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Optimizing construction project scheduling has received a considerable amount of attention over the
past 20 years. As a result, a plethora of methods and algorithms have been developed to address specific
scenarios or problems. A review of the methods and algorithms that have been developed to examine
the area of construction schedule optimization (CSO) is undertaken. The developed algorithms for
solving the CSO problem can be classified into three methods: mathematical, heuristic and metaheuristic.
The application of these methods to various scheduling problems is discussed and implications for future
research are identified.
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Introduction

Scheduling the execution processes for a construction

project is a complex and challenging task (König and

Beißert, 2009). The selection of resources (eg, labour, plant

and equipment) is the most important part of scheduling

and should be considered incongruence with site restric-

tions and the work to be undertaken (Jaśkowski and

Sobotka, 2006). As projects are unique in nature, the

creation of a schedule for construction tasks by a planner,

for example, should consider an array of conditions such as

technological and organizational methods and constraints,

as well as the availability of resource to ensure that a

client’s needs and requirements in terms of time, cost and

quality are met (Jaśkowski and Sobotka, 2006).

Construction project scheduling has received a consider-

able amount of attention over the last 20 years (eg,

Shanmuganayagam, 1989; Adeli and Karim, 1997; Hegazy,

1999a; Zhang et al, 2006d; Fang, 2012). A plethora of

methods and algorithms have been developed to address

specific scenarios or problems, particularly significant

practical issues such as:

K scheduling with uncertain estimates on activity durations;

K integrated planning and scheduling and resource

allocation; and

K scheduling in unstructured or poorly formulated

circumstances.

Fundamentally, the construction schedule optimization

(CSO) problem is a subdivision of the project scheduling

optimization problem. Many techniques and algorithms

used for solving the project scheduling problem can be

directly applied to the CSO problems. A detailed review of

the project scheduling can be found in Willis (1986), Icmeli

et al (1993), Ozdamar and Ulusoy (1995), Herroelen

(2005), Lancaster and Ozbayrak (2007) and Hartmann

and Briskorn (2010). While, different projects have varying

features, so does the CSO problem. Construction projects

are unique in nature and each has their own site

characteristics, weather condition, and crew of labour

and fleet of equipment. As a result, it is difficult to

accurately predict the exact duration of each activity. The

CSO problem involves the scheduling of construction

activities subjected to precedence and/or resource con-

straints. The aim of the CSO is to determine a feasible

schedule of these activities to achieve certain predefined

objective, for example, the shortest project duration, lowest

cost or highest profit subject to the problem constraints.

Against this contextual backdrop, this paper provides a

review of techniques and algorithms that have been

developed to address the CSO problem.

Construction scheduling problems

Construction scheduling is concerned with optimally

sequencing activities over time and allocating resources

accordingly. The duration criterion is a critical factor taken

into account by a client when evaluating and selecting bids

with the project deadline normally being pre-specified.
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Contractors always strive to minimize the project duration

so as to obtain an advantage during a bid’s evaluation.

For example, they may ‘crash’ a project’s duration (ie, the

shortest possible time for which an activity can be

scheduled) by allocating more resources (if sufficient

resources are available) to expedite construction activities.

However, crashing a project’s duration invariably increases

the cost, as additional resources are required. This is due to

the interdependency that exists between time and cost. For

example, compressing a project’s duration will lead to an

increase in direct costs (plant and equipment, materials and

labour cost) and a decrease in indirect costs (project

overhead), and vice versa (Kasprowicz, 1994; Laptali et al,

1997; Nkasu and Leung, 1997; Wang and Huang, 1998).

To be successful in a bid evaluation, cost is also a factor

that should be considered by a planner. During the con-

struction phase, the cost for material, plant and equipment

and labour are classified as direct costs, while insurances

and taxes, for example, are indirect costs. Typically clients,

particularly developers, aim to minimize project cost and

duration in order to reduce their cost of finance and

maximize their return on capital. For contractors, mini-

mizing cost increases their profit and an earlier project

completion reduces the risk of inflation and labour shortage

(Ng and Zhang, 2008). Project scheduling should therefore

consider time and cost simultaneously as a ‘trade-off’ exists.

Thus, the original single objective optimization problem (ie,

optimal time or cost) is shifted to a bi-objective optimiza-

tion problem (ie, optimal time–cost). The construction

time–cost optimization problem has been examined exten-

sively in the construction engineering and management

literature (eg, Siemens, 1971; Tamimi and Diekmann, 1988;

Que, 2002; Rogalska et al, 2008; Wu et al, 2009; Yu et al,

2010; Wongwai and Malaikrisanachalee, 2011).

‘Crash duration’ is a commonly used method to expedite

the construction process. If a client, for example, requires

their project to be completed earlier, a contractor may

provide additional resources to shorten the duration of

designated activities. As previously noted, for this to occur,

resources need to be readily available. In practice, this

assumption is often deemed to be unrealistic, as construc-

tion projects are subjected to constraints that play a key

role in determining their schedule, for example, activity

dependency, limited working area, information availability

(Sriprasert and Dawood, 2003).

Activity dependency, time, cost and resources are the

constraints normally considered when scheduling under

the auspices of traditional project management. Solutions

to this optimal scheduling problem with or without

consideration of these constraints vary (Toklu, 2002).

Activity dependency or precedence relationship is the

most basic constraint that exists in construction projects.

In a construction process, an activity cannot start until all

its precedence activities are completed. In addition, the

start time of each activity cannot be later than its latest

start time in order to finish the project within the

demanded duration (Guo et al, 2010). The working space

is always limited in a construction project. A working

area may be required by several different activities at the

same time. Therefore, determining how to optimally

manage a working area to facilitate activity scheduling

will directly affect project performance. Such a situation is

called a ‘space-time’ conflict problem between construction

site activities (Kazi et al, 2009). Resources are the most

influential constraints in construction, as they determine

the feasibility of a project schedule and whether it is

optimal (Chen and Weng, 2009). Schedule reduction is

heavily dependent on the availability of resources. In-

formation constraints, which consist of drawings, specifica-

tions, safety and risk assessments, authorizations to work,

also have significant impact on the construction scheduling

problem. Information flow between activities, for example,

has often been overlooked (Sriprasert and Dawood, 2002).

A detailed review of constraints influencing construction

can be found in Sriprasert and Dawood (2002), Zhang

et al (2006a), Zhang et al (2006b), Kim and Ellis (2008),

Wu et al (2009) and Liu and Wang (2010).

