,…, backoffi}
Iterate:
 while (Eligible ≠ {})
 bestΔ ← 0
 for each low level heuristic LLHiEligible

 if Δ(S,LLHi) > 0

 backoffi ← backoff_min
 if Δ(S,LLHi) > bestΔ

 bestΔ ← Δ(S,LLHi)
 besti ← i
 else
 if LLHi is “deemed bad” (see text)
 backoffi ← 2 * backoffi

 choose tabui uniformly at random in {0,1,2,…, backoffi}
 for each low level heuristic LLHiEligible

 tabui ← tabui – 1

 if bestΔ > 0 then
 S ← apply(S,LLHbesti)
 go to Iterate

Terminate:
 for each low level heuristic LLHi

 if Δ(S,LLHi) > 0

 S ← apply(S,LLHbesti)
 go to Iterate

Fig. 2. The Binary Exponential Back Off (BEBO) hyperheuristic.

R1

R3

Skill 1

Skill 2

R1

R2 (R1,R3)

(R2,R1)

(R2,R3)

200

300

100

Task 8

Δ fitness

20

Define:
LLHi, Δ(S,LLHi), apply(S,LLHi) as in Fig 2.

utilityi is the utility value of LLHi
Trial= {LLHi: utilityi is one of the highest x%}

Initialise:
create an initial solution S (in this paper the solution S is the empty solution).
for all i:
 utilityi ← 1

Iterate:
 bestΔ ← 0
 for each low level heuristic LLHiTrial

 utilityi ← √utilityi // negative reinforcement

 if Δ(S,LLHi) > bestΔ

 bestΔ ← Δ(S,LLHi)
 besti ← i
 if bestΔ > 0

 utilitybesti ← utilitybesti
2+1 // undo the negative reinforcement and positively reinforce

 S ← apply(S,LLHbesti)
 goto Iterate

Terminate: (same as Fig 2.)
Fig. 3. Reinforcement learning based hyperheuristic.

Define:
LLHi, Δ(S,LLHi), apply(S,LLHi) as in Fig 2.

rank(i) is the rank of the Δ(S,LLHi) in descending order.
tabui is the tabu tenure of LLHi
keep is the number of best performing low level heuristics that will not be made tabu.

Initialise:
create an initial solution S (in this paper the solution S is the empty solution).
for all i:
 tabui ← 0

Iterate:
 bestΔ ← 0
 for each low level heuristic LLHi such that tabui=0

 if Δ(S,LLHi) > bestΔ

 bestΔ ← Δ(S,LLHi)
 besti ← i
 for each low level heuristic LLHi such that tabui>0

 tabui ← tabui – 1

 for each low level heuristic LLHi such that (tabui=0 and Δ(S,LLHi)  0 and rank(i) > keep)
 tabui ← tabu_tenure // or choose tabui randomly from {1,2,…, tabu_tenure}

 if bestΔ > 0

 S ← apply(S,LLHbesti)
 goto Iterate

Terminate: (same as Fig 2.)
Fig. 4. Tabu search based hyperheuristic.

21

Fig. 5. Comparison of hyperheuristics which yield solutions having greater than 15000 fitness on average, with respect to

CPU time and average solution quality. Each plotted point represents a parameter setting of the corresponding

hyperheuristic.

22

Fig. 6. Pareto optimal set of hyperheuristics showing non-dominated solutions with respect to average CPU time and

solution quality.

Table 1. Task selectors

Method Description

Random Tasks are ordered at random.

PriorityDesc Tasks are ordered by their priority in descending order

RealPriortiyDescending Tasks are ordered by their priority multiplied by the number of resources required in descending

order

PriorityAsc Tasks are ordered by their priority in ascending order

PrecedenceAsc Tasks are ordered by their number of precedences ascending

PrecedenceDesc Tasks are ordered by their number of precedences descending

PriOverReq Tasks are ordered by their estimated priority per hour assuming the task will take as long as the

total skill requirement

PriOverMaxReq Tasks are ordered by their estimated priority per hour assuming the task will take as long as the

maximum skill requirement

PriOverAvgReq Tasks are ordered by their estimated priority per hour assuming the task will take as long as the

average skill requirement

23

Table 2. Resource allocators. Each parameter set yields a separate resource allocation heuristic (e.g. Best 1-5; Deviation

25%).

