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In this paper, we develop a model for the timing and deterrence of terrorist attacks due to exogenous
dynamics. The defender moves first and the attacker second in a two-stage game which is repeated over
T periods. We study the effects of dynamics of several critical components of counter-terrorism games,
including the unit defence costs (eg, immediately after an attack, the defender would easily acquire defensive
funding), unit attack costs (eg, the attacker may accumulate resources as time goes), and the asset valuation
(eg, the asset valuation may change over time). We study deterministic dynamics and conduct simulations
using random dynamics. We determine the timing of terrorist attacks and how these can be deterred.
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1. Introduction

Terrorism threats remain substantial. Essential for terrorism

assessment is the understanding of the attacker’s and

defender’s objectives, their capacities to attack and defend,

and determining how attacks can be deterred as time

progresses. We model objectives as utilities, distinguish

between unit costs of defence and attack, allow different

asset valuations for the defender and attacker, and allow

for an inherent defence level. The interplay of these para-

meters causes a variety of different equilibrium strategies

which are analysed.

We develop a model for the timing and deterrence

of terrorist attacks in a T-period game. The defender builds

the defence of infrastructures over time. We assume that

the terrorist takes this defence information as given when

choosing its attack strategy at each period. Accordingly,

in each period, we analyse a two-stage game where the

defender moves in the first stage, and the attacker moves in

the second stage. Such a game is usually more descriptive

than a simultaneous game where the players are unaware

of each other’s actions.

The two-stage game is played T times referred to as

periods. The time between periods is assumed to be

sufficiently longer than the time between stages so that

each two-stage game can be solved with backward

induction for each period. This means that the players

are myopic and boundedly rational in the sense that they

only consider one two-stage game in each period. As

parameters change through time, the players’ strategies

change, as we illustrate. Future research may consider

how players jointly consider a finite or infinite number of

future time periods, which is more complicated to analyse,

and may in some cases exceed the players’ capabilities.

We consider an asset which may be a single asset,

a collection of assets, and even an entire infrastructure

which the defender seeks to protect and the attacker seeks

to destroy. See Bier et al (2007) for a more explicit focus

on what to protect among a collection of locations, where

the attacker must choose one location to attack. See

Zhuang and Bier (2007) for how a defender strikes a

balance between protecting against terrorism and protect-

ing against natural disaster.

For a recent survey of work that examines the strategic

dynamics of governments versus terrorists, see Sandler and

Siqueira (2009). They survey advances in game-theoretic

analyses of terrorism, such as proactive versus defensive

countermeasures, the impact of domestic politics, the

interaction between political and militant fractions within

terrorist groups, and fixed budgets. Further, Brown et al

(2006) have focused on interdiction models, attacker-

defender models, and related defender-attacker-defender

models. They assume a hierarchical structure for decision

making. In a defender-attacker-defender model, the defen-

der first invests in protecting the infrastructure, subject to

a budget constraint. Then, a resource-constrained attack
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is carried out. Finally, the defender operates the residual

system as best possible. They exemplify with border

control, the US strategic petroleum reserve, and electric

power grids.

Raczynski (2004) simulates the dynamic interactions

between terror and anti-terror groups. Feichtinger and

Novak (2008) use dynamic game theory to study the

intertemporal strategic interactions of Western govern-

ments and terror organizations. They illustrate long-run

persistent oscillations. Berman and Gavious (2007) study a

leader follower game where the State provides counter-

terrorism support across multiple metropolitan areas to

minimize losses, while the terrorist attacks one of the

metropolitan areas to maximize his utility. Berrebi and

Lakdawalla (2007) consider for 1949–2004 how terrorists

seek targets in Israel, responding to costs and benefits, and

find that long periods without an attack signal lower risk

for most localities, but higher risk for important areas.

Barros et al (2006) apply parametric and semi-parametric

hazard model specifications to study durations between

ETA’s terrorist attacks which express seasonal variations

with increase in summer and decrease with respect to, for

example, deterrence and political variables. Telesca and

Lovallo (2006) find temporal correlations in attacks. That

is, a terror event is not independent from the time elapsed

since the previous event, except for severe attacks which

approach a Poisson process. Clauset et al (2007) consider

the frequency of severe terrorist events. Udwadia et al

(2006) consider the dynamic behaviour of terrorists, those

susceptible to terrorist and pacifist propaganda, and

pacifists, and military/police intervention to reduce the

terrorist population, and nonviolent, persuasive interven-

tion to influence the susceptibles to become pacifists.