Another ‘trade-off’ from ‘crash’ duration is its influence

on project quality (Li et al, 2000). Thus, the time–cost

bi-objective optimization problem could be expanded into

a time–cost–quality multi-objective optimization problem,

that is, minimizing the construction time and cost while

maximizing the quality. To involve quality as an additional

objective requires the quality to be quantifiable. In doing

so, the following major challenges arise (El-Rayes and

Kandil, 2005):

K the difficulty in measuring and quantifying the impact of

each resource utilization option on the quality of the

activity being considered; and

K the complexity of cumulating quality performance

at the activity level to an overall quality at the project

level.

In addressing the above challenges, El-Rayes and Kandil

(2005) proposed a quality objective function that consists

of a number of measurable quality indicators for each

activity. It also comprises two types of weights that are

used to estimate the overall quality performance at the

project level, that is, weight of quality indicator compared

with other indicators in activity and weight of activity

compared with other activities in the project (El-Rayes and

Kandil, 2005). Therefore, the traditional two-dimensional

time–cost trade-off problem is transformed into a three-

dimensional time–cost–quality trade-off problem. The

proposed method could provide useful information for

the decision maker to make trade-off decisions especially

in a high quality demanded environment. Research

including quality as an additional objective has been

limited to date.
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Solving CSO problems

A plethora of methods have been propagated to address

the CSO problem, which can be classified as: mathematical,

heuristic and metaheuristic. Each of the methods are

examined and discussed below. A classification of the

research is shown in Table 1.

To implement the mathematical method, the problem

needs to be explicitly formulated (ie, the objective function

and constraints). This is a time-consuming task and

difficult for construction planners who do not have the

specified mathematical knowledge and background. Some

mathematical searching algorithms, for example hill

climbing algorithm, are single objective oriented and likely

to be trapped into local optimality. Therefore, methodol-

ogies, by which a global optimality can be obtained, are

highly demanding such that an optimal schedule can be

achieved. Constraints are critical factors for solving the

CSO problem. Traditional mathematical methods usually

treat constraints and objective function separately, that is,

optimizing the objective function subject to the constraints.

To solve such a problem, a feasible point to initiate the

searching process and algorithms that can guarantee that

the constraints are satisfied is needed.

Mathematical methods

Critical path method. The critical path method (CPM) is

a widely used project scheduling algorithm that was

developed in the late 1950s (Kelley and Walker, 1959;

Kelley, 1961). It can be applied to any project with

interdependent activities, such as construction, aerospace

engineering, software development, industrial manufac-

turing. To date, CPM is the most commonly used

scheduling tool in the construction industry. Fundamen-

tally, however, CPM can only deal with optimization

problems with a single objective. CPM is commonly used

in conjunction with the Programme Evaluation and

Review Technique (PERT).

The conventional CPM was developed to analyse the

project network logic diagram. The essential technique to

implement CPM is to construct a model of the project that

involves the following items (Samuel, 2010):

K a list of all activities within the project;

K the duration of each activity; and

K the precedence relationship between the activities.

With the above information, CPM can be used to

calculate the longest path (critical path) to complete the

project, and the earliest and latest starting and finishing

time of each activity without delaying the completion

of the project. Activities on the critical path are termed

as ‘critical activities’ and those not on the critical path are

‘float activities’. Figure 1 provides an example of a CPM

network diagram with seven activities on nodes. In

Figure 1, there is only one critical path, that is, S-A-B-C-E.

Therefore, A, B and C are critical activities. Any delay

to these activities will delay the entire project. D, F, G and

H are float activities, which can be delayed without

influencing the project’s duration. Therefore, CPM can be

used in this instance to determine the shortest possible

time to complete the project. A detailed review of how

CPM has been used in the construction industry can be

found in Galloway (2006).

A major limitation of CPM schedules is their reliance on

time and dependency constraints. In addressing this

limitation, a two-stage approach to resource constraints

representation has been developed. In the first stage, the

precedence relationships are defined, while in the second

stage resources are introduced in the scheduling using

resource allocation or leveling algorithms (Antill and

Woodhead, 1982; Moder et al, 1983; Cormican, 1985;

Tamimi and Diekmann, 1988). Stevens (1990) suggest that

resources should be ignored during the first stage.

However, Waugh and Froese (1991) have argued that

realistic construction activities cannot be developed

without considering resources. Moreover, it is often

difficult to determine the logic between technological and

resources constraints (Barrie and Paulson, 1984). To

overcome such difficulties, Waugh and Froese (1991)

proposed an approach, called ‘A Construction Planner’

(ACP), which explicitly accounts for all constraints

simultaneously including resource constraints using a

single stage approach. The ACP provides a more robust

model of planning that took advantage of advanced

computer technologies (Waugh and Froese, 1991).

Liu and Li (2003) developed a method to accommodate

resource constraints and repetitive scheduling known as the

Resource-Activity Critical-Path Method. On the basis of

the resource-technology combined precedence relation-

ships, the start/finish times and the floats are defined as

resource-activity attributes. However, minimization of the

overall project cost was not considered in this approach. In

addressing this issue, Kallantzis and Lambropoulos (2004)

present a scheduling method for determining the critical

path in linear projects, which takes into account maximum

time and distance constraints in addition to the commonly

used minimum time and distance constraints. The pro-

posed method incorporates the maximum constraints into

the schedule and all linear activities are grouped into four

categories according to their critical status and the abilities

to influence the project duration. In this method, the

production rates are assumed to be fixed and are unable to

deal with uncertain resource availabilities.

Integer programming (IP), linear programming (LP)
and IP/LP algorithms

A number of analytical algorithms have been applied to

address the CSO problems, such as IP, LP and hybrid

J Zhou et al—A review of methods and algorithms 1093



Table 1 Classification of CSO research

Methodologies References Single objective Multi objectives Constraints

Precedence constraints Other constraints

Mathematical methods CPM Tamimi and Diekmann (1988) Y Y Y
Waugh and Froese (1991) Y Y Y
Liu and Li (2003) Y Y Y
Kallantzis and Lambropoulos (2004) Y Y Y

IP, LP Liu et al (1995) Y Y
Mattila and Abraham (1998) Y Y Y
Elazouni and Gab-Allah (2004) Y Y Y
Gomar et al (2002) Y Y Y
Ipsilandis (2006) Y Y
Ipsilandis (2007) Y Y
Huang and Halpin (2000) Y Y Y
Burns et al (1996) Y Y Y

