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This paper presents several procedures for developing non-delay schedules for a permutation flow shop
with family setups when the objective is to minimize total earliness and tardiness. These procedures
consist of heuristics that were found to be effective for minimizing total tardiness in flow shops without
family setups, modified to consider family setups and the total earliness and tardiness objective. These
procedures are tested on several problem sets with varying conditions. The results show that variable greedy
algorithms are effective when solving small problems, but using a genetic algorithm that includes
a neighbourhood defined by the sequence of batches of jobs belonging to the same set-up family is
effective when solving medium- or large-sized problems. The results also show that if setup times can be
reduced a significant reduction in total earliness and tardiness could result.
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1. Introduction

In many operations obtaining economies of scale is a

critical element in achieving success. Economies of scale are

efficiencies in production in which per-unit production

costs increase at a slower rate than production volume. In

scheduling, efficiencies that lead to economies of scale are

gained by grouping similar jobs together. The motivation

for grouping sometimes relates to change-over times, or

setup times, on the machines. For example, jobs may

belong to families where the jobs in each family tend to be

similar in some way, such as their required tooling. As a

result of this similarity, a job does not need a setup when

following another job from the same family, but a known

‘family setup time’ is required when a job follows a member

of some other family. Typically, there are a large number

of jobs, but a relatively small number of families.

The widespread adoption of lean production methods

has caused customers to view early delivery of products as

well as tardy delivery to be undesirable. Early deliveries

result in unnecessary inventory that ties up cash as well

as space and resources needed to maintain and manage

inventory. Therefore, an important consideration when

sequencing and scheduling a set of jobs is completing each

job on the customer’s due date.

To address these considerations, this paper seeks to

identify and compare methods for sequencing a set of jobs in

a permutation flow shop with significant family setup times

that will minimize the total earliness and tardiness of the

jobs. Most research on flow shops has assumed the sequence

of jobs to process will be the same on each machine. These

schedules are referred to as permutation schedules. This is

done for two reasons. First, it simplifies the computational

effort and second, it is often not practical to change the

sequence of jobs from one machine to the next. In this

research only permutation schedules are considered.

Formally, suppose there is a set of n jobs belonging to F

setup families to be processed in a flowshop consisting of

M machines. Let fj and dj represent the setup family and

the due date of job j ( j¼ 1, . . . ,n) respectively. Let pjm, Sjm,

and Cjm represent the processing time, setup time, and

completion time of job j ( j¼ 1, . . . , n) on machine m

(m¼ 1, . . . ,M), respectively. The earliness of job j, Ej, is

defined as: Ej¼max {dj�CjM, 0}, for j¼ 1, . . . , n and the

tardiness of job j, Tj, is defined as: Tj¼max {CjM�dj, 0},
for j¼ 1, . . . , n. The objective function, Z, can be expressed

as: Z¼
P

j¼ 1
n EjþTj.

Since the objective in the problem is non-regular, inserting

idle time into a schedule for the jobs can help to reduce the

earliness of some jobs and thus improve the objective.
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However, in certain production environments, the inser-

tion of idle time may actually be undesirable, or even

impossible. For instance, idle time should be avoided when

the capacity of the shop is limited when compared with the

demand. Also, idle time should not be inserted when the

machine has a high operating cost, and/or when starting a

new production run involves high setup costs or times.

Some specific examples of production environments where

the insertion of idle time is undesirable have been given by

Korman (1994) and Landis (1993). In this research only

non-delay schedules without unforced inserted idle time are

considered. Also, setups for a machine can be performed

in anticipation of a job arriving at a machine; therefore if

the job to be sequenced in position j is denoted as [ j ]

and C[0]1¼ 0, then C[ j ]1¼C[ j�1]1þ p[ j ]1 if f[ j ]¼ f[ j�1] and

C[ j ]1¼C[ j�1]1þS[ j ]1þ p[ j ]1 if f[ j ]af[ j�1], and C[ j ]m¼max

{C[ j ]m�1,C[ j�1]m}þ p[ j ]m if f[ j ]¼ f[ j�1] and max {C[ j ]m�1,

C[ j�1]mþS[ jm]}þ p[ j ]m if f[ j ]af[ j�1] for m¼ 2, . . . ,M.

Streams of literature that are most relevant to the

problem addressed in this paper are minimizing total

earliness and tardiness in a flow shop and scheduling flow

shops with family setup times. A large number of papers

have been published on scheduling models with earliness

and tardiness costs. Baker and Scudder (1990) provide an

excellent survey of the initial work on early/tardy schedul-

ing. A recent survey of multi-criteria scheduling which

includes problems with earliness and tardiness penalties is

given in Hoogeveen (2005). Most of the research with an

objective based on early and tardy job completion costs

deals with single machine environments. Recent research

for single machine environments with an early/tardy objec-

tive and no idle time is summarized in Valente (2009).

Scheduling models with inserted idle time, on the other

hand, are reviewed in Kanet and Sridharan (2000).

Only three papers address objectives based on earliness

and tardiness costs in flow shops. Moslehi et al (2009)

present an optimal procedure for minimizing the sum of

maximum earliness and tardiness in a two-machine flow

shop. Chandra et al (2009) present approaches for permu-

tation flow shop scheduling with earliness and tardiness

penalties when all the jobs have a common due date.

Madhushini et al (2009) present branch-and-bound algo-

rithms for scheduling permutation flow shops for a variety

of objectives including minimizing earliness and tardiness

without inserted idle time.

An objective that is partially related to the objective

considered in this paper is minimizing total tardiness. The

reason the objectives are related is that our objective

includes total tardiness. Vallada et al (2008) reviewed and

tested over 40 heuristic methods for the m-machine flow

shop problem with the objective of minimizing total tardi-

ness. Based on their tests, Vallada et al (2008) found that

the neighbourhood searches developed by Kim et al (1996)

were the best heuristics and the simulated annealing

algorithms developed by Parthasarathy and Rajendran

(1997) and Hasija and Rajendran (2004) were the best

meta-heuristics. Framinan and Leisten (2008) developed a

variable greedy algorithm for the problem and found it to

be more effective in minimizing total tardiness than the

simulated annealing algorithms developed by Parthasarathy

and Rajendran (1997) and Hasija and Rajendran (2004).

