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Mass immunization clinics (MICs) are an important component of pandemic influenza control strategies in many
jurisdictions. Decisions about staffing levels at MICs affect several factors of concern to public health authorities:
total vaccination volume, patient wait-times, operating costs, and intra-facility influenza transmission risk. We
present a discrete-event simulation of an MIC to assess how strongly staffing changes affect these factors. The
simulation is based on data from Canadian clinics responding to pandemic H1N1 in 2009. This study is the first to
model flu transmission risk at an MIC, and the first to relate such risk to staffing decisions. We show that the
marginal benefit of adding staff is greatly underestimated if indirect waiting costs and intra-facility infections are
not considered.
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1. Introduction

Vaccination is an important component of pandemic influenza
plans in many jurisdictions (Centers for Disease Control and
Prevention, 2011; Public Health Agency of Canada, 2011;
United Kingdom Department of Health, 2011). During the
2009 H1N1 pandemic, mass immunization clinics allowed for
the rapid, large-scale administration of vaccines without over-
whelming hospitals, regular walk-in clinics, and physician
offices. Since vaccine development and distribution can take
between 4 and 6 months from the onset of the pandemic (United
Kingdom Department of Health, 2011), vaccines may become
available only in the pandemic’s later stages, as was the case
with the 2009 H1N1 vaccine, which started being administered
in North America a couple weeks before the peak of the
pandemic’s second wave in November 2009.
The delayed availability of the vaccine has two important

consequences. First, the effectiveness of the vaccination pro-
gramme depends not only on the total percentage of the
population vaccinated, but also on the programme’s speed, as
vaccinations given later in the pandemic have less value than
those delivered earlier (Mylius et al, 2008). High-volume mass
immunization clinics (MICs) offer such speed, but require high
levels of staffing to meet public demand. Second, the vaccina-
tion programme will take place in the context of a healthcare
system burdened by influenza cases. Pandemics increase
demand for healthcare workers (HCWs), and may also decrease
supply due to flu cases among HCWs (Mitchell et al, 2012).

Consequently, public health authorities must make difficult
decisions about how many staff to allocate to MICs, possibly
at the expense of other areas of the healthcare system.
Through discussions with Niagara Region Public Health

(NRPH) and Toronto Public Health, two public health units in
Ontario, Canada, we found that decision-makers operating
MICs want to balance a variety of objectives, including total
vaccinations, patient wait times, overall operating cost and cost
per vaccine administered, and infection prevention within their
facilities. The first two objectives were of greatest concern.
Wait times during the period of peak demand for vaccines
sometimes exceeded 2 h in many parts of Canada (Yang, 2009)
and the United States (Las Vegas Review-Journal, 2009; NY1
News, 2009).
Cost considerations are also important from both a short-term

and long-term perspective. In the short term, MIC managers
would benefit from knowing the marginal productivity of
labour (MPL)—that is, the number of additional vaccinations
achieved from adding or subtracting one HCW—and whether
the MPL is the same in both directions, and how much it might
vary when other events occur, such as surges in demand. The
MPL is important for making economic decisions about
whether to hire additional staff or allocate existing staff to other
facilities.
The average cost to vaccinate a patient also factors into the

ongoing debate about the cost-effectiveness of mass vaccination
as a response to pandemic influenza. Mass immunization
programmes in Canada and the United States during the 2009
H1N1 pandemic were criticized as expensive and excessive
(Amico, 2009; Waldie and Alphonso, 2009; Blackwell, 2010),
with total costs in Canada and the US borne by all levels of
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government being estimated at CAD$1 billion (Blackwell,
2010) and USD$6.15 billion (Amico, 2009), respectively,
though subsequent cost-effectiveness studies have attempted to
address these concerns (Sander et al, 2010; Durbin et al, 2011).
This study does not examine the overall cost-effectiveness of
mass vaccination, which depends on many factors other than
the effective operation of MICs.
Infection prevention at healthcare facilities is a priority

throughout the sector (Centers for Disease Control and
Prevention, 2010; World Health Organization, 2012). Dur-
ing a pandemic, infections can occur at any venue where
people gather—hospitals, schools, workplaces, shopping
centres, etc. The same holds true for MICs. Public health
units in Ontario took care to communicate to the public that
people experiencing influenza-like symptoms should not
attend MICs, and the two public health units consulted in
this study believed that the risk of influenza transmission at
MICs from symptomatic patients was very low. However,
patients with asymptomatic or very mild infections, or who
are in the pre-symptom incubation period, which may last
1–4 days (Centers for Disease Control and Prevention,
2010), are believed to be infectious, albeit less so than
patients with strong symptoms (Influenza Team, European
Centre for Disease Prevention and Control, 2007). Reducing
patient wait times has the additional benefit of further
reducing the risk of influenza transmission within MICs.
This study uses a discrete-event simulation (DES) of an MIC

to provide public health units with information about the likely
impact of changes in staffing levels on these various measures
of MIC performance. A range of scenarios are considered
through a full-factorial designed experiment, including surges
in demand, restrictions on vaccine eligibility, and extension of
operating hours. Sensitivity analysis (SA) is conducted on
several parameters that were not tested in the designed
experiment.
The MIC model was built using data from MICs run by

NRPH in Ontario, Canada, during the 2009 H1N1 pandemic.
NRPH’s MICs were run similarly to many of the large urban
MICs run elsewhere in Ontario. Although some aspects of the
MIC model may not overlap completely with MICs from other
jurisdictions, the direction and approximate magnitude of
several important effects reported in this study are likely
generalizable.

2. Literature review

Several researchers have used DES to help plan the mass
distribution of antibiotics and vaccines. Hupert et al (2002)
developed a model to inform staffing decisions at a mass
antibiotic distribution centre to respond to bioterrorism threats,
and Washington et al (2005) developed a model to optimize
staffing assignments at a hypothetical smallpox mass vaccina-
tion clinic. Both studies had to rely on hypothetical inputs and
expert opinion since no such clinics have been operated.