Dynamic programming Robinson (1975) Y Y Y
Moselhi and El-Rayes (1993) Y Y

Heuristic methods Fondahl’s Fondahl (1961) Y Y Y
Structural model Prager (1963) Y Y
Siemens approximation Siemens (1971) Y Y
Structural stiffness Moselhi (1993) Y Y
Others Zhang et al (2006a) Y Y Y

Elazouni (2009) Y Y Y
Hegazy et al (2000) Y Y Y
Wongwai and Malaikrisanachalee (2011) Y Y Y

Metaheuristic methods GA Chan et al (1996) Y Y Y
Feng et al (1997) Y Y
Leu and Yang (1999) Y Y Y
Li and Love (1997) Y Y
Hegazy (1999a) Y Y Y
Li et al (1999) Y Y
Hegazy (1999b) Y Y Y
Senouci and Eldin (2004) Y Y Y
Sriprasert and Dawood (2003) Y Y Y
Zheng et al (2004) Y Y
Zheng et al (2005) Y Y
El-Rayes and Kandil (2005) Y Y Y
Long and Ohsato (2009) Y Y Y
Eshtehardian et al (2008) Y Y
Kim and Ellis (2008) Y Y Y
Chen and Weng (2009) Y Y Y
Chen and Shahandashti (2009) Y Y Y

ACO Ng and Zhang (2008) Y Y
Afshar et al (2009) Y Y
Lakshminarayanan et al (2010) Y Y Y
Shrivastava et al (2012) Y Y Y

PSO Zhang et al (2006c) Y Y Y
Zhang et al (2006d) Y Y Y
Zhang et al (2006b) Y Y Y
Guo et al (2010) Y Y

1
0
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IP/LP algorithm. LP is a mathematical method for solving

the optimization problem with linear objective functions

subject to linear equality and inequality constraints

(Kantorovich, 1940). LP problem can be expressed in the

following general form:

Minimize cTx ð1Þ
Subject to

Axpb ð2Þ

xX0 ð3Þ

where x 2 Rn is the unknown variable vector, A 2 Rm� n is

the coefficient matrix and b 2 Rm , c 2 Rn are coefficient

vectors. The objective of the problem is to optimize

(maximize or minimize) the linear objective function

subject to constraints (2) and (3). If some or all of the

variables are restricted to be integers, then, the LP problem

is transformed into an IP problem as follows:

Minimize cTx ð4Þ

Subject to

Axpb ð5Þ

xX0 ð6Þ

xi integer for some or all i ¼ 1; 2; . . . ; n ð7Þ
For example, a time–cost trade-off construction schedul-

ing problem presented by LP model can be expressed as

follows (Liu et al, 1995):

Minimize
Xn
i¼1

Ci ð8Þ

Subject to

SiX240; i ¼ 1; 2; . . . ; n ð9Þ

Si þDip24Dmax; i ¼ 1; 2; . . . ; n ð10Þ

Sa þDap24Sb; for each precedence a! b ð11Þ

CiX24MijDi þ Bij; i ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ;Oi ð12Þ

CiX24Cmin
i ; i ¼ 1; 2; . . . ; n ð13Þ

DiX24Dmin
i ; i ¼ 1; 2; . . . ; n ð14Þ

where Ci is the cost of activity i; Si, Di and Oi are the

start time, duration and number of inequality constraints

of activity i, respectively. Dmax is the maximum allowable

overall project duration. Ci
min and Di

min are the minimum

cost and duration of activity i, respectively. Mij represents

the slop of inequality constraint connecting the adjacent

active options pair. n denotes the total number of all the

activities. Bij is the intercept of cost for option j with respect

to activity i.

The objective of this problem is to minimize the overall

project cost subject to constraints (9)–(14). Some typical

methods, such as the simplex algorithm, Criss-cross

algorithm and interior point methods can be utilized to

solve the LP problem efficiently. A similar problem,

represented by IP model, can be expressed as (Liu et al,

1995):

Minimize
Xn
i¼1

Ci ð15Þ

Subject to

SiX240; i ¼ 1; 2; . . . ; n ð16Þ

Si þDip24Dmax; i ¼ 1; 2; . . . ; n ð17Þ

Sa þDap24Sb; for eachprecedence a! b ð18Þ

XOi

j¼1
CijXij ¼ Ci; i ¼ 1; 2; . . . ; n ð19Þ

XOi

j¼1
DijXij ¼ Di; i ¼ 1; 2; . . . ; n ð20Þ

XOi

i¼1
Xij ¼ 1; i ¼ 1; 2; . . . ; n ð21Þ

Xij 2 0; 1f g; i ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ;Oi ð22Þ
where Xij are decision variables assigned to option j,

activity i. Here, the objective is to minimize the overall

project cost subject to constraints (16)–(22). The decision

variables Xij are restricted to be integers chosen between 0

and 1. Constraints (21) and (22) ensure that only one

option is chosen for each activity during the optimization

process. Several efficient approaches for solving the IP

problems have been developed such as cutting-plane

method, branch and bound method, branch and cut method,

and branch and price method (Chen et al, 2010). For more

information of IP and LP, refer to Beasley (1996), Karlof

(2005) and Jünger et al (2010).

Mathematical methods for scheduling have received a

considerable amount of attention due to their innate

Figure 1 Example of a CPM network.

J Zhou et al—A review of methods and algorithms 1095



efficiency and accuracy. Meyer and Shaffer (1963) applied

IP to solve the linear and discrete relationship of different

activities within a scheduling optimization problem in a

highway construction project that had a number of

repetitive activities. Similarly, Mattila and Abraham

(1998) developed an integer LP approach to solve the

highway construction project using the resource leveling

technique. The concepts of rate and activity float are

introduced based on the resource utilization on a particular

activity. If activities have common resources, then rate

float can be used to achieve better resource utilization

(Mattila and Abraham, 1998). A disadvantage of this

method is that the computational burden may grow

tremendously as the problem size increases. In addition,

this method has a single focus is single objective focus

(ie, leveling the resources) and thus the maximization of

production rates is not considered.

Elazouni and Gab-Allah (2004) proposed an IP

finance-based scheduling method to produce feasible

schedules that balance the financing requirements of

activities at any period with the cash available during

that same period. The proposed method can be used

to minimize total project duration and fulfil finance

availability constraints (Elazouni and Gab-Allah,

2004). Besides IP, LP is also applied in construction

scheduling area especially for solving those problems

with linear objective functions and constraints (Gomar

et al, 2002).