Vallada and Ruiz (2010) proposed three genetic algorithms

for minimizing total tardiness in permutation flow shops

and performed computational tests for these algorithms and

other metaheuristics including those by Parthasarathy and

Rajendran (1997) and Hasija and Rajendran (2004). They

found that two of the genetic algorithms performed the best.

Cheng et al (2000) provide a review of flow shop sche-

duling research with setup times. Most of the papers

identified in this review consider the objective of minimiz-

ing makespan. The only paper that considered an objec-

tive that included total earliness and tardiness was Jorden

(1996). In this paper a genetic algorithm was developed for

a two-machine flow shop with family setup times to mini-

mize the sum of weighted earliness and tardiness penalties.

Section 2 describes the proposed scheduling procedures.

Section 3 presents the computational tests of the proce-

dures as well as the results of the tests. Section 4 describes

a test to measure the effect of a reduction in setup times

and presents the results. Section 5 concludes the paper.

2. Heuristic procedures

Six heuristic procedures that are based on procedures that

were found to be effective for minimizing total tardiness in

flow shops without family setups are described in this

section. The first two procedures are neighbourhood search

procedures. Two procedures are variable greedy algorithms

and two are genetic algorithms.

2.1. Neighbourhood search procedures

Kim et al (1996) developed two neighbourhood searches

for minimizing total tardiness in flow shops without family

setups. One of the searches used an exchange operator to

define the neighbourhood and the other used an insert ope-

rator. Two neighbourhood search procedures are presented

in this section. The first uses both of the neighbourhood

operators developed by Kim et al (1996). This procedure is

referred to as NS in this paper. The second uses the

exchange and insert operators on individual jobs and also

uses the exchange and insert operators as well as a con-

solidate operator on batches of jobs to define neighbour-

hoods. This procedure is referred to as BNS in this paper.

In both procedures an initial sequence is developed and

then the sequence is improved by using the neighbourhood

search operators. The neighbourhood search operators

are repeated until none of the moves in a neighbourhood

offer an improvement. The algorithms both use the same
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procedure to find an initial sequence. The initial sequence

is found using a method that is similar to that used in Kim

et al (1996) with a modification to the objective. This

procedure is referred to as the IS procedure.

2.1.1. Initial sequence (IS procedure). The initial seque-

nce is created in two steps. First, a list of the jobs is

created. Then, an insertion algorithm is used to create

a sequence. To create a list of the jobs they are first sorted

in non-decreasing order of due dates. The insertion

algorithm starts by selecting the first two jobs on the list

and two sequences are formed consisting of these jobs

(each job is placed first once and second once). The total

earliness and tardiness is calculated for each of these

sequences and the sequence with the lower total earliness

and tardiness is selected as the initial sequence. The inser-

tion step is then repeated n�2 times to sequence the

remaining jobs. Let k¼ 3 be the first time the insertion

step is performed. The insertion step is performed as

follows. Pick the kth job from the initial list and create

k sequences by inserting this job into each possible

position of the sequence while keeping the relative order

of the jobs from the k-1st iteration. The total earliness

and tardiness is then calculated for each of these new

sequences. The sequence with the lowest total earliness

and tardiness is selected. If kon, then let k¼ kþ 1 and the

insertion step is repeated with the sequence just selected as

the initial sequence. If k¼ n the phase stops.

The initial list can be created in O(n ln (n)) time. The

number of insertions evaluated is on the order of O(n2) and

each partial sequence can be evaluated in O(n) time so the

complexity of the procedure is O(n3).

2.1.2. NS neighbourhood search improvement proce-

dure. The NS neighbourhood search improvement

procedure attempts to improve a sequence by perfor-

ming neighbourhood searches. The two neighbourhood

searches used in Kim et al (1996) are performed. The

first search looks at all of the possible exchanges of pairs

of jobs. A sequence of jobs s is converted into a

sequence s by exchanging the positions of two jobs j and

k. If the total earliness and tardiness of sequence s is less

than the total earliness and tardiness of the best

sequence found so far (incumbent sequence), then the

incumbent is updated. The second search is an insertion

search. Each job is removed from a sequence s and then

n sequences are created by inserting the job into each

possible position while maintaining the relative order of

the other jobs. If the total earliness and tardiness of a

sequence is less than the total earliness and tardiness of

the incumbent sequence, then the incumbent is updated.

The two searches are repeated until either of two

conditions occurs: (1) both searches fail to obtain an

improvement or (2) a time limit is exceeded. The time limit

is set to n � (M/2) � 0.125 s. This time limit was based on

preliminary computational experiments and was set for all

of the procedures described in this section.

To evaluate a neighbourhood using the exchange

(insertion) search O(n2) exchanges (insertions) are needed.

Since each sequence can be evaluated in O(n) time, the

complexity of the procedure is O(n3) each time a neigh-

bourhood is evaluated.

2.1.3. BNS neighbourhood search improvement pro-

cedure. The BNS neighbourhood search improvement

procedure also attempts to improve a sequence by

performing neighbourhood searches. Five neighbourhood

searches are performed in this procedure. The first two

searches are the job exchange and insertion searches used

in Kim et al (1996) and in the NS procedure described

in the previous subsection. The other three searches

use search operators that explore the neighbourhood of

a sequence based on the batches of jobs in the sequence.

A batch of jobs is defined as a succession of jobs in

a sequence that belongs to the same setup family. Let b
be a sequence of batches and TET (b) be the resulting

total earliness and tardiness of sequence b. Let nb be the

number of batches in the sequence b. Three operators

are used to explore the neighbourhood of sequence b:
Consol, BE and BI.