Name Description

Best x-y Orders the available resources by their competency at the task then chooses the resources ranked from

x to y in the list. (x-y values considered are: 1-5, 6-10, 11-15, 16-20, 21-25, 26-30, 31-35, 36-40, 1-10,

11-20, 21-30, 31-40, 1-2, 3-4, 5-6, … etc, 2-3, 3-4, 4-5, …etc, 1-4, 3-6, 5-8, 7-10, … etc, 5-14, 15-24,

25-34.

Deviation x Resources complete a skill in a time dependent upon their competence. This selector attempts to find

resources that will complete the different skills of task in the same amount of time by selecting

resources with competencies that deviate x{50%, 25%, 12.5%, 6.25%} from the task’s skill
requirement.

xth Quarter This picks the x{1,2,3,4} quarter of task ranked by skill. Unlike the “Top x” task selectors, the

number chosen is proportionate to the number of resources who can do the task.

xth Eighth This picks the x{1…8} eighth of task ranked by skill.

Dynamic x This selector picks larger sets of resources for the skills requiring more effort and less to those

requiring less effort. It will create x{10, 50, 100, 1000} combinations when enumerating the

resulting sets.

All Resources Considers all possible resources (and hence is very slow).

Table 3. Summary of hyperheuristics.

Heuristic Description

rVNS The best of a selection of fast handcrafted reduced Variable Neighbourhood Search based

heuristic from a large experimental study (Remde et al, 2007).
HyperGreedy A Greedy Hyperheuristic that samples all low level heuristics at each iteration and applies the

best one.
BEBO Best A Binary Exponential Back-Off based hyperheuristic backing off all but a fixed number of the

best performing low level heuristics.
BEBO Prop A Binary Exponential Back-Off based hyperheuristic backing off all but the low level

heuristics performing within a percentage of the best performing low level heuristic.
Nareyek A Machine learning hyperheuristic based on (Nareyek, 2004) reinforcement learning

experiments which tries a fixed number of low level heuristics with the highest utility.
Sample A random hyperheuristic which tries a percentage of the low level heuristics at each iteration

and applies the best one.
SSR The Step-by-Step Reduction hyperheuristic of (Chakhlevitch and Cowling, 2005) which

removes a percentage of the poorest performing low level heuristics every few iterations.
Tabu A Tabu search based hyperheuristic that selects the best non-tabu low level heuristic and

makes a number of non-tabu poor performing low level heuristic tabu for a fixed number of

iterations.
rTabu As Tabu, with random tabu tenures.

24

Table 4. Average fitness and CPU time of each hyperheuristic and parameters. Only the best results for BEBO, rTabu, Tabu

in terms of CPU time and Fitness are shown. Full results for these hyperheuristics can be found in (Remde et al, 2009).

Results show 95% confidence intervals.