To overcome the single objective oriented limitation

of traditional scheduling methods, such as CPM, Ipsilandis

(2007) proposed a multi-objective LP model for scheduling

linear repetitive projects that considers cost elements

regarding the project’s duration, the idle time of resources

and the delivery time of the project’s units. The proposed

model is used to generate alternative schedules based

on the relative magnitude and importance of the different

cost elements (Ipsilandis, 2007). The LP range sensitivity

analysis can provide useful information regarding

cost trade-offs between project and resource delays. It

can provide managers with the capability to consider

alternative schedules besides those defined by minimum

duration or minimum resource work-breaks (Ipsilandis,

2006). It is suggested that weights could be introduced

into the multi-objective function so as to enhance the

performance of the proposed method. Huang and Halpin

(2000) developed a graphically based approach to assist

in the LP of linear scheduling analysis, which they referred

to as the Planning and Optimization for Linear

Operations system. This system provides a graphic LP

modelling environment in which model formulation can

be accomplished in a graphic and interactive fashion.

However, the solutions obtained are not guaranteed to be

cost optimal. In addition, the method is currently only

applicable to repetitive activities, that is, those one-off

activities need to be dealt with separately.

Burns et al (1996) propagated a hybrid optimization

approach that integrates LP and IP for determining the

time–cost trade-off solution of a construction scheduling

problem. The method is applied in two stages: (1) using LP

to generate a lower bound of the minimum direct curve;

and (2) using IP to find the exact solutions. The proposed

hybrid LP/IP method provides construction planners

with an efficient way of analysing the time–cost trade-off

problem.

Dynamic programming. Dynamic programming is a

mathematical method applicable for solving complex

problems that can be broken down into some sub-

problems. It is efficient for solving those problems with

overlapping sub-problems (Dasgupta et al, 2006). Numer-

ous examples of dynamic programming can be found in

the construction engineering and management literature.

For example, Robinson (1975) presented a dynamic

programming approach to solve time–cost trade-off

problems. Moselhi and El-Rayes (1993) proposed a

dynamic programming model by introducing a cost

variable into the optimization process. The model per-

forms the solution with two stages:

1. Forward process, which involves a time–cost trade-off

analysis to determine local minimum conditions is

employed;

2. Backward process, which involves simple scanning and

selecting process that ensures an overall minimum state

is attained.

Formulating objective functions and constraints is a

time-consuming and arduous task. Few construction

planners are trained to obtain the required mathematical

knowledge to perform such a formation and as such its

application to construction and engineering project sche-

duling has been limited to date.

Heuristic methods

Heuristic methods are based on the past experience for

problem solving. Prevalent heuristic methods include

Fondahl’s (1961), Structural model (Prager, 1963), Siemens

approximation (Siemens, 1971) and structural stiffness

(Moselhi, 1993).

Fondahl (1961) developed a precedence methodology as

an alternative to CPM. The method provides an effective

manual process to determine a schedule instead of using a

computer-based CPM. In Fondahl’s approach, a ‘circle

and connecting line’ diagram derived from process flow

diagrams or flow-charts was used to address a number of

issues such as the time–cost trade-off problem (Fondahl,

1961). Noteworthy, current project management software

utilizes the manual calculation approach developed by

Fondahl.
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On the basis of Fulkerson’s (1961) method, Prager

(1963) proposed a structure model to interpret the network

flow formulation. The activities of a project and the

progress towards its completion are described as jobs and

events, respectively. Each job is represented by a structural

member that consists of a rigid sleeve containing a

compressible rod with a piston at its protruding end. The

events are arranged between the jobs represented by thin

rigid discs. Then, an algorithm is provided for the

scheduling calculation. It is assumed that the normal and

crash completion times are known for each job associating

with linearly varied cost of completing the job between

these times. A more complicate non-linear relationship

between time and cost is not considered.

Siemens (1971) developed an algorithm that can

effectively reduce the duration of a project when its

expected duration exceeds a predetermined limit. The

algorithm can shorten the project duration at minimum

cost by determining which activity to expedite and by what

amount. The proposed algorithm is simpler than some

analytic methods (eg, LP), as it can be calculated and

applied to time–cost trade-off problems without the use of

a computer. However, the solution obtained by this

algorithm cannot be guaranteed to be optimal. In fact, it

is difficult to determine whether the obtained solution is

optimal or not.

Moselhi (1993) proposed a method for CPM scheduling

that optimizes the project duration to minimize total cost.

The method can be used to produce constrained scheduling

that accommodates contractual completion dates of

projects. The proposed method is based on the well-known

‘direct stiffness method’ for structural analysis, which

establishes a complete analogy between the structural

analysis problem with imposed support settlement and that

of project scheduling with imposed target completion

date. The CPM network is replaced by an equivalent

structure whose compression is equivalent to the project

schedule compression. The cost required to achieve such a

compression is represented by the sum of all member forces

(Moselhi, 1993).

Zhang et al (2006a) developed a heuristic method for

scheduling the multiple-mode repetitive construction project

subject to resource constraints. The method categorizes

activities according to possible combinations into groups

and schedules all the activities in the selected group

simultaneously to minimize the project duration. A permu-

tation tree-based procedure is employed to determine the

alternative activity combinations. The heuristic algorithm

ranks all alternative combinations of activities and selects the

one leading to a minimal increase in project duration.

A framework of the project scheduling system is constructed

so as to implement the heuristic method (Zhang et al,

2006a). Minimizing the project duration may reduce the

indirect cost; however, it may also increase the direct cost or

the overall cost that was not considered in this method.

Elazouni (2009) proposed a heuristic method for schedul-

ing multiple projects subject to cash constraints. The method

determines cash availability during a given period and

identifies the schedules for all possible activities as well as the

cash requirements for each schedule. The schedules are

evaluated according to their impact on the project’s duration.

The influence of the activities on cash flow within the selected

schedule is also determined. Comparison between the

proposed approach and IP on a project with 15 networks

and 60 activities shows that the solutions obtained using the

proposed heuristic method are comparable to the optimum

solutions (Elazouni, 2009). This heuristic method can be

easily integrated into management software to handle the

project scheduling problem subject to finance constrained

conditions (Elazouni, 2009). However, a drawback of this

method is that the computation effort grows exponentially as

the number of eligible activities and the time span increase.

Hegazy et al (2000) modified the heuristic resource-

scheduling solutions by introducing multi-skilled resources.