The Consol operator consolidates batches to eliminate

setups. A sequence b is formed using this operator by

combining two batches in b and inserting the combined

batch into a position of a batch sequence that maintains the

relative order of the non-combined batches of b. Each

possible position for the combined batch is checked. If the

best of the neighbourhood batch sequences results in a lower

total earliness and tardiness than the batch sequence b, then
the best batch sequence is retained. The Consol operator is

repeated until it fails to find a better batch sequence.

The BE operator attempts to improve a sequence by

exchanging pairs of batches. A sequence b is converted to

a sequence of batches b by exchanging the positions of two

batches b1 and b2. If the total earliness and tardiness of the

sequence resulting from the change is less than the total

earliness and tardiness of the original sequence, the

exchange is retained; otherwise the exchange is reversed.

The BI operator is similar to the job insertion operator.

Each batch is removed from the sequence b and then nb
batch sequences are created by inserting the batch into

each possible position while maintaining the relative order

of the other batches. If the best of the neighbourhood

batch sequences results in a lower total earliness and

tardiness than the batch sequence b, then the best batch

sequence is retained.

A small example with eight jobs and two families is used

to demonstrate how the three batch operators create
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neighbourhoods. Table 1 shows the setup family for

each job.

If the current sequence is: 5 –3–7–1–8–6–4–2, then there

are four batches consisting of: 5–3 (b1), 7–1 (b2), 8–6 (b3)

and 4–2 (b4). If the consol operator is to be performed on

batches 2 and 4 (b2 and b4), a new batch is formed 7–1–4–2

and the following three sequences are checked.

7–1–4–2–5–3–8–6

5–3–7–1–4–2–8–6

5–3–8–6–7–1–4–2

The lowest total earliness and tardiness among the

sequences above is compared with the total earliness and

tardiness of the current sequence and if it is lower the

current sequence is updated.

If the BE operator is to be performed on batches 2 and 4,

then the sequence 5–3–4–2–8–6–7–1 is created and checked

to see if its total earliness and tardiness is less than the

current sequence’s and if so the current sequence is

updated.

If the BI operator is to be performed on batch 2 (b2),

then the following sequences are created.

7–1–5–3–8–6–4–2

5–3–7–1–8–6–4–2

5–3–8–6–7–1–4–2

5–3–8–6–4–2–7–1

The lowest total earliness and tardiness among the

sequences above is compared with the total earliness and

tardiness of the current sequence and if it is lower the

current sequence is updated.

The five operators are repeated until either of two

conditions occurs: (1) all five operators fail to obtain an

improvement or (2) a time limit is exceeded.

Each time a neighbourhood is searched the exchange and

insertion searches require O(n3) time (see the analysis of the

NS procedure). The BE and BI operators require O(nb
2)

exchanges and insertions respectively, and each sequence

requires O(n) time to evaluate; therefore, these operators

require O(n3) time. The consol operator evaluates O(nb
3)

sequences with each sequence requiring O(n) time to eva-

luate, so this operator requires O(n4) time. Therefore the

complexity of this procedure, each time a neighbourhood is

searched, is O(n4).

2.2. Variable greedy algorithm based on Framinan and
Leisten’s (2008) variable greedy algorithm

A variable greedy algorithm combines features of both the

variable neighbourhood search (VNS) and the iterated

greedy (IG) algorithm meta-heuristics. An IG algo-

rithm generates solutions by using a destruction phase

and a construction phase on a constructive heuristic.

During the destruction phase k elements are removed

from a solution to form a partial solution. During

the construction phase a greedy constructive heuristic

obtains a potential new solution by adding the

previously removed elements. A VNS is used to over-

come the problem of the IG stalling in a local optimum.

When a VNS is used the size of the neighbourhood that

will be searched varies or, in the case of combining VNS

with IG, the number of elements k that will be removed

and then added back varies.

Let s be a sequence and Cj(s) the completion time of

job j in the sequence s. Define etj(s) as the slack of job j

in the sequence s, with etj(s)¼max{dj�Cj(s), Cj(s)�dj}.
The following early/tardy-based greedy algorithm, which

is based on Framinan and Leisten (2008)’s slack-based

greedy algorithm, is used to obtain a sequence s’ from
another sequence s:

1. Remove from s the k jobs with the largest etj (s ). Sort
them in non-increasing order of etj (s) and store them in

Rk. Let m be the remaining subsequence after removing

the k jobs.

2. For each job r belonging to Rk, repeat:

(a) Insert job r in all possible positions of m. Let u be

the best subsequence obtained, and b the position

of job r in u.
(b) Perform an adjacent pairwise exchange among all

jobs in positions bþ 1 to (n�kþ 1). Let p be the

best sequence obtained by this approach. If p is

better than u, then p becomes m; otherwise u
becomes m.

3. Set s equal to m.

A small example with eight jobs is used to demon-

strate the early/tardy-based greedy algorithm with k¼ 2.

Table 2 shows the sequence s and the resulting earliness or

tardiness of each job in the sequence.

Since k¼ 2 R2¼ {2, 6} and the initial subsequence is

5�4�1�7�8�3. Job 2 is inserted into each possible posi-

tion of the subsequence creating the following subse-

quences: 2–5–4–1–7–8–3, 5–2–4–1–7–8–3, 5–4–2–1–7–8–3,

5–4–1–2–7–8–3, 5–4–1–7–2–8–3, 5–4–1–7–8–2–3, and 5–4–

1–7–8–3–2. The subsequence 5–4–1–7–8–3–2 had the

lowest total earliness and tardiness so then job 6 is

Table 1 Example 1 data

Job 1 2 3 4 5 6 7 8

Family 1 1 2 1 2 2 1 2

Table 2 Example 2 data

Sequence 2 5 6 4 1 7 8 3

Early/tardy 862 618 626 551 115 61 304 485
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inserted into each possible position of this subsequence

creating the following sequences: 6–5–4–1–7–8–3–2, 5–6–

4–1–7–8–3–2, 5–4–6–1–7–8–3–2, 5–4–1–6–7–8–3–2, 5–4–

1–7–6–8–3–2, 5–4–1–7–8–6–3–2, 5–4–1–7–8–3–6–2, and

5–4–1–7–8–3–2–6. The sequence 5–4–1–7–8–3–2–6 had

the lowest total earliness and tardiness so s is updated to

this sequence.