Hausken and Zhuang (2011a) analyse how a government

allocates its resources between attacking in order to

downgrade a terrorist’s resources, and defending against

a terrorist attack. Analogously, the terrorist allocates its

resources between attacking a government’s asset and

defending its own resources. Hausken and Zhuang (2011b)

study a two-period game between a government, and a

terrorist who decides whether to stockpile attack resources

from the first to the second period.

Some research has focused on investment substitutions

across time. First, Enders and Sandler (2003) suggest that

a terrorist may compile and accumulate resources during

times when the defender’s investments are high, awaiting

times when the defender may relax his efforts and choose

lower investments. Second, Keohane and Zeckhauser

(2003, pp 201, 224) show that ‘the optimal control of

terror stocks will rely on both ongoing abatement and

periodic cleanup’ of ‘a terrorist’s “stock of terror capacity” ’.

Enders and Sandler (2005) use time series to show that

little has changed in overall terrorism incidents before and

after 9/11. Using 9/11 as a break date, they find that

logistically complex hostage-taking events have fallen as a

proportion of all events, while logistically simple, but

deadly, bombings have increased as a proportion of deadly

incidents. Bandyopadhyay and Sandler (2011) consider the

interaction between preemption and defence. For example,

high-cost defenders may rely on preemption, while too

little preemption may give rise to subsequent excessive

defence.

Hausken et al (2009) consider a defender which chooses

tradeoffs between investments in protection against

natural disaster only, protection against terrorism only,

and all-hazards protection, allowing sequential or simulta-

neous moves. Similarly, Zhuang and Bier (2007) study the

balance between natural disaster and terrorism, where

either the defender moves first (and the attacker second), or

they move simultaneously. Levitin and Hausken (2008)

consider a two-period model where the defender, moving

first, distributes its resource between deploying redundant

elements and protecting them from attacks. Hausken

(2008) considers a terrorist which defends an asset which

grows from the first to the second period. The attacker seeks

to eliminate the asset optimally across the two periods.

Section 2 develops a model where the defender moves

first and the attacker moves second. Section 3 analyses the

one-period, two-stage model applying backward induction.

Section 4 presents simulations for T-period games. In

particular, the defender may bounce back after an attack

due to a decrease in its unit defence cost. We consider

random dynamics of minimal unit defence costs after each

attack, random dynamics of unit defence costs in each

period, repeated attacks assuming deterministic dynamics

of the attacker’s unit cost, repeated attacks assuming

random dynamics of attacker’s unit cost, and repeated

attacks due to effects of the dynamics of asset valuation.

Section 5 discusses the assumptions and characteristics.

Section 6 concludes.

2. The model

2.1. Notation

T number of time periods

t time period, t¼ 1, . . . ,T

dt defender’s effort protecting the asset in

period t, dtX0

At attacker’s effort in period t, AtX0

ct inherent defence level in period t; for

example, the sunk cost or carried-over

defence from history

Pt(dt, At) probability of asset damage in period t

bt defender’s unit cost of effort in period t

Bt attacker’s unit cost of effort in period t

vt defender’s valuation of the asset

Vt attacker’s valuation of the asset

ut (dt, At) defender’s expected utility in period t
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Ut (dt, At) attacker’s expected utility in period t

At (dt) attacker’s best response function; that is,

AtðdtÞ � arg maxAtX0 Utðdt; AtÞ

2.2. Assumptions

For the probability of damage, we consider the common

ratio form (Tullock, 1980; Skaperdas, 1996; Amegashie,

2006; Zhuang and Bier, 2007, pp 981, 983) contest success

function,

Ptðdt; AtÞ ¼
At

At þ dt þ ct
ð1Þ

where qPt/qAt40 and qPt/qdto0. We have included ct
which is the inherent defence level at the beginning of

period t, which may depend on the histories of the players’

strategies {dt�1, dt�2, . . . } and {At�1,At�2, . . . }, and da-

mage {Pt�1,Pt�2, . . . }.