The developed approach stores and utilizes information

about the resource that can be substituted. Using this

information, less utilized resources can be combined to

substitute the constrained resources during the shortage

period in order to reduce the project cost and time. To

improve the resource substitution approach, Wongwai

and Malaikrisanachalee (2011) introduced an alternative

heuristic for multi-skilled resource scheduling problem. An

augmented resource substitution rule and resource-driven

task duration are presented to increase the starting oppor-

tunity for activities. The limitation of the proposed method

is that some other real-world resource substitution alter-

natives are not considered such as working overhead or

temporary external workers. The method is only valid for

start-to-finish relationships. In addition, minimization of the

overall project cost is not considered in the aforementioned

methods.

Heuristic methods are non-computer approaches that

require less computational effort than mathematical

methods and can invariably be calculated using manual

means. Owing to their simplicity, heuristic methods have

been widely adopted to solve the CSO. However, since

traditional heuristic methods can only optimize one

objective, a global optimum is not guaranteed. Heuristic

methods do not provide a pool of the possible solutions

from which the construction planner may choose a suitable

solution according to different construction scenarios.

Being inefficient for solving the multi-objective scheduling

problems poses a difficulty for their further applications.

Heuristic methods are problem dependent and therefore

cannot be generalized to all other cases.

Metaheuristic method

Metaheuristic methods are used for solving combinatorial

optimization problems whose optimal solution is over a
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discrete search space. The metaheuristic method can

improve a candidate solution by iterative computation

with regard to a given criterion without making too many

assumptions about the problem at hand. Popular meta-

heuristic methods used are naturally inspired methods that

have been developed from natural behaviours. The purpose

of using naturally inspired methods (eg, genetic algorithm

(GA), ant colony optimization (ACO) and particle swarm

optimization (PSO)) is to mimic natural processes to ensure

optimal solutions. Among these methods, the GA has

become the most popularly used approach for addressing

the CSP in the construction and engineering literature.

Genetic algorithm. GA belongs to the larger class of

evolutionary algorithms (EA) that solves optimization

problems using techniques based on natural evolution.

Other members of EA include genetic programming,

evolutionary programming and evolution strategy. A GA

is a random searching algorithm based on the mechanism

of natural selection and survival of the fittest. The three

most important phases involved in GA are selection,

crossover and mutation (Figure 2). To utilize GA, all the

decision variables, for example options for each construc-

tion activities, are encoded into a string called a

chromosome whose genes are represented by binary

digits, integers or real numbers. Then, an initial popula-

tion is chosen randomly and each chromosome’s fitness is

evaluated with regard to the objective function. Accord-

ing to the fitness, a selection method is employed and a

candidate population is created for crossover that allows

information exchanges between parents to generate new

offspring. In the mutation phase, genes are altered on

some randomly chosen locus to eliminate the premature

problem caused in the crossover. Then, a new population

is generated for the next round iteration. The GA is an

efficient global parallel searching algorithm that can

accumulate information from the searching space and

obtain an optimal or suboptimal solution adaptively.

In complex projects, resource allocation and leveling are

invariably dealt with as two distinct sub-problems solved

predominately using heuristics that cannot guarantee

optimum solutions. Chan et al (1996) used a GA-scheduler

to deal with construction resource scheduling problem. The

proposed GA-scheduler is capable of resource leveling

and limited resource allocation without using any

heuristic rules. Two types of constraints were considered:

hard and soft. The hard constraints cannot be violated

or relaxed.

The soft constraints can be relaxed to some extent with

a penalty on the performance. The GA-scheduler can

obtain solutions that have at least the same project

duration or even shorter duration than those solutions

generated by heuristic methods. Moreover, computation

effort of using the GA-scheduler does not exponentially

increase. Chan et al (1996) also recommended the use of

local optimization or greedy algorithm for a quick search

of the vicinity of the GA-produced solution to locate the

nearby optimum.

Due to the insufficiency of the heuristic and mathema-

tical programming methods for solving the large scale

CPM network problems, Feng et al (1997) employed a GA

to solve construction time–cost trade-off problem using

Pareto Optimality. For a multi-objective optimization

problem, Pareto optimality denotes the situation that no

further improvement can be made to an individual

objective without sacrificing at least one of the other

objectives. Pareto Front is a set of solutions satisfying

the conditions of Pareto optimality based on which the

designers could make trade-off decisions. Using GA and

Pareto Front, they proposed an algorithm for solving the

construction time–cost trade-off problem. The algorithm

shows its efficiency by searching only a small fraction of

the total searching space (Feng et al, 1997). However, the

method is only applicable to the finish-to-start relationship

within the activities, and it is also unable to deal with

limited resources.

Leu and Yang (1999) suggested a GA-based multi-

criteria computational optimal model for the CSO that

integrates the time–cost trade-off, resource limit and

resource leveling models. To overcome the computational

inefficiency due to repair, a new crossover operator, UX3,

Figure 2 Operation of GA.
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is developed, which takes into account activity precedence

relationships when writing characters from substrings into

offspring strings. A multiple attribute decision-making

method is employed to find the non-dominated solutions.

To reduce the computational effort involved by using

a GA, Li and Love (1997) proposed an improved GA for

facility time–cost scheduling optimization. An improved

crossover operator was introduced to ensure that the

offsprings are feasible solutions. An improved mutation

operation was also introduced to adjust the crashing

time such that the constraints are met. A limitation of

the method proposed by Li and Love (1997) is that crash

times are treated as continuous variables, which can be

impractical. Furthermore, Li and Love (1997) did not

consider resource constrained situations.

In addressing the shortcomings of Li and Love (1997),

Hegazy (1999a) developed an approach that integrated

GA and the commercial scheduling software Microsoft

Project 4.1 to deal with construction time–cost trade-off

scheduling problem. Using the CPM engine and other

functions such as resource leveling embedded in the

software, resource availability is considered during the

evolutionary computation process. The developed method

considers project deadline, daily incentive, daily liquidated

damages, and daily indirect cost into its formulation and

uses total cost as the objective function. Due to its random

nature, a considerable amount of computation time is

required for large network problems. Li et al (1999) stated

that the traditional GA-based system for solving time–cost

trade-off problems suffers from the following limitations

as the:

K objective function is formulated manually based on the

time–cost curves; and

K system only deal linear time–cost relationship.

To overcome these limitations, Li et al (1999) developed

a computation method integrating machine learning and

GA by which a quadratic template is introduced to capture

the non-linearity of time–cost relationships. A quadratic

time–cost curve is generated from historical data and used

to formulate the objective function that can be solved by

the GA. Improved crossover and mutation operators were

also used to enhance the computation speed. In Li et al

(1999), a quadratic time–cost relationship was considered,

though this may not be appropriate in more complex

projects. Further improvement should be made to interpret

the non-linear relationship between time and cost.