To improve the solution generated by the early/

tardy-based greedy algorithm, an insertion-based local

search is used. The local search generates n positions

at random (without repetition), and for each position the

job occupying this position is removed and inserted in all

possible positions.

This variable greedy algorithm is referred to as VGA in

this paper. The algorithm starts with a solution developed

by using the IS procedure described in subsection 2.1.1 and

performs the early/tardy-based greedy algorithm with

k¼ 1 and the insertion-based local search. If a better

solution is not found, k is increased by 1 and the two steps

(early/tardy-based greedy algorithm and local search)

are repeated. This continues until a better solution is

found or k¼ n. If a better solution is found, k is set equal

to 1. If k¼ n, then a random solution is generated and k is

set to 1. There are two stopping criteria for the procedure:

(1) if a solution is found with zero total earliness and tardi-

ness, the procedure stops or (2) if a time limit is exceeded,

the procedure stops. Since it is possible that a solution with

zero total tardiness could be found, the first check is

included to stop the procedure in such a case. However, it

is very unlikely that this will occur, unless the problem has

very few jobs. Therefore, for almost all problems the

procedure is terminated by the second check.

A second version of the variable greedy algorithm is

also proposed. This algorithm, referred to as VGAB in this

paper, differs from the VGA procedure by including the

batch insertion neighbourhood search (BI) used in the BNS

neighbourhood search in addition to the insertion-based

local search after the early/tardy-based greedy algorithm is

performed.

Step 1 of the early/tardy-based greedy algorithm requires

O(k ln (k)) time. In step 2.1 O(n) partial sequences are

evaluated and each partial sequence requires O(n) time to

evaluate, so this step requires O(n2) time. In step 2.2 O(n)

sequences are evaluated with each sequence evaluation

requiring O(n) time; therefore, this step requires O(n2) time

and the complexity of the early/tardy-based greedy

algorithm is O(n2).

2.3. Genetic algorithms based on Vallada and Ruiz’s
(2010) genetic algorithms

A genetic algorithm is a meta-heuristic search procedure

that uses a multiple solution search technique. This app-

roach has been found to quickly generate good solutions

for a wide variety of scheduling problems. In a genetic

algorithm, an initial population of chromosomes is first

created, and then successive populations (or generations)

of chromosomes are created using some methodology until

a stopping condition is met. A chromosome corresponds to

a solution for the problem. For this problem, solutions can

be represented by a permutation sequence of the jobs. The

jth gene in a chromosome corresponds to the job in the jth

position of a sequence.

Vallada and Ruiz (2010) proposed three genetic algo-

rithms for minimizing total tardiness in permutation

flow shops and performed computational tests for these

algorithms and other metaheuristics. They found that

the genetic algorithm that used a crossover operator to

generate individuals, called offspring, from two selected

progenitors performed the best. Elements of this algo-

rithm include initialization of the population, a selection

mechanism, a crossover operator, mutation operator,

generational scheme, local search, a restart mechanism

based on the diversity of the population and the stopping

condition. These elements are described in the following

subsection.

2.3.1. Parameters for the genetic algorithms. In each

algorithm an initial population of chromosomes (permu-

tation sequences) is created. Two methods for creating

chromosomes are used. The first method is to randomly

generate chromosomes. Each chromosome (sequence) is

created by first generating a random number between 0

and 1 for each job and then sorting the numbers corres-

ponding to each job (lowest to highest) to create the

sequence of jobs (chromosome). In the second method

chromosomes are created by using a heuristic procedure.

This method is used to seed the population with some

good individuals. The proposed algorithm generates one

chromosome using the earliest due date (EDD) dispatch-

ing rule and one chromosome using the NEHedd heuristic

(Kim, 1993) and the remaining chromosomes are gene-

rated randomly.

A selection operator called n-tournament is used in these

algorithms. With this approach a percentage of individuals,

a parameter called ‘pressure’, is selected and the individual

with the lowest total earliness and tardiness among these

individuals is selected for the mating process.

The mating operator used is one point crossover.

The crossover operator is applied with a Pc probability.

Two individuals are generated, called offspring, from two

progenitors (chromosomes) that were selected using the

n-tournament selection operator. First, a crossover point is

randomly generated using a uniform integer distribution

[1, n]. Then, each offspring directly inherits all the jobs

from one of the parents up to the randomly generated

crossover point. The last step is to copy the jobs that

are missing from each offspring from the other parent in

the same relative order as in the parent. For example, if the
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crossover point is three and the sequences associated with

the two parents are:

Parent 1 4–5–2–3–1–6

Parent 2 1–2–3–6–5–4

The resulting children sequences are:

Child 1 4–5–2–1–3–6

Child 2 1–2–3–4–5–6

A shift mutation operator is used. With this operator,

each job in a permutation sequence is extracted with a Pm

probability and is inserted in a randomly selected different

position in the sequence.

Two local searches are used in the genetic algorithms.

The first local search is the job insertion search used in

the neighbourhood search procedures. This search is

referred to as JI. In this search, a job is removed from

the sequence and is inserted into all n positions. The final

position of the job is the position that results in the

lowest total earliness and tardiness. This search is carried

out for all n jobs of each generated offspring after the

mating and mutation operators have been applied. The

JI search is also applied to the best individual found in

the initial generation of the population. All of the genetic

algorithms proposed in this research use the JI local

search. The second local search is the batch insertion (BI)

search used in the BNS neighbourhood search. Each

batch is removed from the sequence of batches and then nb
batch sequences are created by inserting the batch into

each possible position while maintaining the relative order

of the other batches. The final position of the batch is

the position that results in the lowest total earliness

and tardiness. If this search is incorporated in a genetic

algorithm it is carried out after the JI local search has been

performed. The local searches are applied with a PLS

probability.