The defender and attacker value the asset at vt and Vt,

respectively, simplistically referred to as the asset

valuations. The probability that the asset is not

damaged is 1�Pt(dt, At), which the defender maximizes,

accounting for the valuation vt and defence expenditures

btdt. Analogously, the attacker maximizes the damage

accounting for the valuation Vt, and attack expenditures

BtAt. The defender’s and attacker’s expected utilities in

period t are

utðdt; AtÞ ¼ ½1� Ptðdt; AtÞ�vt � btdt

¼ dt þ ct

At þ dt þ ct
vt � btdt

Utðdt; AtÞ ¼ Ptðdt; AtÞVt � BtAt

¼ At

At þ dt þ ct
Vt � BtAt ð2Þ

Each actor has a benefit term with vt or Vt, and a cost

term with dt or At. Since each actor weighs benefits against

costs, we do not impose constraints on dt and At. There

may be cases where an actor has scarce resources. For such

cases we assume that rational actors are somehow able,

for example, through taking up loans, to furnish the

resources needed for strategic determination of dt and At.

We assume common knowledge so that both players know

all parameters and the game structure.

2.3. Problem formulation

To determine the Subgame Perfect Nash Equilibrium we

assume that the defender chooses dt in the first stage. The

attacker observes dt and chooses At in the second stage.

The game is solved with backward induction.

Definition 1 A strategy pair, (dt
S,At

S ) is a Subgame

Perfect Nash Equilibrium if and only if

AS
t ¼ AtðdS

t Þ ¼ arg max
AtX0

UtðdS
t ; AtÞ ð3Þ

and

dS
t ¼ arg max

dtX0
utðdt; AtðdtÞÞ ð4Þ

3. Solving the two-stage game

For any given defence level dt, maximizing the attacker’s

utility Ut(dt,At) specified in (2) gives the attacker best-

response function.

AtðdtÞ ¼ arg max
AtX0

Utðdt; AtÞ

¼

0 if VtpBtct

0 if Vt4Btct; and

dtXdt ¼ Vt

Bt
� ctffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Vt

Bt
ðdt þ ctÞ

q
� dt � ct otherwise

8>>>>><
>>>>>:

ð5Þ

where �dt is the minimum level of defensive investment

required to deter the attacker altogether. Observe that �dt
increases in the attacker’s valuation Vt, increases if the

attacker’s unit attack cost Bt decreases, and the defender’s

inherent defence level ct is subtracted. If �dto0, which

implies VtpBtct, the inherent defence level itself deters the

attacker. This occurs when the attacker’s valuation divided

by his unit attack cost is lower than the inherent defence

level as shown in the first line in (5). This implies neither

defence nor attack. The second line in (5) expresses that

if Vt4Btct, then the attacker will be deterred in the

second stage by the defender’s first-stage defence larger

than a threshold �dt . This implies defence but no attack.

The third line in (5) expresses the interior solution where

the defender’s first-stage defence is moderately high (not

deterrent), after which the attacker chooses a positive

attack in the second stage.

Substituting the attacker’s best response At(dt) in (5) into

the defender’s optimization problem (4), Table 1 shows the

solution for the Subgame Perfect Nash Equilibrium.

There are four exhaustive and mutually exclusive

solution forms. Cases 2 and 3 are not possible if the

right-hand side of the respective inequality is less than the

left-hand side.

(1) When the attacker’s asset valuation is small compared

to the difficulty of attack and inherent defence level,

VtpBtct, the attacker does not attack. So we have zero

attacker effort and zero defence level at equilibrium.

(2) When the attacker’s valuation is large compared with

the difficulty of attack and inherent defence level,

728 Journal of the Operational Research Society Vol. 63, No. 6



VtXBtct, but the defender’s valuation is at least twice

(weighted by cost units Bt and bt) larger than the

attacker’s, Vtp(Btvt)/(2bt), the defence level is positive,

and the attacker is deterred by this positive defence

level. This means that the attacker can be deterred with

a positive defence level at some Subgame Perfect Nash

equilibrium; that is, there exists some Subgame Perfect

Nash equilibrium (dt
S, At

S ) such that At
S¼ 0 and dt

S40.

