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ABSTRACT 

The goal of this work is to develop an improved procedure for the solution of the lexicographic 
bottleneck variant of the assembly line balancing problem (LB-ALBP). The objective of the LB-ALBP is to 
minimize the workload of the most heavily loaded workstation, followed by the workload of the second 
most heavily loaded workstation and so on.  This problem —recently introduced to the literature (Pastor 
2011)— has practical relevance to manufacturing facilities.  We design, implement and fine-tune GRASP, 
tabu search and scatter search heuristics for the LB-ALBP and show that our procedures are able to 
obtain solutions of a quality that outperforms previous approaches.  We rely on both semi-greedy and 
memory-based designs that our experiments show to be effective.  Experimental results verify the 
advantages of embedding such designs to improve the solution existing in the literature of this complex 
problem.  Additionally, the extensive experimentation with 48 variants of GRASP, 12 of tabu search and 
1 of scatter search establishes the benefits of adding enhanced search strategies to basic procedures. 
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1. Introduction 

Assembly lines are at the core of mass production systems, such as those in the automotive industry. An 

assembly line consists of a series of workstations in which the product flows. In each workstation, 

several tasks (assembly operations) are performed on the products determining the total duration or 

cycle time. The class of assembly line balancing problems (ALBP) consists of assigning the tasks to 

workstations to optimize one or multiple objectives while satisfying some specific conditions.  The 

practical importance of this family of NP-hard problems (Wee and Magazine, 1982) has resulted in a vast 

literature. We refer the reader to Becker and Scholl (2006), Scholl and Becker (2006), Boysen et al. (2007, 

2008), and Battaïa and Dolgui (2013) for some of the most recent surveys. 

The simplest case of ALBP —referred to as simple assembly line balancing problem (SALBP)— consists of 

a serial line that processes a single product. In the SALBP, task times are assumed to be deterministic 

and precedence constraints are the only design restrictions (Scholl and Becker, 2006).  This problem has 

been extensively studied in the literature and has been approached with both heuristic and 

metaheuristic procedures (e.g., Talbot et al., 1986; Ponnambalam et al., 1999; Corominas and Pastor, 

2009), exact procedures based on binary or integer linear programming (e.g., White, 1961; Talbot and 

Patterson, 1984; Pastor and Ferrer, 2009), dynamic programming (e.g., Kao and Queyranne, 1982), and 

branch and bound (e.g., FABLE by Johnson, 1988; EUREKA by Hoffman, 1992; SALOME by Scholl and 

Klein, 1997). 

To address more realistic versions of the ALBP, researchers have recently intensified their efforts by 

examining further aspects of actual manufacturing systems (Becker and Scholl, 2006).  The following are 

some of the most prominent examples of ALBP features addressed in the literature:  parallel tasks (e.g., 

Inman and León, 1994), incompatibility between tasks (e.g., Park et al., 1997), U-shaped lines (e.g., 

Miltenburg, 2002), mixed-models (e.g., Ding et al., 2006), stochastic task times (e.g., Gamberini et al., 

2006), parallel workstations (e.g., Lusa, 2008), setup times between tasks (e.g., Martino and Pastor, 

2010), alternative assembly subgraphs (e.g., Capacho et al., 2009), constrained resources (e.g., 

Corominas et al., 2011) and ergonomics considerations (e.g., Cheshmehgaz et al., 2012). 

With respect to the objective function, we can distinguish two main groups.  When the objective is to 

minimize the number of workstations for a given upper bound on the cycle time, the problem is known 

as ALBP-1. When the problem consists of minimizing the cycle time given a number of workstations, the 

problem is known as ALBP-2 (Baybars, 1986).  Note that ALBP-2 is a problem with a minimax objective, 
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since it attempts to minimize the workload of the workstation with the maximum load (i.e., the 

bottleneck).  ALBP-2 ignores the workloads of those workstations that are not the bottleneck. However, 

as pointed out in previous works (Boysen et al. 2006), uniformly distributed workloads among 

workstations help to improve the reliability of the line and, as it is discussed in Boysen et al. (2006), the 

quality defects caused by workstations with disproportionately large processing times are avoided. 

 

[Insert Figure 1 here] 

 

Figure 1 shows the precedence graph of a process with 9 tasks, numbered from 1 to 9. Each node in the 

graph represents a task, with its associated processing time in parentheses, and precedence constraints 

are represented by arcs between nodes.  Table 1 shows two designs that assign these 9 tasks to 5 

workstations (W1, W2, …, W5). In both solutions, W1 has the maximum workload of 10, making this 

workstation the bottleneck that determines the cycle time for the design. According to ALBP-2, both of 

these assignments have the same objective function value. 

 

[Insert Table 1 here] 

 

Figure 2 is a graphical representation of the workloads corresponding to each design in Table 1.  

 

[Insert Figure 2 here] 

 

Although both designs have the same bottleneck (i.e., W1) and a cycle time of 10, it is clear that they are 

quite different in terms of their workload distribution.  Discriminating between both solutions and, in 

general, among all the solutions with the same maximum workload, was the motivation of Pastor (2011) 

for proposing a new variant of the ALB problem: the lexicographic bottleneck ALBP (referred to as LB-

ALBP), which takes into account the load of all workstations. 
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The LB-ALBP employs a hierarchical approach to first minimize the workload of the most heavily loaded 

workstation, followed by the workload of the second most heavily loaded workstation, followed by the 

third, and so on.  It is therefore a multi-objective optimization problem with a hierarchical structure 

(Cortés et al., 2006) in which the quality of the solution is determined by the order of the objectives 

instead of a trade-off among objectives. We cannot know a priori whether the workload of all 

workstations are important in practice with respect to the reliability of the line. For instance, if the 

second most workload is also equal (or close) to the cycle time, obviously the third most workload is 

important. And if the third most workload is also equal to or close to the cycle time, then the fourth 

most workload is important, and so on. Therefore, since a priori we do not know which are the optimal 

workloads, the LB-ALBP takes into account hierarchically all of them. 