Method Average Fitness Average Time (s)
Fitness % of

HyperGreedy

Time % of

HyperGreedy

rVNS 21974.9 ±65.3 19.3 ±0.4 88.21% 0.25%

HyperGreedy 24911.3 ±69.0 7807.2 ±547.4 100.00% 100.00%

BEBO Best 1 24324.6 ±129.7 1446.1 ±69.1 97.64% 18.52%

BEBO Best 20 24993.8 ±76.8 3150.9 ±97.5 100.33% 40.36%

BEBO Prop 0.01% 24756.3 ±90.2 2341.1 ±71.8 99.38% 29.99%

BEBO Prop 0.05% 24737.2 ±77.4 2260.3 ±116.2 99.30% 28.95%

rTabu Best 5 t=50 22872.2 ±569.6 2271.5 ±94.0 91.81% 29.10%

rTabu Best 10 t=7 24459 ±84.0 4834.1 ±255.2 98.18% 61.92%

Tabu Best 5 t=50 19139.1 ±599.4 1784.8 ±110.5 76.83% 22.86%

Tabu Best 10 t=25 20143.4 ±669.9 2534.1 ±94.8 80.86% 32.46%

Nareyek 1% 18308.6 ±541.2 123.5 ±3.9 73.50% 1.58%

Nareyek 5% 21753.9 ±238.0 297.9 ±12.3 87.33% 3.82%

Nareyek 10% 22106 ±231.1 353 ±21.7 88.74% 4.52%

Nareyek 20% 24077.5 ±103.5 1436.4 ±133.2 96.65% 18.40%

Nareyek 40% 24298.4 ±83.2 1652.5 ±130.9 97.54% 21.17%

Nareyek 60% 24682 ±85.5 2899.5 ±225.1 99.08% 37.14%

Nareyek 80% 24899.4 ±68.7 4986.7 ±444.1 99.95% 63.87%

Sample 1% 732.9 ±124.6 6.2 ±1.7 2.94% 0.08%

Sample 5% 20796.4 ±305.8 317.2 ±24.1 83.48% 4.06%

Sample 10% 22422.4 ±196.7 572.8 ±47.2 90.01% 7.34%

Sample 20% 23641.1 ±100.8 1211.2 ±59.3 94.90% 15.51%

Sample 40% 24508.9 ±62.1 2598.5 ±127.1 98.38% 33.28%

Sample 60% 24730.8 ±53.6 4034.3 ±194.2 99.28% 51.67%

Sample 80% 24976.3 ±46.2 5708.9 ±269.3 100.26% 73.12%

SSR 5% t=1 20061 ±706.9 1949.9 ±63.6 80.53% 24.98%

SSR 5% t=5 22090.3 ±342.1 3997.8 ±156.7 88.68% 51.21%

SSR 5% t=10 23860.4 ±149.9 5663.7 ±359.9 95.78% 72.54%

SSR 5% t=20 24595.6 ±70.7 6099.4 ±476.8 98.73% 78.13%

SSR 10% t=1 19952.1 ±751.9 1585.5 ±41.6 80.09% 20.31%

SSR 10% t=5 19892.3 ±411.8 2678.9 ±101.3 79.85% 34.31%

SSR 10% t=10 22454.8 ±312.2 4178.9 ±153.3 90.14% 53.53%

SSR 10% t=20 23968.5 ±120.4 4847.3 ±324.3 96.22% 62.09%

SSR 20% t=1 18749.5 ±687.2 1231.9 ±44.7 75.26% 15.78%

SSR 20% t=5 17491 ±659.8 1991.8 ±73.2 70.21% 25.51%

SSR 20% t=10 18894.4 ±378.8 2824.4 ±91.1 75.85% 36.18%

SSR 20% t=20 21389.3 ±324.9 3786.8 ±194.7 85.86% 48.50%

SSR 50% t=1 18039.5 ±943.5 685.6 ±61.2 72.42% 8.78%

SSR 50% t=5 15787.8 ±719.9 1173.1 ±41.6 63.38% 15.03%

SSR 50% t=10 16460.3 ±667.0 1708.1 ±57.1 66.08% 21.88%

SSR 50% t=20 19006.9 ±610.8 2674.3 ±75.8 76.30% 34.25%

25

Table 5. Pareto optimal methods with respect to average fitness and CPU time.

Method
Average

Fitness

Average Time

(s)

rVNS 21974.9 19.3

Nareyek 1% 123.5 18308.6

Nareyek 5% 297.9 21753.9

Nareyek 10% 353.0 22106.0

Sample 10% 572.8 22422.5

Sample 20% 1211.2 23641.1

Nareyek 20% 1436.4 24077.5

BEBO Best 1 1446.1 24324.6

BEBO Best 2 1775.4 24588.6

BEBO Best 3 2043.6 24774.3

BEBO Best 10 2572.5 24782.8

BEBO Best 15 2825.4 24869.2

BEBO Best 20 3150.9 24993.8

26

Table 6. Tukey analysis of hyperheuristic methods using a 95% confidence interval. CPU times are also shown.