The potential value of simulation studies to emergency
vaccination planning is further discussed by Asllani et al
(2007). Although the authors do not present simulation results,
they do discuss the differences between how responses to
diseases such as seasonal flu, pandemic flu, smallpox, and
anthrax should be modelled. Because pandemic influenza can
be expected to affect a larger proportion of the population than
an anthrax bioterrorism event, and often spreads faster than
seasonal flu, simulation studies for other vaccine or antibiotic
distribution problems might not adequately reflect the high-
volume and high-speed operations that MICs for pandemic
influenza need to achieve (Asllani et al, 2007).
Washington (2009) examined the cost and capabilities of a

mass influenza and pneumococcal vaccination clinic using
simulation, and made efforts to base the model off data from a
real clinic’s operations. Although the model’s goal was to
simulate a full-capacity response—what might be expected
during a pandemic—the clinic that the model was based on
was operated during the seasonal flu season and had turnout that
was under 50% of the targeted capacity. Andress (2003) and
Phillips and Williamson (2005) discuss several insights on MIC
management arising from actual MIC operations, but do not
specifically address how to optimize staffing decisions.
Simulations have been used extensively to understand the

dynamics of influenza spread at the international (Khan et al,
2011), regional (Los Alamos National Laboratory, 2006; Stroud
et al, 2007; Savachkin and Andres Uribe-Sanchez, 2012), and
municipal levels (Elveback et al, 1976; Haber et al, 2007; Das
et al, 2008; Gojovic et al, 2009; Sander et al, 2010; Lee et al,
2010; Aleman et al, 2011). However, no studies, simulation-
based or otherwise, have been conducted on influenza transmis-
sion risks specifically within MICs.
There have been many studies examining seasonal and

pandemic influenza transmission risk in various settings,
including households (Viboud et al, 2004; Sikora et al, 2010),
trains (Cui et al, 2011), airplanes (Moser et al, 1979; Klontz
et al, 1989; Foxwell et al, 2011; Khan et al, 2011), cars
(Knibbs et al, 2012), schools (Lessler et al, 2009), universities
(Mei et al, 2010; Araz et al, 2011), and hospitals (Salgado et al,
2002; Noakes and Sleigh, 2009; Barnes et al, 2010; Wong et al,
2010; Bearden et al, 2012). For the most part, these studies
document particular outbreaks and discuss context-specific risk
factors and infection control measures, and do not generalize
well to MICs. For example, whereas patients at a busy MIC
may spend up to 2 h at the facility and may come into proximity
with a dozen or so other patients and 2–3 HCWs, a hospital
inpatient may spend days in a hospital, making contact with a
greater number of HCWs, possibly less contact per day with
other patients, but also more contact with physical objects and
surfaces in the facility. Furthermore, whereas MICs are for
patients without symptoms of influenza, hospitals may house
patients with acute influenza, as well as patients who are more
susceptible to the virus.
The modes and magnitude of pandemic influenza transmis-

sion risk at MICs likely differ from those of other healthcare
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facilities. The techniques this study uses to estimate this risk are
adapted from widely used methods in agent-based pandemic
modelling at the regional and municipal levels (Elveback et al,
1976; Los Alamos National Laboratory, 2006; Haber et al,
2007; Stroud et al, 2007; Das et al, 2008; Aleman et al, 2011;
Savachkin and Andres Uribe-Sanchez, 2012). These methods
compute individual infection probabilities based on a suscep-
tible person’s exposure time to infected persons in different sub-
environments (eg households, workplaces, schools), taking into
account heterogeneous mixing patterns, and sometimes
adjusted for factors that are believed to increase an individual’s
susceptibility or infectivity. All of these simulations work in
hourly or daily time-steps. To offer a more granular picture of
potential transmission risk at MICs, this study simulates and
records susceptible patient interactions with infectious patients
by the second.
This study is the first to simulate a pandemic influenza MIC

using data from real clinics operated during a pandemic. The
study builds upon the MIC management literature by consider-
ing a more complete range of facility performance measures
and by testing the impact of staffing changes under different
scenarios. It is also the first study to model the risk of influenza
infection at an MIC during a pandemic, and to use such risk
measures to help inform staffing decisions.

3. Model overview

The flow of patients through an MIC involves a modest number
of decision points, queues, and processes, as illustrated in
Figure 1. NRPH pioneered an electronic patient record system
that was used throughout Ontario in 2009 to manage patients
and record service-time data at MICs during the H1N1
pandemic. The system recorded a timestamp for every instant
that a patient’s record was accessed or closed at a service
station, corresponding in theory with their physical arrival and
departure from the service station.

Data from this electronic system were obtained for 26–28
October 2009 at one facility, coinciding with the first three
days of the public immunization programme. Data for 3, 6, and
12 November at a separate facility were also used, coinciding
with a provincial policy that restricted vaccine access to
prioritized groups. The combined data sets provided arrival
and service time records for 9598 patients. The pandemic in
Canada is considered to have peaked in early November (Public
Health Agency of Canada, 2010). In addition, hourly staffing
schedules and the number of patients seen per hour per staff
member were also provided, along with staffing costs, floor
plans, and facility operation instructions.
The input data from NRPH revealed several complex

patterns that could not be captured with analytical queuing
models. Patient arrival rates and service times at registration and
injection stations varied according to the hour of the day, the
age of the patient, and the size of the family group with whom
patients arrived. It was also found that service times decreased
as wait times increased. We conjecture that MIC staff could
have increased their productivity in response to seeing long
queues build up. Furthermore, the presence of prioritization
policies that restricted vaccine access to certain groups based on
age and health status had an impact not only on the total patient
turnout, but also on the size of arriving groups and the patient
age distribution.
The parameters used in the baseline scenario for the model

are based on the staffing levels and patient demand experienced
on 26 October 2009 at a particular MIC which was described by
NRPH as operating at full capacity. The remainder of this
section describes the model’s components in greater detail.

3.1. Patient arrival rates

Patients who arrive at the MIC must wait outside if the facility
is not yet open or at capacity. Patients arrive in batches ranging
in size from one individual to families of five, starting
30min before the official facility opening time at 8:30 am.

patient arrival
(time-dependent

distribution)

wait out
side

go home

line too long? wait
inside

registration and
screening

go home

waited too
long?

Yes

eligibility?

go home

wait for vaccinationvaccinationrecovery areago home

Yes No

ILI symptomsno no

no

yes
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Figure 1 Flowchart of patient movement through MIC in Niagara Region, ON.
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The distribution of family batch sizes was provided by NRPH
(Gentry, 2011). No incidences of families with six or more
members arriving together were recorded. The arrival of family
groups was modelled as a non-homogeneous Poisson process,
with interarrival times being exponentially distributed. Arrivals
were set to occur until 6:30 pm in a full-capacity scenario and
7:00 pm in a hypothetical overloaded scenario, marking the
time that facility doors would close to new patients.
Patient arrival rates had to be estimated indirectly because

patients were only recorded in the electronic record system once
they reached the registration desk, after arriving and waiting in
line. The arrival rates were calibrated to ensure consistency with
several other known parameters: the total number of patients
vaccinated, the maximum pre-registration wait time noted by
staff, and the wait times and patient queue lengths within the
facility between service stations. Differences existed in patient
turnout between days and between facilities, requiring separate
arrival rate calibrations to replicate each day’s turnout. The
baseline scenario used in this study reflects turnout and staffing
levels at an NRPH clinic on 26 October 2009.
NRPH reported that patient arrival rates varied by the hour.