In mathematical terms, we consider 𝑚𝑚 ordered workstations and 𝑛𝑛 tasks, where each task 𝑖𝑖 (𝑖𝑖 =

1, … ,𝑛𝑛)  is defined by its processing time 𝑡𝑡𝑖𝑖 and a set 𝑃𝑃𝑖𝑖 of its precedence tasks (i.e., those that must be 

processed before task 𝑖𝑖). A feasible solution is an assignment of tasks to workstations verifying their 

precedence relationships.  Given a feasible solution 𝑠𝑠, let 𝑤𝑤(𝑠𝑠, 𝑗𝑗) be the workload of workstation 𝑗𝑗 in 

solution 𝑠𝑠.  As mentioned above, while the classical ALBP-2 seeks to minimize the maximum workload; 

i.e., max𝑗𝑗=1,…,𝑚𝑚𝑤𝑤(𝑠𝑠, 𝑗𝑗), the LB-ALBP minimizes the lexicographical bottleneck objective. 

Pastor (2011) proposed a function 𝜹𝜹(𝒔𝒔) to evaluate the merit of a solution 𝒔𝒔 of an LP-ALBP instance. 𝜹𝜹 is 

based on computing  differences between the workloads of s and an “ideal” distribution of workloads.  

The idea distribution may be interpreted as a lower bound given that in general this distribution does 

not correspond to a feasible solution.  The ideal 𝒋𝒋𝒕𝒕𝒕𝒕 workload is calculated as follows: 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑗𝑗) = 𝑚𝑚𝑚𝑚𝑚𝑚 ��𝑇𝑇−
∑ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑘𝑘)𝑗𝑗−1
𝑘𝑘=1
𝑚𝑚−𝑗𝑗+1

� , 𝑡𝑡𝜎𝜎(𝑗𝑗)�

     
 

where 𝑇𝑇 = ∑ 𝑡𝑡𝑖𝑖𝑛𝑛
𝑖𝑖=1 , 𝜎𝜎(𝑗𝑗) is the task with the 𝑗𝑗𝑡𝑡ℎ largest processing time and ⌈𝑥𝑥⌉ is the smallest integer 

that is equal to or greater than 𝑥𝑥.  The equation produces ideal workloads in decreasing order. That is, 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑗𝑗) ≥ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑗𝑗′) if 𝑗𝑗 < 𝑗𝑗′.  The value of 𝛿𝛿 is then computed as follows: 

𝛿𝛿(𝑠𝑠) =
∑ �(𝑤𝑤�𝑠𝑠,𝜋𝜋(𝑗𝑗)� − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑗𝑗)) ∙ 𝛽𝛽𝑚𝑚−𝑗𝑗+1�𝑚𝑚
𝑗𝑗=1

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(1) ∙ 𝛽𝛽𝑚𝑚−1  

where 𝛽𝛽 is a large value that reflect the hierarchy among workstations and 𝜋𝜋(𝑗𝑗) is the workstation with 

the 𝑗𝑗𝑡𝑡ℎ largest workload and therefore, for any solution 𝑠𝑠, 𝑤𝑤�𝑠𝑠,𝜋𝜋(𝑗𝑗)� ≥ 𝑤𝑤�𝑠𝑠,𝜋𝜋(𝑗𝑗′)� if 𝑗𝑗 < 𝑗𝑗′. 
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Note that 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(1) = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑡𝑡𝜎𝜎(1), �𝑇𝑇
𝑚𝑚
��, the lower bound on the cycle time. In the example above, with 

𝛽𝛽 = 100 (the typical value employed in the literature, see Pastor (2011) and Pastor et al. (2012)), the 

ideal distribution of workloads is 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = (10,8,8,7,7), and the ordered workloads for the first design 

are 10, 10, 9, 6, and 5.  Therefore, 𝛿𝛿 value for the first design is: 

(10 − 10) ∙ 1005 + (10 − 8) ∙ 1004 + (9 − 8) ∙ 1003 + (6 − 7) ∙ 1002 + (5 − 7) ∙ 1001

10 ∙ 1004
= 0.201 

The main objective of this work is to improve upon the current competency to find high quality solutions 

to the LB-ALBP. With this in mind, we explore the design, implementation and fine-tuning of greedy 

randomized adaptive search procedure (GRASP), tabu search (TS) and scatter search (SS) procedures. In 

metaheuristic search, the ability to find high quality solutions depends on an effective interplay between 

search intensification and diversification.  Our experiments are designed to evaluate the role that special 

memory structures play in inducing search exploration and exploitation to achieve high quality 

outcomes. Comparisons against existing methods reveal that we have been able to establish a new state 

of the art for solving LB-ALBP instances. 

2. Relevant Previous Work 

We review a few aspects of the literature that are directly related to our work. 

2.1. Workload Smoothing 

The homogeneous distribution of the workload is a goal that appears in the ALBP literature. It has been 

usually achieved by minimizing the sum, for all workstations, of the differences between their workloads 

and the cycle time (e.g., Moodie and Young, 1965; Rekiek et al., 2002), or the average workload (e.g., 

Rachamadugu and Talbot, 1991; Merengo et al., 1999).  The most common objective for smoothing the 

workload is to minimize the so-called “smoothness index” (𝑆𝑆𝑆𝑆) by Moodie and Young (1965), which using 

our notation, is calculated as follows for a solution 𝑠𝑠: 

𝑆𝑆𝑆𝑆(𝑠𝑠) = ��(𝐶𝐶𝐶𝐶(𝑠𝑠) −𝑤𝑤(𝑠𝑠, 𝑗𝑗))2
𝑚𝑚

𝑗𝑗=1

 

Although the workloads of optimal LB-ALBP solutions tend to be smooth, as explained in Pastor (2011), 

the LB-ALBP objective is different from the 𝑆𝑆𝑆𝑆 objective. We illustrate this as follows. Let the workloads 
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for two solutions, 𝑠𝑠1 and 𝑠𝑠2, be (34,33,33,29,19) and (35,30,29,29,25), respectively.  Their 

corresponding  𝑆𝑆𝑆𝑆 values are 15.87 and 14.04, making 𝑠𝑠2 better than 𝑠𝑠1 according to this smoothing 

objective. However, when considering the lexicographical objective of LB-ALBP, 𝑠𝑠1 is actually better 

solution than 𝑠𝑠2. 

2.2. SALBP-2 

The single objective in SALBP-2 is the minimization of the cycle time, which is the first objective of the 

LB-ALBP. The SALBP-2 has been solved by exact and heuristic methods (e.g., Scholl and Becker, 2006). 