Hegazy (1999b) used GA to search near-optimum

solution for the resources allocation and leveling problems

simultaneously. Random priorities were introduced into

selected tasks and their impact on the schedule is

monitored. In this instance, GA is able to search for an

optimal set of tasks’ priorities that produces shorter project

duration and better-leveled resource profiles. A major

advantage of the method is its simplicity and as a result can

be integrated into commercial project management

software.

Senouci and Eldin (2004) presented an augmented

Lagrangian GA model for construction resource schedul-

ing problem. The proposed model considers several issues

such as precedence relationships, multiple crew strategies,

total project cost minimization and time–cost trade-off. In

this model, resource leveling and resource-constrained

scheduling problems are performed simultaneously. By

taking consideration of continuous linear and non-linear

cost–duration curves and resource–duration curves, an

objective function, minimizing the total project cost, was

formulated subject to several constraints. Then, a quad-

ratic penalty function was used to transform the resource

scheduling problem to an unconstrained problem to

facilitate the application of GA, which could yield optimal

or suboptimal solutions.

Sriprasert and Dawood (2003) used a GA to solve

construction scheduling problem considering the following

constraints physical, contract, resource and information.

The proposed GA approach can alter task’s priorities

and construction method so as to achieve optimal or

suboptimal solution. Microsoft Project software was

chosen to implement the GA system and interfaces were

developed using Visual Basic for Applications language.

The study considered multi-objectives (ie, duration, cost,

and resource and space utilization), which can be

optimized simultaneously by using multi-objective weight-

ing method. This is a useful and simple method to deal with

multi-objective problems. However, since the weights are

predetermined, system performance can be affected by

those dominant objects. Choosing appropriate weights

pose difficulties for the applications of this method.

Zheng et al (2004) developed a multi-objective model for

construction time–cost optimization problems. The feature

of the method is to solve the trade-off problem between

time and cost so as to minimize them simultaneously.

For dealing with the multi-objective problem, a modified

adaptive weight approach (MAWA) was proposed that

can adjust the scope of the next search according to the

performance of the current population in obtaining an

optimum (Zheng et al, 2004). A new fitness function was

also proposed in accordance with the proposed MAWA.

The modified adaptive weights can guide the algorithm

to search a larger space and increase the diversity of

exploration. To overcome the weakness of the ‘roulette

wheel’ selection method used by traditional GA, Zheng

et al (2005) employed a Pareto ranking approach for the

selection phase of the GA. With Pareto ranking, all non-

dominated solutions in current population are grouped and

ranked. The group with the higher rank will have a greater

chance to survive. It ensures equal reproductive probability

among non-dominated solutions on the same level (Zheng

et al, 2005). A Niche formation technique was also
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introduced to enhance the population diversity. In this

approach, the resources are assumed to be unlimited with a

condition that an extra amount can only be obtained at

a higher price, which, however, may be impractical in

practice.

El-Rayes and Kandil (2005) proposed a GA-based

approach to solve a highway construction scheduling

problem. A new objective, ‘quality’, was introduced that

transformed the traditional time–cost trade-off problem to

a time–cost–quality trade-off problem. The objective of the

optimization problem is to minimize construction time and

cost, while maximize its quality. A number of measurable

quality indicators for each activity in the project were

introduced in order to quantify the construction quality.

Pareto optimality and Niche comparison rule were

introduced for GA computation.

Long and Ohsato (2009) developed a GA-based method

for scheduling repetitive construction projects considering

project duration, cost or both of them. Resource con-

straints, different attributes activities and different relation-

ship between direct cost and duration were considered.

Unlike the previous research, which aimed to balance the

cost of delay with the cost of discontinuities, Long and

Ohsato (2009) extended the repetitive CSO to a non-linear

and complex optimization problem by presenting a non-

linear combined performance index according to the

deviations from the minimum cost and duration. A two-

stage sub-procedure (SP1) was employed to evaluate the

fitness function for the GA computation. The proposed

approach could assist the planners to make alternative

resource selection decisions to minimize project duration

and cost. However, Long and Ohsato (2009) did not

consider that several crews can work simultaneously and

therefore only deal with deterministic information.

In practice, the actual time and cost for each activity in

construction option may be uncertain. This would make

it very difficult for the managers to make a decision. To

overcome this difficulty, Eshtehardian et al (2008) pro-

posed an optimization approach dealing with construction

time–cost trade-off problem with uncertainties. Fuzzy

theory was introduced by which the project time and cost

are assigned with fuzzy numbers. Then, GA was applied

to solve the optimization problem. The proposed model

has the ability to adapt to deterministic and uncertain

environment by using the a cut method. New non-

dominated solutions can be obtained using the a cut

property according to the project manager’s acceptance of

risk level.

Kim and Ellis (2008) used a permutation-based elitist

GA to solve large-scale resource constrained construction

scheduling problem. A random number generator was

developed that could generate a feasible precedence

permutation such that an initial population was created

for the possible solutions of the scheduling problem. Then,

an elitist strategy was adopted that can preserve the best

individual generated from the previous generation into the

current generation so as to prevent the loss of the best

found solutions. Three different termination conditions,

that is, number of generations, timeout and number of

unique schedules, were used to achieve the finial solution.

However, it has been noticed that this method does not

work well on large-sized problems. By using the proposed

permutation-based elitist GA, Kim and Ellis (2010)

compared the efficiencies of two schedule generation

schemes, that is, serial scheme and parallel scheme, on

decoding the schedule representation into a schedule

for resource constrained project. Experimental results

demonstrate that the serial scheme is superior to the

parallel scheme, which consumes more time for solving

each problem.

Chen and Weng (2009) proposed a two-phase GA

module for resource constrained project scheduling

problem. Concerning the construction constrains, such as

precedence relationship, resource requirements and avail-

ability, interruption and overlapping of activities, a two-

phase approach was developed. In the first stage, a

GA-based time–cost trade-off analysis was adopted to

select the schedule for each activity. Then, a GA-based

resource scheduling method was used to generate a feasible

solution satisfying the project constraints.