Although patient arrival times were not recorded directly,
NRPH’s data show hourly variations in staff productivity that
seemed consistent with the manager’s description of the hours
that were typically busiest (mid-afternoon and early evening).
The interarrival times used for the 26 October baseline scenario
are presented in Figure 2.

3.2. Patient characteristics

The patients are assigned labels indicating their health status,
their age group, whether they belong to a government-defined
priority group, the size of the group with which they arrived,
and whether they have eligible provincial health insurance. Data
collected by NRPH were used to determine the proportion of
patients assigned to each category.
Each patient is assigned one of two health states: susceptible

or infectious. Public health officials in the Niagara Region
reported that public communications efforts informing people
not to come to MICs if they had influenza-like symptoms were

largely successful. Consequently, the model assumes that
infectious patients at the MIC were asymptomatic or had mild
enough symptoms to prevent effective identification and screen-
ing. The simulation was run with 0, 2, and 3% of arriving
patients being infectious, with the remainder of patients being
susceptible.
Since transmission risk is believed to be age-dependent

(Haber et al, 2007), patients were assigned to one of four age
groups: 0–4, 5–18, 19–64, and 65+ years of age. The service
times at registration and injection stations were also found to be
age-dependent. The percentage of patients belonging to each
age group depended on the government-mandated prioritization
restrictions in place. Prior to 31 October 2009, no prioritization
restrictions were in place. From 1–13 November, access to
vaccines was restricted to the following groups: people under
65 with chronic medical conditions; pregnant women; children
six months to five years in age; healthcare workers involved in
pandemic response or the delivery of essential healthcare
services; and care providers or household contacts of people at
high risk who cannot be immunized. From 14–16 November,
the restrictions were relaxed to include youth up to the age of
18, household members of pregnant women, first responders,
and provincial corrections officers; however, data on the
distribution of ages and group arrival sizes for this period were
not available. From 17 November onwards, vaccine access
was unrestricted. Table 1 contains age-group patient percen-
tages for the initial unrestricted period and the first stage of
restricted access.
NRPH’s data indicate that expected service times at registra-

tion and injection stations also depend on the size of the
patient’s family group. The likelihood of a patient belonging to
a family group of a particular size receiving treatment on the
same day is summarized in Table 2.
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Figure 2 Interarrival times in minutes for patient batches in two
scenarios.

Table 1 Percentage of patients per age group, by vaccine priority
restriction scenario (Statistics Canada, 2006; Gentry, 2010)

Age range (years)

0–4 5–18 19–64 65+

Canadian population 5.84 18.06 63.38 12.72
Unrestricted access, 26–31 October 14.61 17.35 59.58 8.46
Restricted access, 1–13 November 16.58 16.32 61.16 5.94

Table 2 Percentage of patients per family batch size, by vaccine
priority restriction scenario (Gentry, 2010)

Family size
1 2 3 4 5

Niagara population 26.0 31.0 20.0 14.0 9.0
Unrestricted access, 26–31 October 35.0 28.0 20.0 13.0 4.0
Restricted access, 1–13 November 52.5 27.5 13.0 6.0 1.0
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3.3. Patient wait-time tolerance, line tolerance, and facility
closure

It is possible that some patients may balk at the size of the
MIC’s line and choose to leave, while other patients may reneg
on their decision to get vaccinated if they have waited too long.
Balking and reneging are well-established as phenomena in
many queuing systems, including healthcare settings (Zenios,
1999; Fomundam and Herrmann, 2007; Asaro et al, 2008).
However, the factors that can influence balking and reneging
rates, such as the value and substitutability of the service, the
possibility of postponement, and the customer’s cost of waiting,
vary highly across contexts. No empirical estimates for rene-
ging and balking rates for mass immunization or sufficiently
comparable health service settings have been published. Unfor-
tunately, it was not possible to observe reneging and balking
behaviour directly because the MICs could only record patients
who made it to the registration desk.
The possibility of reneging and balking was built into the

model to allow realistic bounds to be placed on outdoor wait
times. These bounds were deemed particularly important for
simulated scenarios in which there would be staff shortages and
significant queue build-up. It seemed necessary to generate a
bound of sorts since patients would have had a limited will-
ingness to wait. Although reneging may be less common in
healthcare settings where there are steep health consequences
for postponing/cancelling service, or significant fines for missed
appointments, MIC reneging does not impose such costs on
patients. Since the particular reneging parameters used were
informed guesses and not grounded in data, detailed SA on the
reneging and balking parameters is presented in the Results
Section. Varying the reneging and balking parameters did not
have a significant effect on total vaccinations, though outdoor
wait times were affected.
For reneging, a patient’s maximum tolerance for waiting

outside the facility before leaving altogether was generated
using a normal distribution with a mean of 90min and a
standard deviation of 20min. For balking behaviour, the
simulation gives patients a line length tolerance: if a newly
arrived patient finds the number of people in line waiting to
enter the facility is greater than their line tolerance, they will
simply go home. Intuitively, a person’s line tolerance and wait-
time tolerance are likely correlated. Under this assumption, the
line tolerance was set to be normally distributed with a mean of
twice the wait-time tolerance level and a standard deviation of
20min. An hour before the facility closes at 6:30 pm, the MIC
stops taking new patients and closes its doors. Patients still
outside at this time go home while the patients inside proceed
through the MIC.

3.4. Patient screening

It was assumed that at least 0.5% of patients arriving at the
facility would not be eligible to receive a vaccination by virtue
of not holding provincial health insurance or not belonging to

an eligible priority group. In the model, such patients are sent
home after being screened at the registration desks. Patients
with a health state involving symptoms of influenza-like-illness
(ILI) are also screened at this stage. The effectiveness of
screening can be set to less than 100% to reflect the possibility
that some patients with mild ILI symptoms may want vaccina-
tion and consequently claim to be feeling fine to avoid being
sent away. The number of patients turned away for these
reasons at actual MICs in the Niagara Region is not known.