Most heuristic solutions to the SALBP-2 are based on solving iteratively the simple ALBP-1 (SALBP-1) by 

applying the procedure in Figure 3, in which processing times of the tasks are assumed, without loss of 

generality to be integers, restricting 𝐶𝐶𝐶𝐶 to integer values. 

 

[Insert Figure 3 here] 

 

The greedy heuristic in Figure 3 is iterative and workstation-oriented; i.e., at each step the best 

candidate task (according to the chosen priority rule) is assigned to the workstation 𝑗𝑗 under 

consideration. A task 𝑖𝑖 is a candidate to be assigned to workstation 𝑗𝑗 if all its precedent tasks have 

already been assigned and the sum of the processing time of the task and the current workload of the 

workstation does not exceed the desired cycle time. If there are no available candidate tasks (but there 

are still tasks to be assigned) then workstation 𝑗𝑗 is closed and the next workstation 𝑗𝑗 + 1 is opened.  The 

procedure ends when all tasks have been assigned. Most computational experiments reported in the 

literature indicate that workstation-oriented procedures provide better results than task-oriented ones, 

although they are not theoretically dominant (Scholl and Voß, 1996). 

2.3. LB-ALBP 

Two mixed integer linear programming (MILP) approaches, referred to as GHM and SHM, were 

proposed in (Pastor 2011) for the LB-ALBP. GHM directly minimizes ∑ 𝛽𝛽𝑚𝑚−𝑗𝑗+1𝑚𝑚
𝑗𝑗=1 𝑤𝑤(𝑠𝑠,𝜋𝜋(𝑗𝑗)), which is a 

weighted sum of functions; while SHM sequentially solves 𝑚𝑚 − 1 MILP submodels by not allowing to 

deteriorate the optimal values of the higher-priority objectives that have been obtained. Experiments 

clearly show that SHM performs better; although, only smallest instances were solved optimally within 5 
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hours of computational time per instance. For larger instances the author proposed three 

straightforward heuristics based on the previous MILP procedures. The heuristics consisted of several 

strategies to use a limited computational budget. 

Pastor et al. (2012) proposed V-LSPa, a deterministic heuristic based on iteratively solving SALBP-2. V-

LSPa sequentially solves and divides the problem into two smaller subproblems (with lower number of 

workstations and tasks to assign) using the most heavily loaded workstation in each subproblem as the 

split point. Then, each subproblem is solved as a SALBP-2 by means of the heuristic scheme shown in 

Figure 3. Twelve solutions are obtained by applying the SALBP-1 greedy heuristic step with the following 

twelve priority rules: 

1. Maximum ranked positional weight 

2. Maximum task time 

3. Maximum total number of follower tasks 

4. Maximum number of immediate follower tasks 

5. Maximum average ranked positional weight 

6. Maximum task time divided by upper bound 

7. Maximum total task followers divided by task slack 

8. Minimum lower bound 

9. Minimum upper bound 

10. Minimum slack 

11. Minimum task number 

12. Minimum upper bound divided by followers 

The procedure selects the best of the twelve solutions according to the LB-ALBP objective. The solution 

to each subproblem is used to update the global solution of the original problem. Each time that the 

global solution is updated, a local search is applied. When a local optimum improves upon the 

incumbent solution, the process is reset starting from the new local optimum. The heuristic ends when 

no subproblems remain to be solved. The authors compared their best heuristic with the best in Pastor 

(2011), and V-LSPa obtains on average the best results. 

3. GRASP 

The greedy randomized adaptive search procedure (GRASP) metaheuristic was designed by Feo and 

Resende (1989) and belongs to the family of multi-start approaches. Each GRASP iteration consists of 
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constructing and improving solutions. The constructions are semi-greedy, meaning that they involve the 

probabilistic selection of a reduced set of top choices. The improvement typically consists of a local 

search. Unlike tabu search, GRASP is a memoryless metaheuristic since no information is transferred 

from one iteration to the next. 

Our construction procedures for the LB-ALBP are based on the scheme in Figure 3, where the heuristic 

for the SALBP-1 is replaced with the procedure in Figure 4. Therefore, instead of choosing the top task in 

the candidate list of tasks (𝐶𝐶𝐶𝐶) according to the priority rule, a so-called restricted candidate list (𝑅𝑅𝑅𝑅𝑅𝑅) is 

created and the next task is randomly selected from this list. The procedure is outlined in Figure 4. 

The construction procedure of Figure 4 starts with the first workstation and a new workstation is 

opened only if the current workstation does not have the capacity to perform an additional task and the 

set of unassigned tasks is not empty. We use the notation 𝑠𝑠(𝑗𝑗) to represent the set of tasks assigned to 

workstation 𝑗𝑗 in solution 𝑠𝑠. We consider two strategies to generate 𝑅𝑅𝑅𝑅𝑅𝑅 and two strategies to choose a 

task from the 𝑅𝑅𝑅𝑅𝑅𝑅. The strategies to build 𝑅𝑅𝑅𝑅𝑅𝑅 are: 

• Cardinality-based — Let 𝑏𝑏 be a parameter controlling the size of the 𝑅𝑅𝑅𝑅𝑅𝑅. Then the 𝑅𝑅𝑅𝑅𝑅𝑅 

consists of the 𝑏𝑏 tasks with the highest priority, given by the rule being applied. If 𝑏𝑏 > |𝐶𝐶𝐶𝐶|, 

then 𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐶𝐶𝐶𝐶. 

• Value-based — Let 𝛼𝛼 be a parameter controlling the merit (measured by the priority rule) of 

the tasks in the 𝑅𝑅𝑅𝑅𝑅𝑅. Then, the 𝑅𝑅𝑅𝑅𝑅𝑅 consists of all tasks for which their priority is within 𝛼𝛼% of 

the task with the best priority. 

The strategies to select a task from the 𝑅𝑅𝑅𝑅𝑅𝑅 are: 

• Equal Probability — All tasks in the 𝑅𝑅𝑅𝑅𝑅𝑅 have equal probability to be selected. This is the 

classical selection strategy in the GRASP methodology. 

• Priority-based Probability — The probability of selecting a given task is proportional (for rules 1 

to 7) or inversely proportional (for rules 8 to 12) to its priority index value. 