There are two criteria for accepting generated offspring

into the population: (1) an offspring must be better (have a

lower total earliness and tardiness) than the worst

individual in the population and (2) the offspring has a

unique sequence (there are no other individuals in the

population with the same sequence).

A diversity measure is used to determine if a restart

mechanism should be initiated for the algorithm. If the

individuals in a population become too similar the

algorithm may fail to evolve to better solutions. To avoid

this condition the population is reinitialized by randomly

generating new individuals with the exception of the

individuals created in the initial population with heuristics.

This occurs when the diversity measure falls below a

certain value. See Vallada and Ruiz (2010) for a description

of the diversity measure.

Two stopping criteria are used: (1) if a solution is found

with zero total earliness and tardiness the procedure

stops and (2) if the time limit is exceeded when a generation

is completed the procedure stops. As with the Vari-

able Greedy algorithm, the first check is unlikely to be

successful. Therefore, and for almost all problems, it is the

second check that will terminate this procedure.

In order to create offspring, the selection, crossover and

mutation operators each require O(n) time. The JI and BI

local searches require O(n3) time (see analysis for these

procedures in subsections 2.1.2 and 2.1.3).

Vallada and Ruiz (2010) conducted a statistical experi-

ment to select the values for the genetic algorithm to

minimize total tardiness. After doing some preliminary

computational experiments we found that the parameters

used by Vallada and Ruiz (2010) are also effective for

minimizing total earliness and tardiness with family setups.

The values for the parameters are shown in Table 3.

2.3.2. Genetic algorithms. Two versions of the genetic

algorithm are proposed. The procedure referred to as

GADV is Vallada and Ruiz’s (2010) genetic algorithm

that uses the one point crossover mating operator but is

modified to incorporate family setups and the total

earliness and tardiness objective. The GADVB procedure

is the same as the GADV procedure except that both the

JI and BI local searches are used.

3. Computational tests of the procedures

3.1. Data and performance measures

The procedures described in the previous section were

tested on problems of various sizes in terms of the number

of jobs, number of families and jobs within each family,

and number of machines, for six sets of distributions of due

date range and tightness, and three sets of distributions for

family setup times. Each problem set consists of 10

problems. The problems within a problem set have the

same number of jobs, number of families, number of jobs

per family, number of machines, family setup times are

drawn from the same distribution, and the due dates for

the jobs are generated using the same distribution.

Eleven levels of number of jobs (n) were included in the

test. Some levels of job number had two levels of number

of families (F) and jobs per family (nf). This resulted in 18

combinations which are shown in Table 4.

Three levels of number of machines were tested: m¼ 5,

m¼ 10 and m¼ 15.

Table 3 Parameters for the genetic algorithms

Population size 30
Pressure 30%
Crossover probability (Pc) 30%
Mutation probability (Pm) 2%
Local search probability (PLS) 15%
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The processing times of the jobs for each machine were

generated using a uniform distribution over the integers 1

and 100. The setup times on each machine for each family

were randomly generated using a uniform distribution.

Three setup distributions were used. The first setup

distribution (1) generated setups over the integers 1 and

50, the second (2), over the integers 1 and 100, and the

third (3), over the integers 1 and 200. The due dates for

the jobs were also randomly generated using a uni-

form distribution over the integers MS (1�r�R/2) and

MS(1�rþR/2), where MS is an estimated minimum

makespan found for the problem using a heuristic

developed by Schaller (2000), and R and r are two

parameters called due date range and tardiness factors.

Six sets of these parameters were used for each n, F, nf, and

m combination and are shown in Table 5.

The levels of the test factors result in (18 � 3 � 6 � 3)

972 factor combinations in the test. Thus, a total of

(972 � 10) 9720 problems were considered. The proce-

dures were coded in Turbo Pascal and were tested on a Dell

Inspiron 1525 1.6 GHz laptop computer for all of the

problem sets.

For small-sized problems (n¼ 8, 10 and 12) a branch

and bound algorithm was used to obtain the optimal total

earliness and tardiness. The measures of performance used

to evaluate the procedures for the test problems are CPU

time required to generate a solution, the percentage error

(% Error) of the total earliness and tardiness of the

solution generated by each procedure compared with the

optimal total earliness and tardiness for the problem and

the number of optimal solutions generated by each pro-

cedure for the small-sized problems, and the percentage

difference (% Diff) of the total earliness and tardiness of

the solution generated by each procedure compared

with the total earliness and tardiness of the solution

generated by NS procedure for the large-sized problems.

The percentage error calculates the percentage of the total

earliness and tardiness of the solution obtained by the

heuristic procedure is greater than the optimal total

earliness and tardiness. % Error¼ [(Zh�ZO)/ZO] � 100,

where ZO¼ the optimal total earliness and tardiness for

the problem, and Zh¼ the total earliness and tardiness

of the solutions generated by the heuristic procedures.

% Diff¼ [(Zh�ZNS)/ZNS] � 100, where ZNS¼ the total

earliness and tardiness for the problem obtained by the NS

procedure, and Zh¼ the total earliness and tardiness of the

solutions generated by the other heuristic procedures.

3.2. Results of the test

Table 6 shows the average percentage the total earliness

and tardiness of each procedure’s solutions are greater than

the total earliness and tardiness of the optimal solution for

each of the small problem sizes (n¼ 8, 10 and 12) and the

number of times each procedure generated an optimal

solution for each problem size.