3.5. Registration and vaccination stations

Once inside the MIC, patients enter the registration queue,
which has a 50-person capacity. At capacity, patients are unable
to enter the facility and wait outside. At registration, eligible
patients provide clerical staff with personal data and answer
questions about co-morbidities and possible contra-indications.
Following registration, patients enter a new queue to receive the
vaccine from nursing staff. The queue for vaccine administra-
tion has a maximum capacity of 250 to reflect space constraints.
When this queue reaches capacity, the registration desks are
programmed to stop processing patients until space becomes
available. After being vaccinated, patients wait in a recovery
area for 10min in case they have an adverse reaction to the
vaccine. Then, patients leave the facility.
Each point of service—registration, flu assessment, and

vaccination—is assigned a distribution for service times, as
well as a certain number of staff, each of whom serves one
patient at a time. Two data sets were used to generate the service
time distributions. The first data set consisted of entries from
NRPH’s electronic patient record system that captured the
length of time that a patient’s electronic file was open at each
service station. The second data set contained the number of
patients served by each staff member over each hour of the day.
The service times recorded in the electronic system were found
to be significantly lower than those implied by the hourly
throughput and the overall number of patients vaccinated by the
facility, even when taking into account break time and minor
inefficiencies. Consequently, the mean service time was esti-
mated using the number of patients seen per hour per staff
member. The service times recorded in the electronic patient
system were still used to obtain standard deviation estimates, to
infer a likely shape of service time distributions, and to estimate
the effect of patient age on service time.
The sample standard deviation of the registration times from

26 to 28 October 2009 was 1.16min, and 1.25min for
vaccination times. The distribution of service times in the
electronic record system at both registration and vaccination
stations was positively skewed (Figure 3), and, of course, non-
negative. Lognormal distributions were chosen to generate both
registration and vaccination times so as to replicate this positive
skew and non-negativity.
The effects of patient age group on service time was found

through fitting an ANOVA model, and are summarized in
Table 3. All effects are relative to the 0–4 age group. The data
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suggest that adults and seniors take roughly 32 and 45 s longer
to register than small children, respectively, perhaps because
they are more likely to have more complicated medication and
health histories to document at the registration desk. The data
also show that children under 5 years require slightly more time
to vaccinate than older patients. These findings mean that the
optimal mix of registration staff and vaccination staff could
change depending on the demographic profile of the patient
population. Based on these numbers, if 1000 single adults
attending a large MIC were substituted with additional children
in the family batches, 8.9 fewer registration clerk hours and 6.7
additional nurse hours would be required to meet demand, all
else held equal. Since vaccine prioritization rules are often
based on age, major changes in patient demographics are quite
likely and may affect staff planning.
In addition to age-based adjustments, the expected value of a

patient’s registration time also depends on the size of the family
group with whom she/he arrived (Gentry, 2011), since address
information and family name spelling might not need to be
repeated for additional family members. Initial estimates for
these service time differences were based on the registration
time-stamps from the electronic patient record system. How-
ever, the service times recorded electronically seemed to
represent only a quarter of the time registration staff spent at
the registration desk registering patients based on our analysis
of NRPH’s staffing data. Consequently, the expected registra-
tion times used in the simulation were set to four times the

average values calculated using the electronic records, and are
presented in Table 4. The weighted average of these registration
times ranges from 3.42 to 3.49min, depending on which priori-
tization policy is in place, and is close to the rate of 3.45min
calculated indirectly by dividing total minutes believed to have
been worked by the total patients registered over those days.
Vaccination times did not vary with the patient’s family size.

However, the data sets did reveal a difference in productivity
between nurses with different professional specialties. In parti-
cular, vaccine preventable disease nurses and infectious disease
nurses, who represented just under half the nurses at the MICs,
served patients about 12% faster than other nurses (p=0.0109),
though this effect was only statistically significant for the
earliest two of the six days for which data were provided.

3.6. Changes in staff productivity by hour

Although the MIC managers believed there to be a consistent
stream of patients served by staff working at full capacity, the
data sets revealed significant variation in staff productivity over
different hours of the day, across different days, and among
staff members. Although productivity on 26 October for both
nurses and registration staff was lowest in the morning and
highest in the 2 h before closure, the variation on 27 October did
not exhibit a clear trend, while productivity on 28 October was
highest in the early afternoon, as shown in Figure 4. The extent
of the variation is significant, but its causes are unclear.
The differences among staff were also quite high, even

though the MIC managers described the 26–28 October 2009
period as especially busy, with staff working non-stop and very
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Table 3 Effects of patient age on service time (minutes), relative to
service times for the 0-4 age group

Age range Registration Vaccination

Effect p-value Effect p-value

5–18 0.047 0.043 −0.22 0.050
19–64 0.550 < 0.001 −0.40 < 0.001
65+ 0.760 < 0.001 −0.30 < 0.001

Table 4 Effects of family group arrival size on registration time
per-patient

Family batch size 1 2 3 4 5

Expected registration time (min) 3.60 3.48 3.25 3.18 3.28
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hard. For example, the standard deviation of each registration
staff member’s average hourly productivity during the unrest-
ricted vaccine access stage was 5.5 patients per hour, or just
over 25% of the average rate of 20.0 patients registered per
hour. Variation between nurses at vaccination stations was
just as large. On most days, the most productive nurses and
registration staff served twice as many patients per hour as their
counterparts with the lowest productivity. When compared with
the most productive hour worked by any staff member on a
given day, average staff productivity was only 46–56% of the
top performer’s best hour. This gap has two components: staff
members’ average hourly productivity was 81–85% of their
own personal bests for the day; and the averages of the daily
personal bests were only 58–70% the level of the top perfor-
mer’s personal best. Figure 5 shows how average hourly
productivity and average personal best productivity of registra-
tion staff varied over three consecutive days during the busiest
period, while falling in the month of November, in part due to
lower MIC utilization.
The number of people visibly waiting could have put greater

pressure on staff members, leading to a faster work pace.
However, the data sets did not contain information on outdoor
queue lengths at different times of the day, so this hypothesis
could not be verified. It is not known whether small errands
may have disrupted some nurses assigned to vaccination stations.
Such disruptions could bias these productivity estimates down-
wards, while upwardly biasing the productivity variance.
Since an effect of queue length on service time seemed

plausible, the service times for a patient in the simulation were
reduced by 4.8 s for every 10 people waiting behind them in
line, inside or outside the facility. This adjustment helped the
simulation replicate some of the productivity changes observed
over each day, with faster service times coinciding with periods
when the lines were longest. It is not known whether this
positive relationship between line length and service times was
present at other facilities.

3.7. Operating costs

To calculate the average cost per vaccine administered, labour
costs for registration clerks and nurses, vaccine material costs,

and space rental costs were included in the model (Table 5). The
cost of administration, information technology, and greeters
was not included, so the overall cost per vaccine in the model is
conservative. The space rental costs is an estimate of what a
public health unit would have to pay in the event that a free
public facility is not available.