Category Fitness Average CPU Time Groups

BEBO Best 20 -1010.0 ████████████████ A

Sample 80% -1072.2 █████████████████████████████ A

HyperGreedy -1092.5 ██ A

Nareyek 80% -1104.4 ██████████████████████████ A

SSR 5% t=20 -1125.3 ███████████████████████████████ A

Nareyek 60% -1227.3 ███████████████ A

BEBO Prop 0.05% -1250.4 ████████████ A

Sample 60% -1305.6 █████████████████████ A

BEBO Prop 0.01% -1333.3 ████████████ A

rTabu Best 10 t=7 -1508.5 █████████████████████████ A

Sample 40% -1526.7 █████████████ A

BEBO Best 1 -1679.2 ███████ A B

Nareyek 40% -1705.4 ████████ A B

SSR 10% t=20 -1897.6 █████████████████████████ A B C

Nareyek 20% -1926.3 ███████ A B C

SSR 5% t=10 -2177.9 █████████████████████████████ A B C D

Sample 20% -2362.7 ██████ A B C D

rTabu Best 5 t=50 -2897.9 ████████████ A B C D E

Sample 10% -3486.9 ███ B C D E F

SSR 10% t=10 -3780.3 █████████████████████ C D E F

Nareyek 10% -3897.7 ██ D E F

rVNS -3957.8 D E F

SSR 20% t=20 -4087.8 ███████████████████ D E F G

SSR 5% t=5 -4212.5 ████████████████████ E F G

Nareyek 5% -4249.9 ██ E F G

Sample 5% -5022.1 ██ F G H

Tabu Best 5 t=50 -5983.4 █████████ G H I

SSR 10% t=5 -6309.9 ██████████████ H I J

Tabu Best 10 t=25 -6527.9 █████████████ H I J

SSR 20% t=10 -6968.2 ██████████████ I J

SSR 5% t=1 -6977.6 ██████████ I J

SSR 10% t=1 -7596.1 ████████ I J K

Nareyek 1% -7695.2 █ I J K L

SSR 50% t=20 -7723.6 ██████████████ I J K L

SSR 20% t=5 -8229.8 ██████████ J K L M

SSR 20% t=1 -8233.9 ██████ J K L M

SSR 50% t=10 -8969.4 █████████ K L M

SSR 50% t=1 -9603.9 ████ L M

SSR 50% t=5 -9968.9 ██████ M

Sample 1% -25098.6 N

27

Fig 1. Resource allocators. The dotted subset of resources possessing the required skill is chosen by a Resource allocator.

The assignment (R2, R1) is chosen as the best insertion.

Fig. 2. The Binary Exponential Back Off (BEBO) hyperheuristic.

Fig. 3. Reinforcement learning based hyperheuristic.

Fig. 4. Tabu search based hyperheuristic.

Fig. 5. Comparison of hyperheuristics which yield solutions having greater than 15000 fitness on average, with respect to

CPU time and average solution quality. Each plotted point represents a parameter setting of the corresponding

hyperheuristic.

Fig. 6. Pareto optimal set of heuristics showing non-dominated solutions with respect to average CPU time and solution

quality.

Table 1. Task selectors.

Table 2. Resource allocators. Each parameter set yields a separate resource allocation heuristic (e.g. Best 1-5; Deviation

25%).

Table 3. Summary of hyperheuristics.

Table 4. Average fitness and CPU time of each hyperheuristic and paramaters. Only the best results for BEBO, rTabu, Tabu

in terms of CPU time and Fitness are shown. Full results for these hyperheuristics can be found in (Remde et al, 2009).

Results show 95% confidence intervals.

Table 5. Pareto optimal hyperheuristics with respect to average fitness and CPU time.

Table 6. Tukey analysis of hyperheuristic methods using a 95% confidence interval. CPU times are also shown.