Combining the priority rules (twelve) and the strategies for building the 𝑅𝑅𝑅𝑅𝑅𝑅 (two) and selecting a task 

from the 𝑅𝑅𝑅𝑅𝑅𝑅 (two) results in a total of 48 variants of the procedure outlined in Figure 4. When a 

solution with 𝑚𝑚 workstations is found, an attempt is made to improve upon the cycle time. This is done 

by reducing the current cycle time and calling the procedure in Figure 4 several times, up to an 

experimentally set limit of 10. Recall that heuristic in Figure 4 has stochastic elements and therefore a 

solution with 𝑚𝑚 workstations and shorter cycle time may be found by multiple calls to the procedure. 
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[Insert Figure 4 here] 

 

Our improvement method is the 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 local search in (Pastor et al. 2012), which is the best among those 

published in the literature for LB-ALBP. 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 is a hill climbing procedure that employs trade and 

transfer of tasks between pairs of workstations (Moodie and Young, 1965).  In a solution 𝑠𝑠 with 

workstations 𝑗𝑗 and 𝑗𝑗′ such that 𝑤𝑤(𝑠𝑠, 𝑗𝑗) > 𝑤𝑤(𝑠𝑠, 𝑗𝑗′), the neighborhood of 𝑠𝑠 consists of all the solutions 

obtained by generating all feasible trades (i.e., those satisfying the precedence relations) between the 

tasks in workstation 𝑗𝑗 and the tasks in workstation 𝑗𝑗′, as well as all feasible transfers of the tasks in 

workstation 𝑗𝑗 to workstation 𝑗𝑗′. 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 explores the neighborhood in the following order: 

For 𝑘𝑘 = 1, … ,𝑚𝑚 − 1 do 

For 𝑙𝑙 = 𝑚𝑚, … ,𝑘𝑘 + 1 do 

𝑗𝑗 = 𝜋𝜋(𝑘𝑘) 

𝑗𝑗′ = 𝜋𝜋(𝑙𝑙) 

End for 

End for 

Recall that 𝜋𝜋 represents the order according to decreasing workload values and therefore 𝜋𝜋(1) is the 

workstation with the heaviest workload and 𝜋𝜋(𝑚𝑚) is the one with the lightest. These are the 

workstations that are paired first according to the procedure above. 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 uses a first-improving 

strategy, meaning that improving moves are immediately executed. 

4. Tabu Search 

Tabu search (TS) is a well-known metaheuristic originally proposed by Glover (1986) to emulate flexible 

and responsive memory of the form humans employ in solving challenging problems. Most of the tabu 

search implementations consist of straightforward short term memory structures, and are limited to a 

reduced subset of the elements that are part of the general methodology. For instance, constructive TS 

methods have been largely ignored in the literature, with the notable exception of (Duarte and Martí 

2007). As reported in Glover and Laguna (1997), constructive TS procedures are based on memory 

structures used to favor or discourage the inclusion of an element in a solution during the constructive 
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process. We couple a tabu search constructive procedure with a short term memory local search for this 

problem. 

Workstation-oriented procedures for the ALBP assign a task 𝑖𝑖 to a workstation 𝑗𝑗. We represent such 

assignment by the pair (𝑖𝑖, 𝑗𝑗). Our tabu search implementation employs two memory structures: 𝑞𝑞 (for 

quality) and 𝑓𝑓 (for frequency). In 𝑞𝑞(𝑖𝑖, 𝑗𝑗), we record the average 𝛿𝛿 values of the solutions for which task 𝑖𝑖 

was assigned to workstation 𝑗𝑗 and in 𝑓𝑓(𝑖𝑖, 𝑗𝑗) the number of times that the assignment (𝑖𝑖, 𝑗𝑗) was made in 

all the solutions visited during the search. Since the workstations are ordered, their assigned number 

serves as an identifier. The 𝑞𝑞 and 𝑓𝑓 values are used to modify the attractiveness of an unassigned task 

during the solution construction process.  In particular, we favor assignments with high quality and low 

frequency values, as indicated in the following greedy function: 

𝑔𝑔(𝑖𝑖, 𝑗𝑗) = 𝑎𝑎(𝑖𝑖) + 𝜅𝜅 ∙ 𝑟𝑟(𝑈𝑈) ∙
𝑞𝑞(𝑖𝑖, 𝑗𝑗)
𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚

− 𝛾𝛾 ∙ 𝑟𝑟(𝑈𝑈) ∙
𝑓𝑓(𝑖𝑖, 𝑗𝑗)
𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚

 

Where 

𝑎𝑎(𝑖𝑖): the priority index (attractiveness) of unassigned task 𝑖𝑖 according to the rule being used 

𝑟𝑟(𝑈𝑈): the range of 𝑎𝑎(𝑖𝑖) for all unassigned tasks ( 𝑟𝑟(𝑈𝑈) = max𝑖𝑖∈𝑈𝑈 𝑎𝑎(𝑖𝑖) −min𝑖𝑖∈𝑈𝑈 𝑎𝑎(𝑖𝑖) ) 

𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚: the maximum value of 𝑞𝑞(𝑖𝑖, 𝑗𝑗) 

𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚: the maximum value of 𝑓𝑓(𝑖𝑖, 𝑗𝑗) 

𝜅𝜅 and 𝛾𝛾: parameters 

The priority rules 1 to 7 indicate that the attractiveness of a task is given by maximizing the 

corresponding index, while for rules 8 to 12 the most attractive task is the one with the minimum index. 

We use the negative index value for rules 8 to 12 in order to always choose the assignment that 

maximizes the greedy function 𝑔𝑔(𝑖𝑖, 𝑗𝑗). Figure 5 shows the TS for the LB-ALBP. 

 

[Insert Figure 5 here] 

 

The construction procedure in Figure 5 is a modification of the one described in Section 2 above and 

that is based on the outline of Figure 3 and the twelve priority rules. The difference is that instead of 

using the unmodified index value, the constructions are done applying the greedy function 𝑔𝑔(𝑖𝑖, 𝑗𝑗) to 
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choose the tasks and assign them to the workstations. Since in the first iteration the memory structures 

are empty, 𝑔𝑔(𝑖𝑖, 𝑗𝑗) = 𝑎𝑎(𝑖𝑖) and the construction is identical to the original procedure suggested by Pastor 

et al. (2012). 