3.8. Risk of disease transmission

Influenza transmission is believed to be unlikely at distances
greater than 2m from an infected person (Brankston et al,
2007). The risk of a contagious patient infecting a susceptible
patient is modelled using the function 1 - e - λijt (the cumulative
density function of an exponential distribution), where t is the
amount of time the two patients spend within 2 m of each other,
and where λij is the age-dependent hazard rate (probability of
infection) for a minute of exposure between susceptible person
i and infectious person j, given their respective age groups. The
difference in transmission risk for asymptomatic, pre-sympto-
matic, and mild-symptom cases compared with fully sympto-
matic cases is not known, but believed to be less severe
(Influenza Team, European Centre for Disease Prevention and
Control, 2007). To err on the side of caution, the transmission
risk rates used in the MIC simulation represent average
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Table 5 MIC operating costs (CAD)

Item Cost Comments

Vaccine cost per unit $10 Government purchase price (CBC
News, 2009) + shipping

Daily space rental $500 N/A for NRPH’s MICs
Hourly nurse wage
plus benefits

$48 Actual (Gentry, 2011)

Hourly clerk wage
plus benefits

$27 Actual (Gentry, 2011)
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transmissibility calibrated in the population-level influenza
simulation study by Haber et al (2007). These rates are given
in Table 6.
Susceptible patients can be exposed to multiple infectious

persons simultaneously. The patient’s hazard rate for infection
at a given point in time is set to the sum of the individual hazard
rates for all of the infectious persons with whom they are
making contact at that point in time. Since the number and type
of infectious persons a susceptible person may be exposed to
will change as she/he progresses through the MIC, the simula-
tion re-assesses with whom the susceptible person has contact
every time his/her position in the MIC changes.
To track total exposure time to contagious patients, each

susceptible person is assigned an exposure variable that gets
updated at every time-step k. To update the exposure variable,
the simulation must determine which individuals are within 2 m
of a given susceptible individual, and then check their health
status. For computational speed, the 2-m radius was assumed to
include individuals within M ranks on either side of the
individual’s position in a queue during time tk. It was assumed
that M=3 for queues inside the MIC and M=4 for queues
outside the MIC entrance. The maximum number of people
with whom a patient can have contact at a given time is
therefore 2M. To represent greater congestion or adjacent
single-file queues,M can be increased appropriately.
Letting Ki represent all time intervals k over which suscep-

tible person i occupies a distinct position in the MIC system,
and letting the set I ik represent all infectious patients with
whom the susceptible person has contact during time period tk,
the probability of a susceptible person i becoming infected in

the MIC can be represented as 1 - e
-
P

k2κi

P

j2I ik
λij tk

.
The expected number of infections per day is the sum of the

probabilities of infection for each susceptible individual in the
system that day. The simulation does not consider the prob-
ability of transmission to HCWs on duty since the transmission
risk to individuals wearing protective masks is likely low, and it
is likely that most MIC workers would be vaccinated.
In very long queues, the people to whom a susceptible person

is exposed is re-assessed every time the person’s rank in the
queue changes, even though this set of people may remain
constant for up to 60min. This superfluous calculation can be
rectified by simply multiplying the sum of the hazard rates from

those same individuals by the time interval over which the
patient is in queue with them. However, even without this
reduction in computations, the model’s one-day run time is
under 90 s.

4. Model validation

It is not possible to validate the estimates of the number of
patients becoming infected at an MIC against empirical data on
infection risks in MICs or in other public venues because no
such empirical data exist.
The infection risk parameters used in this simulation were

originally generated for use in a population-level influenza
spread model (Haber et al, 2007) so as to ensure that the
proportions of the simulated population in different age groups
that became infected would resemble the proportions from past
pandemics. It is important to recognize that all infection risk
parameters calculated in this way are limited for a number of
reasons: the set of parameter values that could lead to the
desired simulated pandemic outcomes is not necessarily unique;
the infection risk parameters depend on the assumptions made
about social contact patterns, which change by culture, geogra-
phy, and socioeconomic conditions; infection risk is affected by
ambient conditions such as relative humidity and temperature
(Tellier, 2006); and there is no consensus on which physical
mechanisms of transmission are most important (Tellier, 2006).
In light of these limitations, the infection counts produced by
this simulation model should be viewed as ballpark estimates,
subject to revision as more becomes known about the prob-
ability of influenza transmission at the individual level.
Validation for the overall design of the model was done by

setting staffing and arrival rate levels to match those of the
actual MICs for which NRPH provided data, and comparing the
empirical patient count, post-registration wait times, and indoor
queue lengths with those generated by the simulation. In order
to ensure that the simulation’s outputs were within 10% of the
empirical outputs, it was necessary to reduce nursing staff
availability by 5%, that is, nurses would be at their vaccination
stations only 95% of the time, not counting official breaks. This
change may reflect the fact that nurses sometimes had to serve
other functions in the MIC, such as collecting vaccination
supplies from storage and distributing them to other nurses.

5. Results

The simulation model was built using Simul8 (Visual8, Mis-
sissauga, ON) and run on a Windows 7 computer with a 2.1
GHz processor and 4GB of RAM. The peak-capacity (baseline)
scenario and several hypothetical scenarios were simulated to
understand the relationship of infection risk, throughput,
and costs.
From an economic point of view, the results offer strong

reasons to invest additional resources in MICs in order to
reduce wait times. Shorter wait times also mean less exposure

Table 6 Pandemic influenza transmission hazard rates (λ) per
minute (Haber et al, 2007)

Age group of
infectious person

Age group of susceptible person

0–4 5–18 19–64 64+

0–4 0.00059 0.00062 0.00033 0.00080
5–18 0.00058 0.00061 0.00033 0.00080
19–64 0.00057 0.00053 0.00032 0.00080
64+ 0.00057 0.00054 0.00029 0.00102
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to contagious patients—an additional public health benefit.
A designed experiment was performed to examine how
changes in a variety of factors affect several measures of MIC
performance.