(3) When the attacker’s valuation is larger than in cases 1

and 2, expressed with BtMax{ct, (vt)/(2bt)}pVt, but not

very large Vtp(Btvt
2)/(4ctbt

2), both the defence and

attack levels are positive. The attacker attacks despite

meeting resistance.

(4) When the attacker’s valuation is very large, that is,

larger than in cases 1, 2, and 3, the defence level is zero,

which gives a positive attack. The corresponding con-

dition is VtXBtMax{ct, (vt)/(2bt), (vt
2)/(4ctbt

2)} in order

for the four conditions to be collectively exhaustive and

mutually exclusive. The three terms within the Max

sign are simply the right-hand sides of the inequalities

for cases 1, 2, 3. Case 4 is less common and means that

the defender is so inferior and overwhelmed that it

removes its defence.

As the attacker’s valuation increases from case 1 to case 4

in Table 1, the attacker gradually acquires a more superior

position. When the unit attack cost Bt and/or the defence

level ct are zero, case 1 is impossible; and when Bt and/or ct
are infinity, case 1 is guaranteed. A high Bt/bt specifies a

disadvantaged attacker in terms of unit costs, and a high

Btvt/2bt additionally specifies high defender valuation vt,

which deters the attacker. A low ct causing a high

Btvt
2/4ctbt

2 induces attack and defence if Vt is below, and

if Vt is above the defender withdraws from the over-

whelming attack.

Example Assuming Vt¼ 50, vt¼ 50, ct¼ 1, and bt¼ 1

imply that Bt¼ 51 gives d t
S¼At

S¼ 0 (case 1), Bt¼ 2 gives

d t
S¼ 24 and At

S¼ 0 (case 2), Bt¼ 1 gives d t
S¼ 11.5 and

At
S¼ 12.5 (case 3), Bt¼ 0.07 gives dt

S¼ 0 and At
S¼ 25.7

(case 4). Hence, first, when the unit attack costs are

extremely high (above 50), no attack occurs and therefore

no defence is needed (the inherent defence level provides

sufficient defence). Second, when the unit attack costs are

high, attacks can be deterred by positive defence, while when

the unit attack costs are low, attacks cannot be deterred.

Finally, when the unit attack costs are extremely low (below

0.08), the defender gives up.

4. The T-period game

4.1. The defender bounces back after an attack

We assume that the time between periods is sufficiently

longer than the time between stages so that each two-stage

game can be solved with backward induction. This means

that the players are myopic and boundedly rational and

only consider one two-stage game in each time period.

They thus maximize ut and Ut, respectively, in each period.

Assume that BsMax{cs, vs/2bs}pVs so that an attack

occurs in period s. Although several parameters may

change after an attack, we consider the defence unit cost bt
as the most likely to change substantially. Hence assume

for simplicity that Bt¼Bs, ct¼ cs, and vt¼ vs remain fixed

for all tXs, while the defence unit cost bt changes as a result

of the attack. This is because after an attack in period s the

defender would more easily acquire defensive funding from

various sources which, together with political will, decrease

the unit defence cost bt. With a significantly lower bt, the

condition BtMax{ct, vt/2bt}pVt is no longer satisfied.

Assume that bt follows the form for tXs:

bt ¼
bs if t ¼ s
bs � ½bs � bmin�e�Fðt�s�1Þ if sotpt�

�
ð6Þ

where bmin is the minimum value that bt acquires after an

attack As in period s, and F40 regulates how quickly bt
bounces back to its original level bs due to defence rein-

forcement. Since Limt-Nbt¼ bs and qbt/qt40, a second

Table 1 Solution to Subgame Perfect Nash equilibrium

Cases Conditions d t
S At

S ut
S Ut

S Scenarios

1 VtpBtct 0 0 vt 0 No defence/attack

2 BtctpVtp
Btvt

2bt

Vt

Bt
� ct 0 vt � bt

Vt

Bt
� ct

� �
0 Attacker deterred

3 BtMax ct;
vt

2bt

� �
pVtp

Btv
2
t

4ctb2t

Btv
2
t

4b2t Vt
� ct

vt

2bt
� Btv

2
t

4b2t Vt

Btv
2
t

4btVt
þ btct Vt �

Btvt

bt
þ B2

t v
2
t

4b2t Vt
Defence/attack

4 VtXBtMax ct;
vt

2bt
;