The improvement method is a short-term memory tabu search based on the local search LSPa.  At each 

iteration, the entire trade and transfer neighborhoods are explored and the best move is selected. If the 

best move leads the search to a solution that is better than the current best solution, then the move is 

made. Otherwise, the move to be made is the non-tabu trade or transfer with the best value even if it 

leads the search to a solution that is inferior to the current solution. After a move that trades task 𝑖𝑖 in 

workstation 𝑗𝑗 for task 𝑖𝑖′ in workstation 𝑗𝑗′, the tabu attributes to be stored in short-term memory are the 

pairs (𝑖𝑖, 𝑗𝑗) and (𝑖𝑖′, 𝑗𝑗′). After a move that transfers task 𝑖𝑖 in workstation 𝑗𝑗 to workstation 𝑗𝑗′, the tabu 

attribute to be stored in short-term memory is the pair (𝑖𝑖, 𝑗𝑗). Attributes remain tabu-active for 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 iterations. A trade (𝑖𝑖 → 𝑗𝑗′, 𝑖𝑖′ → 𝑗𝑗) is tabu if both pairs (𝑖𝑖, 𝑗𝑗′) and (𝑖𝑖′, 𝑗𝑗) are tabu-active. A 

transfer (𝑖𝑖 → 𝑗𝑗′) is tabu if the pair (𝑖𝑖, 𝑗𝑗′) is tabu-active. The improvement procedure stops after 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 consecutive iterations without improving the best solution found during the current 

application of the improvement method. 

5. Scatter Search 

The scatter search (SS) metaheuristic was first introduced by Glover (1977). As other evolutionary 

methods, SS operates at each iteration on a reference set of solutions rather than on a single solution at 

a time, as TS and GRASP do. SS combines the solutions of the reference set to create new ones in order 

to improve it iteratively. However, in contrast to other evolutionary methods, a good reference set of 

solutions not only implies having high quality solutions, but also diversity. For a detailed description of 

the SS methodology see Laguna and Martí (2003). 

Our SS procedure is based on the following well-known five methods (Glover 1998) to implement it: a 

diversification generation method to generate a pool of diverse trial solutions, an improvement method 

to transform a trial solution into an enhanced trial solution, a reference set update method to build and 

maintain a reference set consisting in 𝑏𝑏𝑏𝑏 2⁄  high quality solutions and 𝑏𝑏𝑏𝑏 2⁄  diverse solutions (where 𝑏𝑏s 

is a parameter), a subset generation method to produce subsets (usually pairs) of solutions in the 

reference set for creating combined solutions, and a solution combination method to transform the 

subsets of solutions into combined solutions. Figure 6 outlines the designed procedure. 
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[Insert Figure 6 here] 

 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺() is used at the beginning of the search to build the set 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 of 𝑏𝑏𝑏𝑏2 solutions. To 

generate the solutions, we propose the stochastic construction procedure used for GRASP (see Section 3 

and Figure 4) with priority rule 1 (maximum ranked positional weight), cardinality-based 𝑅𝑅𝑅𝑅𝑅𝑅 with 𝑏𝑏 =

4, and priority-based selection probability. This procedure and settings not only provide solutions of 

reasonable quality (as it is shown in Section 6.2) but also diverse solutions. 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) constructs the reference set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 using the solutions in the current set 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. The solutions in 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 will be combined to generate new solutions. According to the SS 

methodology, the 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 solutions should be good, according to its 𝛿𝛿 value, and diverse, according to a 

distance metric. We evaluate the distance between two solutions 𝑠𝑠1 and 𝑠𝑠2, 𝑑𝑑(𝑠𝑠1, 𝑠𝑠2), as follows: 

𝑑𝑑(𝑠𝑠1, 𝑠𝑠2) =  ∑ |𝑤𝑤𝑤𝑤(𝑖𝑖, 𝑠𝑠1)−𝑤𝑤𝑤𝑤(𝑖𝑖, 𝑠𝑠2)|𝑛𝑛
𝑖𝑖=1 , where 𝑤𝑤𝑤𝑤(𝑖𝑖, 𝑠𝑠) is the workstation assigned to task 𝑖𝑖 in 

solution 𝑠𝑠. For example, the distance between the two designs shown in Table 1 is |1 − 1| + |2 − 3| +

|2 − 2| + |3 − 2| + |4 − 3| + |3 − 4| + |4 − 5| + |5 − 4| + |5 − 5| = 6. The construction of the 

reference set starts with the addition of the 𝑏𝑏𝑏𝑏 2⁄  best local optima in the 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 solutions (and the 

original solutions are removed from 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃). The local search proposed is LSPa. Then, the minimum 

distance from each solution in 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 to the solution in 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is computed. The solution with the 

maximum of these minimum distances is selected. This solution is added to 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 and deleted from 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and the minimum distances are updated. This process is repeated 𝑏𝑏𝑏𝑏 2⁄  times. 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) applies a combination method, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑠𝑠1, 𝑠𝑠2), to all pairs of solutions 

𝑠𝑠1 and 𝑠𝑠2 in the current 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅. Since 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑠𝑠1, 𝑠𝑠2) may produce a different solution from 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑠𝑠2, 𝑠𝑠1), it is therefore applied 𝑏𝑏𝑏𝑏2 at each iteration of SS (recall that the size of 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is 𝑏𝑏𝑏𝑏). 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑠𝑠1, 𝑠𝑠2) does not operate directly with the solutions but with their representations as 

sequences of tasks ordered according to their execution. For example, the first design shown in Table 1 

is represented as the sequence (1,2,3,4,6,5,7,8,9). 

The design that we propose of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑠𝑠1, 𝑠𝑠2) is known in the GA literature as the fragment 

reordering crossover, and it has been specifically designed for ALBPs (Rubinovitz and Levitin, 1995). 

Additionally, it has the advantage that always returns a feasible sequence of tasks (that is, the 

precedence constraints are satisfied) and no reparation mechanism is needed. The combination method 
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works as follows. First, the combined sequence of tasks, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, is equal to the tasks sequence of 𝑠𝑠1. 