A hybrid GA and simulated annealing module was

proposed by Chen and Shahandashti (2009) for solving the

multi-project scheduling problem subject to multi-resource

constraints. Involvement of the simulated annealing

contributes to the selection phase of GA by proposing

a new fitness function. As the number of generation

increases, the fitness value would increase and induce the

algorithm to choose better-fitted solutions. The mutation

rate would also decrease as the number of generations

grows (Chen and Shahandashti, 2009). The objective of

this approach is to minimize the largest finish time of

the activities, which does not consider the project

cost factors.

On the basis of its random searching mechanism, the GA

could solve a variety of optimization problems by

searching a larger solution space. Selection of the fitness

function is crucial for GA computation. An improperly

selected fitness function may cause the algorithm to be

trapped into local optimal. It is also difficult for GA to deal

with those problems with dynamic data, for example,

uncertain construction activities that may be changed

frequently. The algorithm may converge to a solution that

probably may not work well for the later data. The size of

the initial population is also important for the operation

of the algorithm. A large population will greatly increase

the computation effort, while on the other hand a small

population may cause the missing of the optimal solution.

Due to its random searching mechanism, GA can always

find a better solution compared with the other solutions.

However, the solution obtained with GA cannot be
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guaranteed global optimal. As a result, it is difficult to

determine the stopping criterion of the algorithm.

Ant colony optimization. Ethnologists have revealed that

ants can find the shortest path between their nest and

food sources. They discovered that, when ants are

searching for food, they lay down pheromones to indicate

the path for each other. The pheromone will dissipate

over time; however, it increases when other ants travel on

the same path. The following ants are willing to choose

the path with more pheromones, which leads all ants

converging to the same path. ACO is an efficient method

for solving combinatorial optimization problems and

was founded based on the behaviours of real ants. To

implement ACO for solving the construction scheduling

problem, we may represent the problem by a weighted

network graph. Initial pheromones should be assigned to

each edge within the network so as to start the first

searching. Then, according to the pheromone informa-

tion, selection probabilities are determined based on

which an artificial ant could travel from the first to the

last activity such that the entire project is finished. When

the ant travels on the path, pheromones will be updated

to the options chosen by the ant to finish the project.

Then, a next round iteration starts until the stopping

criterion is met.

A number of researchers in construction and engineering

have adopted ACO to address time–cost trade-off pro-

blems (eg, Ng and Zhang, 2008; Afshar et al, 2009;

Lakshminarayanan et al, 2010). The ACO algorithm

consists of four elements:

1. Construction solution represents the travelling of an ant

through all the activities so as to finish the project.

2. Selection probability determines which node is to be

selected based on the pheromone information.

3. Updated pheromone rule memorizes the path when an

ant finishes its trip and pheromone will be added to the

activities chosen by the ant.

4. A stopping criterion is set to stop the optimization

procedure.

Ng and Zhang (2008) adopted the modified adaptive

fitness function, which can be used to evaluate the project

time and cost. Two updating rules, that is, a local updating

rule and a global updating rule, are presented for the

pheromone information updating. Ng and Zhang (2008)

experiment demonstrated that the ACO approach can

generate a better result than GA by reducing cost with the

same duration. When using the ACO approach there is,

however, a tendency for premature convergence to occur.

Methods for searching the local space adjacent to the

solution should be considered so as to obtain a global

optimum. Another limitation is that there is no existing

criterion for choosing those parameters within the algo-

rithm. Methods that can contribute to selecting the

parameters can assist with the implementation of ACO

such as neural network and machine learning method.

Afshar et al (2009) developed a non-dominated archiving

multi-colony ant algorithm to solve the construction

time–cost trade-off optimization problem. A colony of

agents is assigned to each objective. Both colonies have

the same number of ants and arbitrary objective orders.

The solution found in the first colony is transferred to the

second colony for evaluation, and the new solution will

be transferred back to the first colony for the next iteration

cycle. After a number of iterations, the non-dominated

solutions are transferred to an external archive where they

are compared with each other so as to exclude the

dominated solutions. The ‘Pareto front’ will be obtained

after a predetermined number of iterations. Experimental

research conducted by Afshar et al (2009) demonstrates

that when the number of non-dominated solutions

increases, the proposed method can achieve better solu-

tions than the weighting method adopted by the traditional

single colony system.

Lakshminarayanan et al (2010) used ACO to solve the

extended time–cost–risk trade-off problem of construction

scheduling. On the basis of the time–cost trade-off

problem, an objective function of the project risk with

regard to the utilization of each activity was introduced

by using a set of quality indicators. The risk associated

with construction project was classified and grouped into

a number of zones based on the severity of the risks.

The problem was solved by ACO using a test construc-

tion project. Similarly, Shrivastava et al (2012) proposed

a multi-objective optimization approach for time–cost–

quality–quantity trade-off problem of construction sche-

duling based on ACO. The objective functions were

derived by quantifying the duration, total cost and

performance quality. Then, a multi-colony ant system

was utilized to solve a test problem introduced by Feng

et al (1997). In this multi-objective optimization problem,

the weighting parameters chosen by the authors for each

objective are 10, 10000 and 0.0005. However, how to

determine those parameters is not specified.

Ant colony is a powerful tool for solving the combina-

torial optimization problem. However, several problems

should be considered and studied extensively for better

applications of this method, for example, the premature

convergence phenomenon, the stopping criterion and the

parameter determining method.

Particle swarm optimization. PSO is a computational

method that can solve the optimization problem by

iteratively improving the performance of the solutions

according to a given objective measurement. By having a

population of candidate particles, PSO can search for the
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optimal solution by moving around its particles in a D

dimensional searching space. The position of each particle

in the D dimensional space can be expressed by Xi
t¼

{xi1
t ,xi2

t , . . . , xiD
t }, i¼ 1, 2, . . . ,M, M is the population

size; t¼ 1, 2, . . . ,T represents the generation and T is the

iteration limit. Similarly, the particle speed can be

expressed by Vi
t¼ {vi1

t , vi2
t , . . . , viD

t }, i¼ 1, 2, . . . ,M and

t¼ 1, 2, . . . ,T. The position of each particle is a potential

solution to the problem that would be evaluated accord-

ing to a given objective function. The speed and position

of the particles can be updated using the following

mathematical formula (Eberhart and Shi, 1998):

vtid ¼ wvt�1id þ c1� randð Þ� pt�1id � xt�1id

� �

þ 2� randð Þ ptgd � xt�1id

� �
ð23Þ

xtid ¼ vtid þ xt�1id ð24Þ

where w is an inertia weighting parameter, rand( )

represents a random number between 0 and 1, c1 and c2
are positive learning factors, pid is the local best solution

obtained by the ith particle after t�1 iterations and

pgd
t represents the global best solution achieved so far.