The two versions of the variable greedy algorithm per-

formed best for these problem sizes and had average per

cent errors of less than one-tenth of 1% for each of these

problem sizes. The variable greedy algorithms also found

the most optimal solutions. Both of the variable greedy

algorithms found optimal solutions for over 95% of the

problems on each of these problem sizes. The two versions

of the Genetic algorithm also performed very well. The

GADV procedure had average per cent errors of less than

0.2% for each of these problem sizes and solved over 95%

of the problems optimally, and the GADVB procedure had

average per cent errors of less than 0.4%, and solved over

93% of the problems optimally. The two neighbourhood

search procedures found optimal solutions for less than

75% of the problems for each problem size and had per

cent errors between 1 and 5% for each problem size.

One of the reasons the variable greedy and genetic

algorithms performed better for the small problem sizes is

that they used more time to generate solutions. Table 7

shows the average number of seconds per problem each

Table 4 Combinations of number of jobs and families tested

Combination Number of
jobs (n)

Number of
families (F)

Jobs per
family (nf)

1 8 2 4
2 10 2 5
3 12 2 6
4 12 3 4
5 15 3 5
6 20 2 10
7 20 4 5
8 25 5 5
9 30 3 10
10 30 5 6
11 40 4 10
12 40 8 5
13 50 5 10
14 50 10 5
15 75 5 15
16 75 15 5
17 100 5 20
18 100 10 10

Table 5 Due date tardiness and range factors

Set R r

1 0.5 0.00
2 1.0 0.00
3 0.5 0.25
4 1.0 0.25
5 0.5 0.50
6 1.0 0.50
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procedure used to generate a solution for each problem size

when m¼ 15.

Since the time required by each of the procedures to

generate solutions was relatively linear with respect to the

number of machines the results for m¼ 5 and 10 are

omitted.

The variable greedy and genetic algorithms continue

until the time limit criteria for stopping is reached whereas

the neighbourhood searches terminate much more quickly

on the small problem sizes. The neighbourhood searches

usually terminate before the time limit stopping criteria is

reached for problem sizes consisting of 50 jobs or less.

Table 8 shows the Average % Diff measure for each

level of n for problems with 15 or more jobs.

Figure 1 plots these results. For problem sizes up to

20 jobs the genetic and variable greedy algorithms perform

best and are relatively close. When n420, the genetic

algorithms performed the best. As n increases the relative

performance of the GADVB procedure improves and is

the best when nX25. When n¼ 75 or 100 the % Diff for

the GADVB procedure was greater than 10%. Although

the variable greedy algorithms are best when n is low their

performance declines rapidly as n initially is increased and

for n¼ 40 and 50 were worse than even the NS procedure.

The use of a batch neighbourhood search proved to be

beneficial as problem size increased. The BNS procedure

outperformed the NS procedure for all problem sizes. The

GADVB procedure outperformed the GADV procedure

when nX25 and the VGAB procedure also outperformed

the VGA procedure when nX25.

Table 9 shows the Average % Diff measure for each

level of number of machines (m).

Figure 2 plots these results. The number of machines

did not appear to affect the relative quality of the solu-

tions generated by the procedures as the average % Diff’s

of the procedures are consistent across the three levels

Table 6 Average % error from the optimal total earliness and tardiness and number of optimal solutions (in parentheses)

Problem size Procedure

N F/nf m NS BNS GADV GADVB VGA VGAB

8 2/4 5 3.39 (122) 2.78 (127) 0.00 (180) 0.02 (178) 0.00 (180) 0.00 (180)
8 2/4 10 2.08 (132) 1.90 (130) 0.00 (179) 0.00 (179) 0.00 (180) 0.00 (180)
8 2/4 15 2.54 (121) 1.77 (130) 0.00 (180) 0.00 (179) 0.00 (180) 0.00 (180)
10 2/5 5 3.19 (105) 2.63 (108) 0.01 (179) 0.19 (175) 0.01 (179) 0.01 (177)
10 2/5 10 2.32 (114) 1.94 (119) 0.03 (177) 0.08 (166) 0.01 (179) 0.00 (179)
10 2/5 15 2.28 (112) 2.22 (109) 0.00 (178) 0.10 (170) 0.00 (180) 0.00 (180)
12 2/6 5 3.93 (92) 3.60 (91) 0.06 (176) 0.22 (166) 0.02 (175) 0.02 (176)
12 2/6 10 4.42 (76) 4.13 (86) 0.15 (170) 0.36 (155) 0.05 (173) 0.06 (174)
12 2/6 15 3.46 (72) 3.26 (73) 0.15 (174) 0.25 (159) 0.02 (179) 0.02 (177)
12 3/4 5 4.32 (87) 3.00 (92) 0.14 (169) 0.08 (168) 0.01 (179) 0.00 (179)
12 3/4 10 3.53 (86) 2.55 (94) 0.06 (176) 0.13 (164) 0.01 (177) 0.03 (175)
12 3/4 15 3.58 (57) 3.32 (63) 0.07 (172) 0.12 (166) 0.03 (177) 0.03 (178)

Table 7 Average seconds per problem for m=15

Problem size Procedure

N F/nf NS BNS GADV GADVB VGA VGAB

8 2/4 0.02 0.03 7.53 7.53 7.53 7.53
10 2/5 0.05 0.06 9.40 9.40 9.39 9.39
12 2/6 0.09 0.11 11.3 11.3 11.3 11.3
12 3/4 0.10 0.13 11.3 11.3 11.3 11.3
15 3/5 0.23 0.26 14.2 14.2 14.1 14.1
20 2/10 0.73 0.69 18.9 18.9 18.8 18.8
20 4/5 0.83 0.88 18.9 19.0 18.8 18.8
25 5/5 2.06 2.00 23.7 24.1 23.5 23.5
30 3/10 3.98 3.68 28.6 28.9 28.2 28.2
30 5/6 4.25 3.96 28.7 29.1 28.2 28.3
40 4/10 14.1 11.9 38.5 39.2 37.7 37.7
40 8/5 16.1 13.5 38.6 41.0 37.7 37.7
50 5/10 33.3 27.3 49.1 50.7 47.3 47.3
50 10/5 37.5 30.7 49.1 54.5 47.3 47.4
75 5/15 73.8 73.7 77.5 82.5 71.5 71.6
75 15/5 74.3 74.1 78.7 105.8 71.6 72.0
100 5/20 101.6 101.3 109.8 116.4 96.4 96.7
100 10/10 101.1 100.9 110.2 143.1 96.3 97.2