Then all the tasks of a random fragment in 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 are reallocated within this fragment according to the 

order in which they appeared in the tasks sequence of 𝑠𝑠2. Finally, the sequence of tasks 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 has to be 

decoded into a solution 𝑠𝑠. We use the decoding method proposed in Rubinovitz and Levitin (1995). It 

aims to divide the tasks sequence 𝑠𝑠𝑠𝑠𝑠𝑠 between the 𝑚𝑚 workstations (without changing the order of the 

tasks) looking for a maximum equality between the workloads of all workstations. The decoding method 

consists in executing the recursive division method 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑠𝑠, 𝑠𝑠𝑠𝑠𝑠𝑠,𝑓𝑓𝑓𝑓, 𝑙𝑙𝑙𝑙,𝑀𝑀, 𝑗𝑗) as 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑠𝑠,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ,1,𝑛𝑛,𝑚𝑚, 1). Figure 7 shows the division method, where 𝑇𝑇(𝑗𝑗, 𝑠𝑠𝑠𝑠𝑠𝑠) is the task at position 𝑝𝑝 

of the sequence 𝑠𝑠𝑠𝑠𝑠𝑠 (and recall that 𝑠𝑠(𝑗𝑗) is the set of tasks assigned to workstation 𝑗𝑗). 

 

[Insert Figure 7 here] 

 

Finally, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) applies the local search LSPa to the best 𝑏𝑏𝑏𝑏 2⁄  solutions in 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (and the 

original solutions are removed).  

6. Computational Experiments 

The designed procedures were implemented in Java SE 1.6.21 and run on a PC 3.16 GHz Pentium Intel 

Core 2 Duo E8500 with 3.46 GB of RAM. Our experiments to compare existing procedures with our 

proposed procedures are performed on the same 301 problem instances used in (Pastor et al. 2012). 

The test set is generated using seventeen cases with characteristics listed in Table 2. For each case, 

Table 2 shows its name, the number of tasks, the minimum, maximum and average processing times, 

the order strength of the precedence graph, and the range on the number of workstations. 

 

[Insert Table 2 here] 

 

6.1. Fine-tuning of Search Parameters 

Our computational experience starts with a set of preliminary experiments for parameter tuning. For 

each of the seventeen cases in Table 2, we generate two instances. The first one with number of 
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workstations set at the minimum value in the last column of the table minus one. The second instance 

has a number of workstations equal to the maximum value in the last column of the table plus one.  For 

example, for the Arcus1 case we generate two training instances, one with 𝑚𝑚 = 2 and one with 𝑚𝑚 = 23. 

This results in a training set of 34 instances. 

The fine-tuning of GRASP involves the selection of a priority rule (12 choices), the strategies to build the 

𝑅𝑅𝑅𝑅𝑅𝑅 (cardinality-based and value-based) together with the associated parameters (𝛼𝛼 and 𝑏𝑏), and the 

strategies to select a task from the 𝑅𝑅𝑅𝑅𝑅𝑅 (equal probability and priority-based probability). We consider 

five values for 𝛼𝛼 (from 0.1 to 0.5 in increments of 0.1) and four values for 𝑏𝑏 (2, 3, 4 and 5). This results in 

a full factorial design with 216 (12 × 5 × 2 + 12 × 4 × 2) parameter settings. Each setting is applied to 

the training set of 34 instances, resulting in 7,344 executions of GRASP. The number of iterations was set 

to 1,000 for these runs. This experiment identifies the following three top parameter settings (according 

to the average 𝛿𝛿 value obtained) for the standard GRASP (equal selection probability) and the non-

standard GRASP (priority-based selection probability) implementations, where 𝑃𝑃𝑃𝑃 is the priority rule 

and 𝛿𝛿̅ is the average 𝛿𝛿 value: 

• Standard GRASP: 𝑃𝑃𝑃𝑃 = 9, α = 0.1 (δ� = 1.59167), 𝑃𝑃𝑃𝑃 = 9, 𝛼𝛼 = 0.2 (𝛿𝛿̅ = 1.7577) and 𝑃𝑃𝑃𝑃 = 4, 

𝛼𝛼 = 0.2 (𝛿𝛿̅ = 1.99617). 

• Non-standard GRASP: 𝑃𝑃𝑃𝑃 = 1, 𝑏𝑏 = 4 (𝛿𝛿̅ = 1.57504), 𝑃𝑃𝑃𝑃 = 7, 𝑏𝑏 = 4 (𝛿𝛿̅ = 1.59290) and 𝑃𝑃𝑃𝑃 = 1, 

𝑏𝑏 = 3 (𝛿𝛿̅ = 1.75245). 

 

We applied the non-parametric Friedman test for multiple correlated samples to the solutions obtained 

by each of the standard and non-standard GRASPS. This test computes, for each instance, the rank value 

of each setting according to solution quality (where rank 1 is assigned to the best method and rank 3 to 

the worst one). Then, it calculates the average rank values of each method across the 34 training 

instances solved. If the averages differ greatly, the associated 𝑝𝑝-value or significance will be small. The 

resulting 𝑝𝑝-value of 0.55 and 0.58 obtained in this experiment for the standard and non-standard 

GRASPs, respectively, indicates that there are not statistically significant differences among their 

respective three best settings. Specifically, the rank values produced by this test for the standard GRASP 

are 1.91 (𝑃𝑃𝑃𝑃 = 9, α = 0.1), 1.96 (𝑃𝑃𝑃𝑃 = 9, α = 0.2) and 2.13 (𝑃𝑃𝑃𝑃 = 4, α = 0.2), and for the non-

standard GRASP are 1.90 (𝑃𝑃𝑃𝑃 = 7, b = 4), 1.99 (𝑃𝑃𝑃𝑃 = 1, b = 4) and 2.12 (𝑃𝑃𝑃𝑃 = 1, b = 3). 



Pastor, et al. — 15 

Since the best parameter settings for each type of GRASP are not statistically different, we focus on the 

settings that return the lowest average 𝛿𝛿 value.  We refer as GRASP1 to the standard GRASP 𝑃𝑃𝑃𝑃 = 9, 

α = 0.1, and as GRASP2 to the non-standard GRASP with 𝑃𝑃𝑃𝑃 = 1, 𝑏𝑏 = 4. It must be noted that the two 

best methods among the 216 GRASP variants tested do not apply the same strategy neither to build the 

𝑅𝑅𝑅𝑅𝑅𝑅 nor to select an element from it. In particular, GRASP1 builds the 𝑅𝑅𝑅𝑅𝑅𝑅 based on the value of the 

candidate elements, while GRASP2 simply selects a pre-established number of candidate elements to 

construct 𝑅𝑅𝑅𝑅𝑅𝑅.  On the other hand, GRASP1 selects an element in 𝑅𝑅𝑅𝑅𝑅𝑅 according to a uniform 

distribution, as it is customary in the GRASP methodology, while GRASP2 employs a biased selection 

process. 