5.1. Baseline scenario

An ‘as-is’ baseline configuration of the MIC model was created
based on the staffing levels, patient turnout, and hours of
operation of an MIC operated by NRPH on 26 October 2009,
described by management as operating at full capacity. On this
day, no restrictions were in place on who could access vaccines.
Nine registration staff and 11 vaccination nurses (four VPD/ID
RNs and seven regular RNs) were on duty throughout the day.
The facility opened its doors at 8:30 am and closed them at 6:30
pm, at which point it would only serve patients already inside
the facility. Two per cent of patients were assumed to be
infectious and without symptoms. The response variables
tracked in the simulation and their results are presented in
Table 7. Patients with influenza but no symptoms were not
included in the number of people vaccinated or in the cost per
vaccination calculation since their vaccinations would not
benefit them.
The trials show that the expected number of infections

occurring in the MIC is roughly 0.55% of the number of people
vaccinated. The count is still high enough to merit attention to
transmission risk in MICs, but does not detract from the benefits
of mass immunization. The average number of patients regis-
tered per full-day clerk was 184.3, and the average number
vaccinated per full-day nurse was 150.8.
Although patients spent close to 91min on average at the

MIC, less than 10% of that time was spent receiving services
fromMIC staff. Most of the time was spent waiting, and a large
part of that wait time took place outside. The total number of
person-hours spent by the public at the MIC, including people
who did not get into the facility in time or who were screened
on the basis of eligibility, was 2644.9, with a 95% confidence
interval of (2516.9, 2772.9). Patients who arrived and then left
immediately because the line length exceeded their line toler-
ance were excluded from the average time in system (ATS)
calculations.
It would be unrealistic not to assign some value to this lost

time, which ultimately does impose a cost on the economy and

society, directly by taking up formal work time, or indirectly
taking away time from domestic activities. Wait times were
penalized with a cost of $10 per hour, roughly Ontario’s
Minimum Wage in late 2009, to allow us to estimate the total
social cost per vaccination, comprising of both lost time and
MIC expenditures. Taking wait times into consideration in this
way roughly doubled the cost per vaccination from $16.76 to
$32.32.

5.2. Sensitivity analysis

Since the number of distinct scenarios to test in a full-factorial
designed experiment grows exponentially in the number of
factors, it was not possible to test the simulation for all possible
sources of variation via the experiment. To compensate, one-
way SA was conducted on several uncertain parameters not
tested in the experiment. The results for response variables of
interest are presented.

5.2.1. Patient interarrival times. The distribution of patient
arrival times in the baseline scenario was chosen to ensure that
the number of persons receiving vaccination and the ATS
were consistent with the values for the reference clinic that the
baseline scenario is supposed to imitate. The reference clinic
served 1699 patients on 26 October 2009. Since the model
only counts vaccines given to the 98% of patients who are
uninfected as useful vaccinations, the arrival rates were cali-
brated to yield an average vaccination count close to 0.98 ×
1699=1665. Patient interarrival times also impacted ATS. The
target ATS value range for the baseline clinic was 85–95 min,
including time spent in line outside the facility prior to regis-
tration. The interarrival times for all periods of the day were
varied by a multiplicative factor applied to the baseline values,
with 10 replications per case. The results are presented in
Figure 6.

Table 7 Baseline scenario results, 21 replications

Response variable Value 95% confidence
interval

Expected infections 9.08 (8.54, 9.63)
Number vaccinated 1658.8 (1645.5, 1672.2)
Direct cost per vaccination (CAD) 16.76 (16.67, 16.85)
Societal cost per vaccination
(CAD)

32.32 (31.94, 32.70)

ATS—Average time in system
(min)

90.89 (88.87, 92.91)
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Figure 6 Vaccinations and average time in system versus patient
interarrival time adjustment.
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The range of variability for total vaccinations is bounded
above by the physical capacity of the facility, with small
increases happening alongside faster arrival rates as a conse-
quence of the slight relationship between visible queue lengths
and staff service times assumed in the model. The total number
vaccinated did not fall proportionally with the lower rates of
arrival because a large portion of patients in the baseline
scenario were going home prior to entering the facility because
of the long outdoor queue. When the rate of arrivals was slower,
the queue was shorter, resulting in a higher proportion of the
arrivals staying in the queue and entering the facility—this
partially compensated for the slower arrival rate. In addition,
while the ATS increased with higher turnout, patient wait time
tolerance limited ATS growth by causing some patients to go
home without entering the MIC after having waited in the
outdoor line.

5.2.2. Patient wait time tolerance. Patient wait time toler-
ance was also varied by using multiplicative factors, with 10
replications per case. The results are presented in Figure 7.
The effect on total vaccinations was limited, but more notice-
able for ATS.

5.2.3. Transmission parameters. Many factors are believed
to influence the risk of influenza transmission, such as relative
humidity and temperature (Tellier, 2006), ventilation (Moser
et al, 1979), and intensity of symptoms (Influenza Team,
European Centre for Disease Prevention and Control, 2007),
though these effects have not been quantified in studies
involving realistic transmission between humans. To account
for this uncertainty, the hazard rate parameters for influenza
transmission were varied by 50%, holding all other parameters
at their baseline values. Twenty replications per case were
used. The mean number of infections in the lower and higher
risk scenarios was 4.23 and 13.51, with 95% confidence
intervals of (3.24, 5.22) and (11.80, 15.22), respectively,

compared with 9.08 infections in the baseline. The percentage
change in the number of infections is similar to the percentage
change in the transmission rates.

5.2.4. Arrival of symptomatic patients. In the baseline sce-
nario it was assumed that patients with symptoms of influenza
would not come to the MIC. Relaxing this assumption, we let
an additional 1% of the population be infectious and sympto-
matic, and allowed for screening at the registration desk with
100, 75, and 50% efficacy. Twenty replications per case were
used. The mean number of infections in these three cases was
11.20 (9.82, 12.58), 11.98 (10.83, 13.13), and 12.56 (11.57,
13.57), respectively. The increase in the number of infections,
although small, was statistically significant in all cases. As the
screening effectiveness decreased, infections increased
slightly, but the increases were not statistically significant.

5.3. Designed simulation experiment

A simulation experiment was conducted to determine the
effects of the six factors presented in Table 8 on total vaccines
administered, ATS, expected infections, and costs per vaccina-
tion. Data from a full-factorial design with one run per scenario
were combined with 20 additional replications of the baseline
scenario to fit a linear ANOVA model with main effects and
several interactions of interest. A total of 344 simulation runs
were used in the data analysis. The results for each response
variable are summarized in Table 9. Only effects that are both
economically and statistically significant effects are presented.
The values in the tables represent the relative difference from
the baseline scenario described earlier.