From (23) and (24), we could see that the particle speed

and position are updated iteratively based on the knowl-

edge of the local and global best solutions obtained. As a

metaheuristic method, PSO needs few or no assumptions

of the problem to be solved and can search a large space

for the candidate solutions, which makes it efficient for

solving the combinatorial optimization problems.

Zhang et al (2006c) initialized the application of PSO to

the CSO problem. A PSO-based approach was proposed

to solve the resource constrained project scheduling

problem with the objective of minimizing the project

duration. To develop a feasible schedule, a particle

representation method of activity priorities was adopted

that is able to avoid the infeasible sequences from current

particle positions. Then, a parallel scheme was used to

decode the particles to a feasible schedule according to the

precedence and resource constraints. The above two steps

form the framework of PSO for solving the resource

constrained project scheduling problem. In this study, only

one objective, that is, project duration, was considered.

While, another important factor, time, was not taken into

account.

Zhang et al (2006d) extended the application of PSO

to a multi-mode resource constrained project scheduling

problem considering both renewable and non-renewable

resources. A pair of particle positions was adopted to

represent one potential solution by indicating the priority

combination and mode combination. Zhang et al (2006b)

applied PSO to a preemptive CSP under break and

resource constraints with the objective of minimizing the

project duration. In this study, preemptive activities that

can be interrupted during off-working time (eg, night) were

considered. All the resources shared by multi-activities

were reallocated during the break. The interrupted

activities will not restart immediately after the break due

to the resource reallocation. The scheduling priority

was represented by multidimensional position of the

particle. Then, the problem is solved by PSO and a parallel

scheme was adopted to transform the priority to a feasible

schedule. In this study, only single mode resources were

considered. It will be an interesting future research topic if

multiple-mode resource constraints are involved in among

different activities.

Guo et al (2010) proposed a modified PSO for solving

the CSP for underground mining at the coalface. The

modified PSO was developed based on the traditional PSO

by introducing a new crossover operator that operates on

those coupled particles selected from half of the particle

population. The newly created children with better fitness

compared with their parents will be chosen for the next

iteration. The optimization process consists of two stages.

In the first stage, PERT was utilized to derive the time

parameters and network graph based on the raw data. In

the second stage, the modified PSO was used to optimize

the net present value based on the network graph. GA

and traditional PSO were also utilized to solve the same

problem for comparison. Experimental results demon-

strated that the modified PSO is superior to GA and

traditional PSO.

PSO is an efficient algorithm for solving the combina-

torial optimization problems. However, the solution

obtained by PSO is not necessarily a global or local

optimum. The selection of the PSO parameters could cause

convergence, divergence and oscillation of the particles. To

date, PSO parameters are mainly selected based on

empirical results. When population variety descends,

the particle speed will decrease which, in turn, reduces

the capability of the algorithm for searching feasible

solutions.

Conclusion and future research

The CSO has been examined using an array of methods

and algorithms. The original single objective optimization

problems have been extended to multi-objective trade-off

optimization problems subject to various construction

constraints. A number of methodologies that have been

applied to solve the CSO problem can be classified into

three categories: mathematical method, heuristic method

and metaheuristic method.

To implement the mathematical method, the problem

needs to be explicitly formulated (ie, the objective function

and constraints). This is a time-consuming task and

difficult for construction planners who do not have the

specified mathematical knowledge and background. Some

mathematical searching algorithms, for example hill
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climbing algorithm, are single objective oriented and likely

to be trapped into local optimality. Therefore, methodol-

ogies, by which a global optimality can be obtained, are

highly demanded. Constraints are critical factors for

solving the CSO problem. Traditional mathematical

methods usually treat constraints and objective function

separately, that is, optimizing the objective function

subject to the constraints. To solve such a problem, we

need a feasible point to initiate the searching process

and algorithms that can guarantee that the constraints are

satisfied.

It is suggested that future research in construction

scheduling should consider the application of the exact

penalty function method for constrained optimization

problems (Yu et al, 2010). The method integrates the

constraints into the objective function by using several

penalty parameters such that the original constrained

optimization problem is transformed into an uncon-

strained optimization problem. It is shown that if the

value of the penalty parameter is sufficiently large, then

any local minimizer of the corresponding unconstrained

optimization problem is a local minimizer of the original

problem (Yu et al, 2010). With such a transformation,

many existing methods can be utilized to deal with

the unconstrained optimization problem, which makes

the problem much easier to solve.

The advantage of heuristic methods is their simplicity.

Those well-known heuristic methods are Fondahl’s

method, Structural model method, Siemens approximation

method and structural stiffness method. Due to its

simplicity and efficiency, Fondahl’s method has been

adopted by many commercial project scheduling software.

However, most heuristic methods are problem dependent,

which makes them difficult to be applied to other projects

equivalently. It has also been noticed that most of the

current heuristic methods focus on single project schedul-

ing. Only a few of them could deal with multiple

projects scheduling problem, for example Elazouni

(2009), which schedules multi-projects subject to cash

constraints. It is suggested that approaches focusing on

multiple projects scheduling problems subject to multi-

objectives and multi-constraints could be a promising

future research direction.

Metaheuristic methods can solve optimization problems

by mimicking certain Nature’s processes. The most

commonly adopted metaheuristic method is the GA for

addressing CSO problems. By introducing in the concept

of Pareto optimality, a GA can provide a solution

candidate pool for the decision maker. Research has

focused on how to improve the performance of GA, for

example, to prevent the premature convergence and

increase the population diversity. In doing so, some

enhanced GAs have begun to emerge by modifying the

objective weighting parameters, improving the selection,

crossover or even the mutation algorithms. However, an

efficient and applicable method, which can choose these

parameters adaptively, has not been found. As a result it

is suggested that artificial intelligence methods such as

machine learning and neural networks can evolve their

behaviours based on the example data such that they can

be used to develop algorithms automatically.

Within the reviewed normative literature, time and cost

are commonly considered objectives. Research has focused

on minimizing project time and cost so as to achieve

maximum profit. However, minimization of time and cost

will have an influence on the project quality and risk, which

are even more crucial for the successful completion of a

construction project. Unfortunately, these key factors

have been neglected in most of studies undertaken to date.

It is suggested therefore that a multi-objective construction

scheduling problem considering both minimization of

time–cost–risk and maximization of the quality subject

to multiple constraints would be a promising future

research topic.
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