The tabu search implementation has five parameters: a priority rule, 𝜅𝜅 and 𝛾𝛾 for the construction phase 

and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 and 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 for the improvement phase. Since, in our design, the 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 

depends on the number of tasks in the problem, we tune this parameter indirectly by searching for the 

best value of 𝜃𝜃 and making 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝜃𝜃𝜃𝜃. We used CALIBRA (Adenso-Díaz and Laguna 2006) to 

find effective values for these parameters.  CALIBRA is a tool specifically designed for fine-tuning the 

parameters of algorithms and is based on using conjointly Taguchi’s fractional factorial experimental 

designs and a local search procedure. This tool, which can be downloaded at 

http://coruxa.epsig.uniovi.es/~adenso/file_d.html, automatically returns the best parameter values. We 

executed CALIBRA runs of 1000 iterations with the following settings: 

• Priority rule = {1, 2, 3, …, 12} 

• 𝜅𝜅 = {0.01, 0.02, … , 1.0} 

• 𝛾𝛾 = {1.0, 1.1, … ,10.0} 

• 𝜃𝜃 = {0.25,0.5,0.75} 

• 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = {50,100,150,200} 

CALIBRA identified the best parameter setting as priority rule 1, 𝜅𝜅 = 0.06, 𝛾𝛾 = 4.8, 𝜃𝜃 = 0.25 and 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 150.  We refer to this setting as TS. 

The scatter search implementation has one parameter: 𝑏𝑏𝑏𝑏.  We calibrated this parameter considering 

the following values: 𝑏𝑏𝑏𝑏 = {2,4, … ,30}.  Again, the number of iterations was set to 1,000 for these 

runs.  The three best settings are identified as 𝑏𝑏𝑏𝑏 = 18 (𝛿𝛿̅ = 1.55453), 𝑏𝑏𝑏𝑏 = 14 �𝛿𝛿̅ = 1.61131� and 

𝑏𝑏𝑏𝑏 = 16 (𝛿𝛿̅ = 1.62152).  We performed a Friedman test and the resulting 𝑝𝑝-value of 0.26 indicates that 
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there are not statistically significant differences among the 3 settings. Specifically, the rank values 

produced by this test are 1.81 (𝑏𝑏𝑏𝑏 = 16), 2.06 (𝑏𝑏𝑏𝑏 = 18) and 2.13 (𝑏𝑏𝑏𝑏 = 14).  Thus, we focus on the 

setting that return the best average 𝛿𝛿 value (𝑏𝑏𝑏𝑏 = 18) and refer to this setting as SS. 

6.2. Comparison of our GRASP, TS and SS Implementations 

We now test the performance of the GRASP configurations that were identified as the best (GRASP1 and 

GRASP2) and the fine-tuned tabu search and scatter search procedures (TS and SS, respectively). For this 

experiment, we consider all 301 test instances and a run time of 1,000 seconds per procedure and 

instance. Quality is measured with the average 𝛿𝛿 values (denoted by 𝛿𝛿̅) and the number of times a 

procedure matches the best-known solution (denoted by #Best). We first compare the performance of 

the procedures with and without the improving phase. The results are shown in Table 3. 

 

[Insert Table 3 here] 

 

Overall, results in Table 3 confirm the effectiveness of including an improving phase. All procedures yield 

better results when an improving phase is added. According to these results, GRASP2 outperforms the 

other competing procedures. It seems that in this context there is no gain in adding memory to the 

construction process (as TS and SS do). However, there seems to be an advantage in using a non-

uniform probabilistic selection of the tasks within the GRASP construction. 

We applied a Friedman test to the best solutions obtained by each of the four methods with the 

improving phase. The resulting 𝑝𝑝-value of 0.000 obtained in this experiment clearly indicates that there 

are statistically significant differences among the four methods tested. Specifically, the rank values 

produced by this test are 1.70 (GRASP2), 2.46 (SS), 2.88 (GRASP1), and 2.96 (TS).  If we apply the same 

test to the four methods without the improvement phase, we also obtain a 𝑝𝑝-value of 0.000; but now 

the ranks are 1.74 (GRASP2), 1.84 (SS), 3.14 (TS), and 3.27 (GRASP1). 

Considering that GRASP2 and SS obtain the best average results, we compared both with a well-known 

nonparametric test for pairwise comparisons: the Wilcoxon test. This test is designed to answer the 

question: Do the two samples (i.e., the objective function values of the solutions obtained by GRASP2 

and SS) represent two different populations? We perform two pairwise comparisons, with and without 
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the local search. The resulting 𝑝𝑝-value of 0.000 with the improving phase indicates that the values 

belong to two different populations. On the other hand, a 𝑝𝑝-value of 0.039 is obtained without the 

improving phase.  Since this last value is borderline, we apply the non-parametric sign test for paired 

samples. The resulting 𝑝𝑝-value of 0.95 indicates that we cannot ensure that GRASP2 performs better 

than SS without their improving phases.  We can therefore conclude that when solving LB-ALBP, the 

non-standard GRASP2 (with the improving phase), in which the random selection from the 𝑅𝑅𝑅𝑅𝑅𝑅 is 

biased, is the best method. 

Next, we analyze the influence of the characteristics of the instances (as outlined in Table 2) on the 

quality of the results. Specifically, we create subset of instances according to the order strength and the 

number of tasks. The order strength is respectively classified (according to Pastor et al. 2012) as low, 

medium and high according to the ranges (22.67, 25.80), (40.38, 59.50) and (77.55, 83.82). Likewise, the 

number of tasks is respectively considered low, medium and high according to the ranges (29, 35), (45, 

111) and (148, 297). Tables 4 and 5 report the results obtained by each procedure for combinations of 

order strength and number of tasks. The column headers use L, M and H for low medium and high, 

respectively. The first letter is for the order strength and the second letter for the number of tasks. This 

is followed by the number of instances in the subset, which are shown between parentheses. Table 4 

shows the average 𝛿𝛿-values and Table 5 contains the number of best solutions found by each procedure. 