Table 8 Average % Diff from NS solution by number of jobs

Number of jobs (n) Procedure

BNS GADV GADVB VGA VGAB

15 �1.06 �4.62 �4.54 �4.69 �4.65
20 �0.72 �4.92 �4.65 �4.48 �4.21
25 �1.92 �5.95 �5.98 �3.99 �4.22
30 �1.84 �5.57 �5.71 �2.22 �2.26
40 �3.19 �5.17 �6.01 0.52 0.12
50 �4.02 �4.51 �5.92 3.18 2.31
75 �8.49 �8.85 �10.79 �2.41 �3.91
100 �9.12 �11.87 �14.46 �7.23 �8.55

812 Journal of the Operational Research Society Vol. 64, No. 6



of machines. For each level of m the ranking of

the procedures is: (1) GADVB, (2) GADV, (3) BNS,

(4) VGAB, and (5) VGA. These results also show the

advantage of including batch neighbourhood searches as

the procedures that included a batch neighbourhood search

outperformed the corresponding procedure that did not.

Table 10 shows the Average % Diff measure for each of

the due date tightness and range factors.

Figure 3 plots the results for the Average % Diff

measure by due date tightness factor and Figure 4 by due

date range factor. These results also show that the genetic

algorithms performed best followed by the BNS procedure.

The performance of the procedures compared with the NS

procedure improves when R¼ 1.00 and when r40.00.

Table 11 shows the Average % Diff measure for each

setup distribution level.

Figure 5 plots these results. These results also show that

the genetic algorithms perform best. It can also be seen that

including a batch neighbourhood search becomes more

beneficial as the size of setups are increased as the relative

performance of procedures with a batch neighbourhood

search improves compared with their counterparts without

a batch neighbourhood search.

To summarize the results the genetic and variable greedy

algorithms generate the best solutions for small-sized

Figure 1 Average % Diff by number of jobs (n).

Table 9 Average % Diff from NS solution by number of
machines

Number of machines (m) Procedure

BNS GADV GADVB VGA VGAB

5 �4.27 �6.34 �7.36 �2.06 �3.00
10 �4.15 �6.74 �7.67 �2.51 �2.86
15 �3.94 �6.72 �7.59 �2.71 �3.12

Figure 2 Average % Diff by number of machines.

Table 10 Average % Diff from NS solution by due date
tightness and range factors.

Due date
tightness and
range factors

Procedure

r R BNS GADV GADVB VGA VGAB

0.00 0.50 �2.14 �4.23 �4.21 0.11 0.08
0.00 1.00 �1.99 �6.26 �5.92 �1.16 �1.28
0.25 0.50 �4.64 �7.80 �8.62 �3.92 �4.31
0.25 1.00 �5.33 �9.19 �9.78 �4.55 �5.24
0.50 0.50 �5.25 �6.14 �8.48 �2.72 �3.44
0.50 1.00 �5.38 �5.96 �8.24 �2.32 �3.77

Figure 3 Average % Diff by due date tightness factor (r).

Figure 4 Average % Diff by due date range factor (R).
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problems but as the number of jobs increases the GADVB

procedure generates the best solutions. The GADVB pro-

cedure was also consistently best over all levels of number

of machines and setup distributions and the genetic algo-

rithms were best for all the due date tightness and range

factors. Procedures with a batch neighbourhood search

consistently outperformed the corresponding procedure

that did not include a batch neighbourhood search.

4. Impact of a reduction in setup times on total earliness

and tardiness

It is commonly recognized that the existence of long

setup times is a negative factor in production operations.

Long setup times are associated with increased costs for

performing the setups, and since production equipment

is not producing during the setup, long setup times also

reduce production capacity, which represents an opportu-

nity cost. To help offset the cost and reduction of pro-

duction capacity caused by long family setups, jobs

belonging to the same setup families are batched and

produced together, thereby reducing the total number of

setups and the time spent setting up. This batching of

jobs makes it difficult to match the production of

individual jobs with their due dates. Some jobs in a batch

are produced before their due dates and have to be held in

inventory which is a form of waste. Also these early jobs

are using production capacity that could be used to

produce jobs that have current due dates and hence are

delayed so that they become tardy. This is another form of

waste. Shingo (1985) developed a set of principles called

Single Minute Exchange of Die (SMED) to reduce setup

times. These principles are relatively easy to implement and

have been widely utilized to reduce setup times. Setup time

reductions of 50–75% are very common utilizing this

approach. This section describes a test to help determine

how reducing setup times using methods such as SMED in

permutation flow shops affects the total earliness and

tardiness incurred.

The data for the test were created in a fashion similar to

that described in Section 3.1. Problems were created for the

problem size parameters: n¼ 50, F¼ 5, nf¼ 10 for all f¼ 1

to F, m¼ 10; and n¼ 50, F¼ 10, nf¼ 5 for all f¼ 1 to F,

and m¼ 10. Each problem set consisted of 10 problems.

Setup times for each family on each machine were

generated in two steps. In the first step a number is

generated using a uniform distribution over the integers 1

and 50. Then in the second step the number generated is

multiplied by four to obtain the setup time. Processing

times and due dates were randomly generated using the

approach described in Section 3.1. For each problem that

was created, two additional problems were created. Both of

the additional problems consisted of the same data as the

original problem with the exception of the setup times. One

problem was created by dividing the setup times by two

(a 50% reduction) and the other problem was created by

dividing the setup times by four (a 75% reduction).

Since the GADVB procedure performed the best for the

problems with 50 jobs (n¼ 50), it was used to generate a

solution for each problem and the resulting total earliness

and tardiness, makespan and the number of setups were

recorded. Table 12 shows results for each problem size.