5.3.1. Number of vaccinations. All factors have a statistically
significant effect on the number of susceptible patients
receiving vaccinations. The effect of the priority restriction
policy in lowering turnout reflects the fact that these policies
make it difficult for large families to arrive and get vaccinated
all at once, meaning more of the arrivals will consist of indi-
viduals or couples. This decline in turnout is consistent with
the decline observed in November when the priority restric-
tions were actually in place (Gentry, 2011).
When patient turnout was representative of the population, all

response variables were affected. This factor level was included
to determine whether it is reasonable to assume that the patient
population is representative of the actual population without
impacting the simulation’s output. The differences in response
variable outputs between scenarios using a representative
population versus the actual population profile show that this
is not the case.
Marginal changes in the number of nurses had significant

effects on the number of patients vaccinated, but the size of the
effect depended on other factors. In the baseline scenario,
adding one nurse led to a small gain of only 50.7 new
vaccinations, while removing one nurse led to a loss of 126.1
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vaccinations. However, the benefit of adding a nurse is 28.2
vaccinations greater if an extra clerk is also added, though
adding a clerk alone had no significant effect on total vaccina-
tions, and removing a clerk led to a meagre decline in
vaccinations of 39.2. The benefit of adding a nurse completely
disappeared under the priority restriction scenario, when turnout
was about 8.7% lower. Likewise, the consequence of losing one
nurse—126.1 forgone vaccinations in the baseline—was 77.7
vaccinations less severe under the priority restriction scenario.
These results indicate that changes in patient demand have a
very strong effect on the MPL, and that the marginal impact of a
unit change in staffing is not symmetric with respect to the
direction of change.
The results in the surge scenario show a similar interaction

between nursing levels and patient demand. The 15% surge in
demand alone led to an extra 69 patients being treated. The
increase in treated patients likely results from the model’s
assumption that staff work slightly faster in response to seeing
longer lines. If this assumption is incorrect, a surge might not
lead to any additional patients being treated compared with a
clinic that is already close to full capacity. The surge also
amplified the effect of changes in nursing levels: Adding a
nurse led to 45.4 more vaccinations than would have been
added by an extra nurse in the baseline scenario, and removing
a nurse led to 35.8 more vaccinations lost than the 126.1 lost
under regular demand. Although average hourly clerk and nurse
productivity was close to 190 and 150 patients served, respec-
tively, in no scenarios is the effect of changing clerk levels close
to the average clerk productivity, and only in some scenarios is
the effect of adjusting nurse levels comparable.
The vaccination count declined by 18.44 when the percen-

tage of patients who are contagious was incremented; this drop

reflects the effect of not counting vaccinations given to the
additional people who are infected or who become infected.
Extending operating hours by 60min, which is almost a 10%
increase in the amount of time the facility’s doors are open, led
to a 6.3% increase in vaccinations.

5.3.2. Average time in system. The decline in patient turnout
under the priority restriction scenario led patients’ ATS to fall
by 37.7 min, or 41.5%. In contrast, the 15% surge in patient
demand only increased ATS by 18.68 min, or 20.6%. Extend-
ing operating hours by 1 h further reduced average wait times
by 7.48 min, or 8.2%. Removing and adding one nurse had a
symmetrical effect of roughly 15 min in either direction.
Removing a clerk increased ATS by 3.88 min, while adding a
clerk brought no benefit.
Under the priority restriction scenario, the benefit of adding a

nurse was 5 min lower, and the effect of removing a clerk was
8.0 min stronger. The interaction between removing a clerk and
the priority restriction sceario may be due to the shift in family
sizes towards singles and couples, whose higher registration
times could have increased the sensitivity of ATS to changes in
clerk staffing levels. The coefficient for the interaction between
removing a nurse and clerk simultaneously is negative, suggest-
ing that while removing nurses and clerks one at a time
increases ATS, the combined effect of removing both is less
than the sum of the effects of removing them individually.

5.3.3. Expected number of infections and infection risk.
Several factors affected the expected number of infections,
in part by reducing the number of patients arriving at the
MIC—not necessarily a good thing—but also by reducing

Table 8 Factors examined in experiment

Factor Levels

Factor 1: Priority access restrictions Level 1: No restriction; patient demographic is similar to actual patient in NRPH during H1N1
Level 2: No restriction; patient demographic is representative of Canadian population
Level 3: Restricted to priority groups

Factor 2: Nurse staffing Level 1: Maintain 11 nurses from baseline scenario
Level 2: Reduce the number of specialist RNs by one
Level 3: Increase the number of specialist RNs by one

Factor 3: Registration clerk staffing Level 1: Maintain nine registration clerks from baseline scenario
Level 2: Reduce the number of clerks by one
Level 3: Increase the number of clerks by one

Factor 4: Hours of operation Level 1: Maintain doors open at 8:30 am and close at 6:30 pm
Level 2: Doors open at 8:00 am and close at 7:00 pm

Factor 5: Infection rate Level 1: Maintain at 2% of patients as asymptomatic infectious
Level 2: Increase to 3% of patients asymptomatic infectious
Level 3: No patients are infectious

Factor 6: Surge in patient demand Level 1: Patient arrival rate based on 26 October 2009 turnout
Level 2: 15% surge in patient arrival rate
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Table 9 Factors affecting number vaccinated, ATS, expected infections, direct costs per vaccination, and total societal costs per vaccination

Significant factors Change from baseline p-value

Number vaccinated
Turnout representative of population 31.48 < 0.001
Restriction to priority groups −144.55 < 0.001
Increment percent infectious −18.44 < 0.001
No patients infectious 31.85 < 0.001
Extra hour 105.05 < 0.001
Remove one nurse −126.06 < 0.001
Add one nurse 50.737 < 0.001
Remove one clerk −39.25 0.0045
15% surge in patient demand 69.28 < 0.001
Interaction: priority restriction AND remove one nurse 77.75 < 0.001
Interaction: priority restriction AND add one nurse −68.31 < 0.001
Interaction: representative turnout AND add one nurse 29.53 0.025
Interaction: add one nurse AND add one clerk 28.25 0.032
Interaction: surge AND remove one nurse −35.76 0.0011
Interaction: surge AND add one nurse 45.44 < 0.001

Average time in system
Turnout representative of population 5.18 0.0021
Restriction to priority groups −37.7 < 0.001
Extra hour −7.48 < 0.001
Remove one nurse 14.97 < 0.001
Add one nurse −14.86 < 0.001
Remove one clerk 3.88 0.021
15% surge in patient demand 18.68 < 0.001
Interaction: priority restriction AND add one nurse 4.99 0.012
Interaction: priority restriction AND remove one clerk 8.01 < 0.001
Interaction: remove one nurse AND remove one clerk −4.96 0.013

Expected infections
Restriction to priority groups −5.08 < 0.001
Increment percent infectious 3.56 < 0.001
No patients infectious No infections automatic
Add one nurse −1.05 0.013
15% surge in patient demand 2.53 < 0.001
Interaction: priority restriction AND increment % infectious −1.12 0.040
Interaction: priority restriction AND remove one nurse 1.27 0.020
Interaction: surge AND increment percent infectious 0.97 0.032