v2t
4ctb2t

� �
0

ffiffiffiffiffiffiffiffiffi
Vtct

Bt

r
� ct

ffiffiffiffiffiffiffiffiffi
Btct

Vt

r
vt

ffiffiffiffiffi
Vt

p
�

ffiffiffiffiffiffiffiffiffi
Btct

p� �2
No defence

K Hausken and J Zhuang—Timing and deterrence of terrorist attacks 729



attack eventually occurs in period t� determined by the

smallest t¼ t�such that BtMax{ct, vt/2bt}pVt (see case 3 in

Table 1) which, when ctovt/2bt, implies

t� ¼ sþ 1þ 1

F
Ln

bs � bmin

bs � Btvt=2Vt

� �	 

ð7Þ

where Jzn is the least integer that is not less than z. When

F¼ 0, bt¼ bmin(As) for all t4s and the attacker is always

deterred. When F¼N, bt¼ bs for all t4s and the attacker

attacks in each subsequent period. Figure 1 shows the

five equilibrium values ut, Ut, dt, At, and bt as functions

of time t when Vt¼ vt¼ 2, Bt¼ ct¼ 1, bs¼ 0.6, s¼ 0,

bmin¼ 0.3, and F¼ 0.25.

Figure 1 shows that due to the low defence cost, the

defence level is high at 1 to fully deter the attacks for the

first five periods after the original attack, which corre-

sponds to case 2 of Table 1. The defender’s unit defence

cost bt increases gradually through the six periods

according to (6), which causes the defender’s utility to

decrease. The next attack happens in period t� ¼ 6, when

the unit defence cost grows to bt� ¼ 0.51440.5 such that

the inequality Bt�Max{ct�, vt�/2bt�}¼ 1.945p2¼Vt� no

longer holds. The defender’s defence dt stays at 1 for the

first five periods, and drops to 0.89 in period 6 reflecting

that when the defence is sufficiently expensive, the

defender, moving first in period 6, accepts some asset

damage rather than protecting the asset more thoroughly.

In the first five periods the attacker refrains from attack

earning zero utility, and attacks in period 6 earning a

positive utility.

4.2. Random dynamics of minimal unit defence costs after
each attack

Assume that once an attack happens in period t, bmin is

determined by Max[0, N(0.5bt, 0.5bt)] in period tþ 1, that

is, a normal random variable with a mean and standard

deviation both equalling 0.5bt. The motivation for this

randomness is that bmin in (6) and (7) is determined by a

political process which can be quite unpredictable, but may

well fluctuate as in a Gaussian distribution. Then the unit

defence cost and next attack time will be determined by (6)

and (7), respectively. Figure 2 shows this dynamics. Periods

1–6 are equivalent in Figures 1 and 2. After the attack in

period 6, the defender unit cost drops to 0.19 in period 7,

drawn from the random distribution. Thereafter no attack

occurs and no random draws are made in periods 7–12. In

period 13, an attack happens because the defence is no

longer cheap (bt40.5). In period 14, the minimal defence

cost drops to 0.42 due to the random draw, which deters

attacks in only three periods (periods 14–16). Observe how

bmin fluctuates through time, reflecting different defender

reactions after each attack.

4.3. Random dynamics of unit defence costs in each period

In this section, we assume the unit defence cost bt is

randomly given by Max[N(b 0t, 0.2b
0
t ), 0] in each time

period; that is, the maximum of 0 and a normal random

number with mean b0t and standard deviation 0.2b 0t. b
0
t is

determined by (6) setting s¼ t when an attack occurs,

where b 0t can drop as a result of an attack before a new

random draw of bt. We use the same parameter values as in

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time Periods t

ut Defender Utility

Ut Attacker Utility

dt Equilibrium Defense

At Equilibrium Attack

bt Unit Defense Cost

Figure 1 Relationship between equilibrium and unit defence costs of deterministic dynamics.
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Section 4.1. Starting with b0¼ 0.6, an attack occurs when

t¼ 0 causing b01¼ bmin¼ 0.3.