The table shows the per cent reduction in total earliness

and tardiness and makespan and the per cent increase in

the total number of setups when the setup times were

reduced 50 and 75%. The results show that there were

large decreases in total earliness and tardiness and large

increases in the number of setups for each problem size

when there was a 50% reduction in setup times. When the

reduction in setup times was 75% there was a further

reduction in total earliness and tardiness and the increase

in the number of setups was significant even when

compared with those of the 50% reduction in setup times.

The makespan was decreased with the 50% reduction in

setup times and was further decreased with the 75%

reduction in setup times but not as significantly as the

decrease in total earliness and tardiness. The reason why

the makespans did not decrease by a larger amount can be

attributed to the increase in the number of setups which

offsets some of the reduction in setup times.

The due date tightness and range factors affects these

results. To illustrate how these factors affect total earliness

Table 11 Average % Diff from NS solution by setup
distribution

Setup Procedure

Distribution BNS GADV GADVB VGA VGAB

1 (1—50) �2.58 �6.33 �6.12 �3.26 �3.24
2 (1—100) �4.09 �6.86 �7.47 �2.64 �3.07
3 (1—200) �5.69 �6.60 �9.04 �1.38 �2.66

Figure 5 Average % Diff by setup distribution.
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and tardiness, makespan and the number of setups as setup

time is reduced, Table 13 shows the results for each set of

due date range and tightness factors for the F¼ 10, nf¼ 5

and m¼ 10 problem size.

The results in this table show the due date tightness and

range factors affect the results in terms of total earliness

and tardiness obtained when setup times are reduced.

When the due date tightness factor is very low (r¼ 0.00)

the reduction in total earliness and tardiness when setup

times are reduced by 50% is considerably less than when

the due date tightness factor is set at higher levels (r¼ 0.25

or 0.50). When r¼ 0.00 and setup times are reduced by

75% the total earliness and tardiness actually increases

compared with the 50% setup reduction and in the case of

r¼ 0.00 and R¼ 1.00 the total earliness and tardiness is

higher than when there is no reduction in setup times.

When the due date tightness factor is set at 0.25 or 0.50

the reduction in total earliness and tardiness is very high

with a 50% reduction in setup times and is substantially

higher when the reduction in setup times is 75%. Also, the

reduction in total earliness and tardiness is greater when

R¼ 1.00. The restriction that only non-delay schedules

are considered is an important factor contributing to these

results. When due dates are loose and there is excess capa-

city then as setup times are reduced there is even greater

excess capacity and several jobs are completed earlier even

if additional setups are used causing the early completion

penalty to increase. It would be interesting to see how

removing the restriction that only non-delay schedules are

considered affects total earliness and tardiness when setup

times are reduced. The results of the current test show that

when capacity is reasonably matched with the demand, a

reduction in setup times allows for a better matching of

production of jobs with their due dates enabling a much

lower total earliness and tardiness to be achieved.

5. Conclusion

In this paper several heuristics that were based on proce-

dures found to be effective for minimizing total tardiness in

permutation flow shops were proposed for minimizing total

earliness and tardiness for permutation flow shops with

family setups. These heuristics included neighbourhood

searches, variable greedy algorithms and genetic algorithms.

The proposed procedures were tested on problems of

various sizes in terms of the number of jobs, number of

families included, and the number of machines. Also

considered were three distributions of family setups and

six sets of distributions that determine the tightness and

range of due dates. The solutions generated were compared

against optimal solutions for small-sized problems and the

solutions found by one of the procedures for large-sized

problems.

The results of the tests showed that the variable greedy

algorithms were very effective for the small-sized problems.

Table 12 Impact of reduction in setup times for each problem size (n=50 and m=10)

Problem size 50% reduction in setup times 75% reduction in setup times

% reduction % increase % reduction % increase

F nf Total E/T Makespan Setups Total E/T Makespan Setups

5 10 25.19 6.73 91.12 31.34 10.24 182.89
10 5 32.59 10.86 36.36 42.44 16.35 83.57

Table 13 Impact of reduction in setup times by the due date tightness and range factors for F=10, nf=5 and m=10

Due date tightness and range factors 50% reduction in setup times 75% reduction in setup times

% reduction % increase % reduction % increase

r R Total E/T Makespan Setups Total E/T Makespan Setups

0.00 0.50 16.17 10.00 64.58 12.55 15.12 115.63
0.00 1.00 22.88 8.04 57.05 �6.53 12.74 54.36
0.25 0.50 33.99 10.59 21.43 47.34 15.74 122.45
0.25 1.00 53.24 9.97 11.94 75.83 15.67 32.09
0.50 0.50 30.43 13.15 20.59 46.89 18.99 89.71
0.50 1.00 37.67 14.40 36.59 58.18 21.03 131.71

Total 32.59 10.86 36.36 42.44 16.35 83.57
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The best performing procedure for larger sized problems

was a genetic algorithm (GADVB) that included a neigh-

bourhood of batch sequences in addition to a neighbour-

hood search for job sequences. Also, incorporating a batch

sequence local search into the various algorithms improved

their performance.

A test was also conducted to see the effect of reducing

setup times on the total earliness and tardiness obtained in

scheduling. It was found that if setup times are reduced, then

total earliness and tardiness can be significantly reduced.

The reduction in total earliness and tardiness is achieved not

only from additional effective capacity obtained by reducing

setup times, but also utilizing the resources more effecti-

vely by scheduling smaller batches of jobs belonging to each

family so that production of individual jobs is better

matched to their due dates. The test also showed that the

tightness of the due dates affected the reduction in total

earliness and tardiness when setup times are reduced. When

there was excess capacity and due dates were not tight

reducing setup times did not impact earliness and tardiness

as much as when capacity was tighter. This could be due in

large part to the restriction that only non-delay schedules

were considered. It would be interesting to approach the

problem where non-delay schedules are considered and the

use of unforced inserted idle time is permitted. This would

be a productive area for future work.
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