Direct cost per vaccination
Increment percent infectious 0.592 < 0.001
No patients infectious −1.23 < 0.001
Add one clerk 0.156 0.0029
Interaction: priority restriction AND none infectious 0.372 < 0.001
Interaction: priority restriction AND add one nurse 0.382 < 0.001
Interaction: surge AND none infectious −0.162 0.031
Interaction: surge AND add one nurse −0.223 0.0030
Interaction: surge AND remove one clerk −0.206 0.0063

Total societal cost per vaccination
Turnout representative of population 0.67 0.027
Restriction to priority groups −6.35 < 0.001
Increment percent infectious 0.58 < 0.001
No patients infectious −1.62 < 0.001
Remove one nurse 2.81 < 0.001
Add one nurse −2.21 < 0.001
Remove one clerk 0.61 0.046
15% surge in patient demand 3.39 < 0.001
Extra hour −1.36 < 0.001
Interaction: priority restriction AND add one nurse 1.24 < 0.001
Interaction: priority restriction AND remove one clerk 1.43 < 0.001
Interaction: remove one nurse AND remove one clerk −0.85 0.020
Interaction: surge AND add one nurse −0.70 0.020
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patients’ ATS. The baseline expected number of infections
was 9.08, representing 0.55% of those vaccinated. The priority
restriction policy cut expected infections by 55.9%, and
resulted in a relative decline in infection risk per patient of
51.7%. Incrementing the percentage of patients infected from
2 to 3% led to 3.56 new infections on average, an increase of
39.2%. The 15% surge in patient demand led to a 27.9%
increase in infections and a 22.7% increase in per patient
infection risk, due largely to longer ATS. Adding one nurse
averted 1.05 infections, which seems small but is an 11.6%
improvement. Furthermore, from a societal perspective, the
extra infected person’s lost productivity over several days
is likely of greater economic value than the cost of the
additional nurse.
Several factor interactions were also present. The effects of

the surge and of incrementing the percentage of infectious
patients amplified each other slightly. The consequence of
increasing the percentage of infectious patients was less severe
in the priority restriction scenario. The reduction in expected
infections from 9.08 to 4.00 under the priority restriction
scenario was 1.27 infections less when one nurse was removed,
though the effect of removing a nurse was not statistically
significant in the baseline scenario.

5.3.4. Direct and societal costs per vaccination. Although
four factors had statistically significant effects on the cost per
vaccination, the effects were fairly modest. The cost per vac-
cination is 7.4% higher in the baseline scenario than when no
infectious patients are in the model, a fact which indicates that
the small percentage of vaccines given to people who will not
benefit from them has economically meaningful implications.
Adding a clerk to the baseline scenario increased the cost per
vaccination, as did adding one nurse in the priority restriction
scenario since demand was lower. Meanwhile, the cost per
vaccination decreased in the surge scenario when a nurse
was added and when a clerk was removed, indicating that
the MIC may have best coped with a surge, given limited
resources, by exchanging a clerk for a nurse, bringing the
nurse:clerk ratio to 3:2.
If the economic loss due to patients waiting is taken into

consideration, adding a clerk no longer hurts the cost per
vaccination, and the benefit of adding a nurse is larger: 6.8%
improvement in the baseline cost level and a 9.0% improvement
in the surge cost level as opposed to no improvement in the
baseline and a 1% improvement in the surge scenario. The
factors that affected ATS also affected the societal cost per
vaccine, and in similar ways. This cost per vaccine measure
strikes a balance between higher patient throughput per worker
per hour and keeping wait times short.

6. Conclusions

The simulation experiment’s results show that making MIC
staffing decisions on the basis of reaching vaccination targets,

without considering the societal/economic losses associated
with long waits or the possibility of intra-facility infection risk,
could lead to under-investment in MICs. If an hour of a
patient’s time is valued at the minimum wage, then the cost of
wait times of the length seen during the busiest days of the 2009
H1N1 pandemic becomes comparable with the direct financial
cost of MIC staff, space rental, and vaccine materials combined.
In addition to reducing wait-times, adding staff in the right
circumstances also modestly reduced the expected number of
intra-facility infections.
The analysis of staff productivity data revealed that there

could be potential to increase patient throughput at MICs
without hiring additional staff. Even though staff appeared to
be working at full speed throughout the day, staff members’
productivity varied considerably throughout the day, across
different days, and between individuals. However, the reasons
for these productivity variations remain unclear.
This simulation study is the first to estimate the risk of

influenza transmission in a mass immunization clinic. As with
all simulation studies, the results presented are contingent on
the model’s parameters and simplifying assumptions. Signifi-
cant potential exists for gains in model accuracy and precision
on several fronts. Transmission hazard rates within a 2-m radius
are likely not well represented because virus-laden droplet and/
or aerosol density in the air will become more diffuse as
the planar surface area, or volume, of space surrounding an
infectious person increases with distance. The possibility of
different infection risks for persons standing in front of an
infected person versus behind was also not considered.
Possible improvements to the simulation model include the

incorporation of direction-specific disease transmission (ie,
disease transmission is more likely to occur in face-to-face
orientations rather than facing the same direction in a queue),
increased accuracy in the estimates of outdoor waiting times,
and empirical verification of the relationship between perceived
future workload, as represented by queue length, and hourly
staff productivity. Data-based reneging and balking parameter
estimates could also improve the bounds on queue growth, and
the accuracy of the public’s estimated time loss. That patients
are recorded only after waiting outside is a major obstacle to
assessing reneging behaviour. The use of appointment-based
vaccination scheduling in conjunction with walk-ins could also
be examined. An appointment plus walk-in approach might
reduce variability in patient turnout, reduce wait times, and also
generate reneging data.
Although the validity of the infection risk estimates produced

by this simulation is subject to uncertainty, the estimates remain
useful for comparing relative infection risk changes under
different scenarios, and offer a reasonable approximation for
actual infection counts using the best influenza transmission
risk parameters available. It was found that no more than 1% of
MIC patients are likely to become infected with influenza, even
in a worst-case scenario in which 3% of other patients are
infectious and without symptoms in addition to very long wait
times. The risk of infection at an MIC does not outweigh the
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benefits of vaccination, even in a worst-case scenario. It is
difficult to conceive of a plausible situation that would make the
MICs counter-productive to pandemic control efforts. However,
the risk of infection is still large enough to deserve attention
from infection control experts, and is one of many factors to
consider in hiring additional staff to reduce wait times. By
ensuring adequate spacing between patients in waiting areas,
good ventilation, sanitation of touch surfaces, etc, MIC man-
agers may be able to increase the net positive effect of their
facilities on pandemic control efforts by reducing intra-facility
infection risk.
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