Thus b1 follows from drawing from Max[N(0.3,

0.2 � 0.3), 0]. Equation (6) is used to determine b 02 and

b2 is determined by a new draw, and analogously for

periods 3, 4, etc. Figure 3 shows one simulation result. In

period 5 the unit defence cost reaches a high value

bt¼ 0.5440.5 and as a result the second attack happens.

In period 6, the unit defence cost b6 is drawn from

Max[N(0.3, 0.2 � 0.3), 0], following the same distribution

as b1; and so on and so forth. In period 9, bt¼ 0.53, causing

a third attack. The fourth and fifth attacks happen in

periods 12 and 16, respectively.

4.4. Repeated attacks assuming deterministic dynamics
of attacker’s unit cost Bt

We consider T¼ 100 and we use the following formula to

determine the unit attack cost Bt:

Bt ¼
10 if t ¼ 1
0:95Bt�1 if t41; andAt�1 ¼ 0
10 if t41; andAt�140

8<
: ð8Þ

That is, we start with a unit attack cost of 10. If the

attacker effort is zero in the previous period, we assume

the attacker accumulates more resources over time and

therefore the unit cost decreases by 5%. Otherwise, if the

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Time Periods t

ut Defender Utility

Ut Attacker Utility

dt Equilibrium Defense

At Equilibrium Attack

bt Unit Defense Cost

Figure 2 Repeated attacks due to the random dynamics of minimal unit defence costs.

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Time Periods t

ut Defender Utility

Ut Attacker Utility

dt Equilibrium Defense

At Equilibrium Attack

bt Unit Defense Cost

Figure 3 Repeated attacks due to the random dynamics of unit defence costs.
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attacker effort is positive in the previous period, Bt returns

to the initial level 10. Figure 4 illustrates when Vt¼ 50

and vt¼ 50, ct¼ 1, bt¼ 1 for all t¼ 1, . . . ,T.

From Figure 4, we see the following: first, the defence

level is always positive because of the high defender asset

valuation. Second, when the unit attack cost decreases, the

defender has to increase its defence to keep deterring

the possible attacks. Third, once the unit attack cost

drops below a threshold such that VtXBtvt/2bt, an attack

happens. The deterministic dynamics in (8) is such that

the unit attack cost decreases gradually, and as a result a

modest attack happens once the unit attack cost reaches a

threshold. This is consistent with practical observations

where attacks are often modest compared with the vast

amounts of resources allocated for example to military

defence budgets. Finally, after an attack happens, the unit

attack cost returns to a high level and a new cycle happens.

In this section we assume no dynamics for bt, and hence

a low dt occurs after an attack and is sufficient since Bt is

so large.

4.5. Repeated attacks assuming random dynamics of
attacker’s unit cost Bt

This section includes a random error term expressed with

the normal distribution N(0, 1). We consider T¼ 100 and

we use the following formula to determine the unit attack

cost Bt:

Bt ¼
10 if t ¼ 1
Maxf0; 0:95Bt�1 þNð0; 1Þg if t41; andAt�1 ¼ 0
Maxf0; 10þNð0; 1Þg if t41; andAt�140

8<
:

ð9Þ

where the Max function prevents negative Bt. The unit

attack cost can fluctuate stochastically as in (9) due to

many reasons, such as random influx of monetary

support, or random freezing of terrorist assets. Using

the same parameter values as in Section 4.4, see Figure 5

for illustration. Comparing Figures 4 and 5, we see how

the randomness in Figure 5 changes the periodicity of

attacks, as well as the levels of attacks and defences.

Now substantial attacks are possible due to some

sudden drop of the unit attack cost. This reflects many

real-world scenarios which have occurred and may

occur in the future.

4.6. Repeated attacks due to effects of the dynamics of
asset valuation

Assume that the attacker’s asset valuation decreases as

a result of the success of a previous attack, while the

defender’s target valuation remains the same, as expressed

with

Vt ¼ Vt�1e
�Pt�1ðdt�1;At�1Þ ð10Þ

The motivation for this assumption is that attacking

the same object over and over again, regardless of whether

the object is an asset, an infrastructure, or an opponent,

becomes less interesting if the object is successfully attacked

each time. Then using the same parameter values as in

Section 4.4, we get the results in Figure 6.

Figure 6 tells us that the attacker’s valuation decreases

to around 25 after the attacks in the first two periods.

Thereafter the attacker becomes less interested in the asset,

and is fully deterred by the defence dt¼ 24.

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

40

45

50

Time Periods t

ut Defender Utility

Ut Attacker Utility

dt Equilibrium Defense

At Equilibrium Attack

Bt Unit Attack Cost

Figure 4 Relationship between equilibrium attacker efforts and unit attack costs of deterministic dynamics.
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5. Discussion

The key feature of this paper is to study that the terrorists

can accumulate assets at some rates. In practice, the

measurable factors determining the speed to accumulate

assets may include: size, structure and organization of

terrorist organization, competence within the terrorist

organization, popularity among the supporters, current

asset level, historical terrorism activities, factors of

competing terrorism organizations, and the ability of the

government to impact the terrorist’s asset accumulation.

In this paper we assume that the attacker costs are linear

in the attack effort (ie, marginal attack cost is a constant).

This is a reasonable assumption when the attack effort is

in the normal range. In practice, when the attack effort is

large, the marginal attack costs may increase in the attack

effort (eg, running out of willing suicide bombers). Taking

this into account, we expect that at equilibrium, the

terrorist’s utility and attack effort would be weakly smaller,

and the defender’s utility and defence would be weakly

larger.

As mentioned in Section 2, the inherent defence could be

either sunk cost (such as personnel expense, which cannot

be carried over to the next period), or carried-over defence

(eg, infrastructure building) which could depend on the

histories of the players’ strategies and damage. For simpli-

city, this paper focuses on the sunk cost but does not study

the carried-over case, which has been modelled in Zhuang

et al (2010).

As mentioned in Section 3, when the attacker’s valuation

is very large, the case 4 of the solution may happen, where

the defender removes its defence. This case arises when the
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Figure 5 Relationship between equilibrium attacker efforts and unit attack costs of random dynamics.
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defender’s contest success against a superior terrorist is

so low that the defence cost is not justified. Military history

is replete with examples where defenders flee from superior

attackers or invaders. For example, one defending warship

does not stand much chance against 100 invading warships.

In most terrorism cases to date terrorists have not been that

superior, and terrorists have usually not attacked inferior

defenders. That is, the terrorist’s valuation is usually

not sufficiently large compared to the defender’s target

valuation. However, case 4 may well become more likely

in the future and we keep it for theoretical completeness.

6. Conclusion

We develop a model for the timing and deterrence of

terrorist attacks in a T-period game due to exogenous

dynamics. The defender controls an asset which is under

repeated attacks by a terrorist. The defender’s objective is

to deter attacks. The agents have different unit costs of

defence and attack, different asset valuations, and we allow

for an inherent defence level. A defender usually builds

infrastructures over time. The defender thus moves first

and the attacker second in a two-stage game. This gives

four cases which are analysed analytically, that is, neither

defence nor attack (if the attacker’s valuation is low),

attacker deterred, joint defence and attack, and no defence

(if the defender is inferior). We analyse how the four

cases depend on the parameters. We study deterministic

dynamics and conduct simulation using random dynamics.

We determine the timing of terrorist attacks.

Repeating the two-stage game, first we allow the

defender to bounce back after an attack, caused by a drop

in the unit defence cost to a minimum with subsequent

concave increase to its initial level before the attack.

Second, we let the minimum unit defence cost, after an

attack, be drawn from a Gaussian distribution, before

subsequent increase, and consider repeated attacks through

time. Third, we let the unit defence cost be drawn randomly

in each period, with drop to a minimum after each attack.

Fourth, we let the unit attack cost be initially high, after

which it decreases gradually, for example, caused by

incoming funding. This causes the defence to increase to

ensure deterrence, but an attack eventually occurs as the

attacker grows resourceful. The attack drains resources

which increases the unit attack cost, and enables the

defender to re-establish its deterrence. Fifth, we allow the

unit attack cost to decrease stochastically which allows

more substantial attacks. Finally, we let the attacker’s

asset valuation decrease as a result of previous successful

attacks, which makes deterrence easier.
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