 

[Insert Table 4 here] 

[Insert Table 5 here] 

 

The results in Tables 4 and 5 indicate that GRASP2 is on average superior to the other two procedures 

regardless of the characteristics of the instances although there are two exceptions. First, when the 

order strength is low and the number of tasks is medium, TS slightly outperforms GRASP2, with an 

average objective function value that is 0.6% better and 2 more best solutions. Second, when the order 

strength is medium and the number of tasks is high, SS slightly outperforms GRASP2, with an average 

objective function value that is 0.4% better and 4 more best solutions. 

6.3. Comparison against the State of the Art 
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In our last experiment, we compare GRASP2 and SS, both with their respective improvement method, 

with the best heuristic for the LB-ALBP reported in the literature, namely V-LSPa (Pastor, et al. 2012).  

Since this method presents an average CPU time of 50 seconds, we run our both procedures for the 

same running time per procedure and instance to perform a fair comparison. Table 6 reports the 

average 𝛿𝛿 values (denoted by 𝛿𝛿̅) and the number of times a procedure matches the best-known solution 

(denoted by #Best) on this experiment. 

 

[Insert Table 6 here] 

 

Table 6 shows that GRASP2 seems to improve upon SS on a short term horizon (i.e., when both methods 

are run for 50 seconds), since it is able to obtain a smaller value of 𝛿𝛿̅ and a larger number of best 

solutions.  Moreover, GRASP2 clearly outperforms the best previously published method, V-LSPa.  We 

performed a Friedman test in an attempt to draw some statistically significant conclusions.  The 

resulting 𝑝𝑝-value of 0.000 indicates that there are statistically significant differences among the 3 

methods. Specifically, the rank values produced by this test are 1.70 (GRASP2), 1.82 (SS), and 2.47 (V-

LSPa). Thus, it is confirmed that our two methods, GRASP2 and SS, obtain better solutions than the best 

published heuristic. Moreover, the 𝑝𝑝-value of 0.119 obtained with the Wilcoxon test and the 𝑝𝑝-value of 

0.087 obtained with the sign test when comparing GRASP2 and SS outlines that we cannot ensure that 

GRASP2 performs better than SS. 

To complement the information shown in Table 6, we run our best method, GRASP2, and the best 

previous method, V-LSPa, for 1000 seconds, and track their solution quality over the execution of the 

procedure.  Specifically, the profile of the 𝛿𝛿̅ values for a 1,000-second execution is shown in Figure 8. 

This figure shows the value of 𝛿𝛿̅ for the best solutions found at intervals of 10 seconds. 

 

[Insert Figure 8 here] 
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From Figure 7 we can confirm that GRASP2 obtains better solutions than V-LSPa for similar computing 

time.  The 𝛿𝛿̅ value for GRASP2 within 50 seconds is 1.81175 and, even within the first 10 seconds, the 

average solution quality of 2.00885 is considerably better than V-LSPa’s (2.63578). 

7. Conclusions and future research 

The Assembly Line Balancing is a difficult combinatorial optimization problem.  Our goal is to improve 

the state of the art resolution of the lexicographical bottleneck version of the assembly line problem, 

which can be considered particularly challenging.  In particular, we have implemented 48 different 

GRASPs, 12 tabu search variants and 1 scatter search procedure.  Moreover, we have tested this large 

number of variants according to different search parameters on several types of instances.  Through 

extensive experimentation, we have been able to determine that the designed best heuristics 

outperform the incumbent state of the art. We show that our proposals benefit from the addition of 

enhanced search strategies.  Additionally, we can conclude that in this problem, the non-standard 

GRASP implementation, in which the random selection from the RCL is biased, performs better than the 

classical one based on a uniform random distribution. 

The solution of the LB-ALBP has been studied in the context in which a single model is processed in the 

line and its shape is straight. An interesting issue that is worth exploring in the future is to extend the LB-

ALBP in the presence of mixed-model assembly lines or U-shaped lines. 
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Design W1 W2 W3 W4 W5 
1 1 2, 3 4, 6 5, 7 8,9 
2 1 3, 4 2, 5 6, 8 7,9 

Table 1 Task assignments of two designs 

 
 Number 

of Tasks 
Processing Time Order 

Strength 
Number of 

Workstations Name Minimum Maximum Average 
Arcus1 83 233 3691 912.1 59.09 3 to 22 
Arcus2 111 10 5689 1354.9 40.38 3 to 27 
Barthold 148 3 383 38.1 25.80 3 to 15 
Barthol2 148 1 83 28.6 25.80 27 to 51 
Buxey 29 1 25 11.2 50.74 7 to 14 
Gunther 35 1 40 13.8 59.50 6 to 15  
Hahn 53 40 1775 264.6 83.82 3 to 10 
Killbridge 45 3 55 12.3 44.55 3 to 11 
Lutz1 32 100 1400 441.9 83.47 8 to 12 
Lutz2 89 1 10 5.4 77.55 9 to 28 
Lutz3 89 1 74 18.5 77.55 3 to 23 
Mukherje 94 8 171 44.8 44.80 3 to 26 
Sawyer 30 1 25 10.8 44.83 7 to 14 
Scholl 297 5 1386 234.5 58.16 25 to 52 
Tonge 70 1 156 50.1 59.42 3 to 24 
Warnecke 58 7 53 26.7 59.10 3 to 29 
Wee-Mag 75 2 27 20.0 22.67 3 to 30 

Table 2. Test problems 

 

Measure With improving phase Without improving phase 
GRASP1 GRASP2 TS SS GRASP1 GRASP2 TS SS 

𝛿𝛿̅ 2.10587 1.62926 2.04308 1.81935 2.87519 1.91586 2.61364 2.05554 
#𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 96 240 97 121 37 82 31 75 

Table 3 Performance comparison with and without the improving phase 

 

Procedure LM (28) LH (38) ML (26) MM (127) MH (28) HL (5) HM (49) 
GRASP1 3.99137 1.28776 3.36447 1.52528 1.13074 3.50804 2.91401 
GRASP2 3.96106 0.68476 2.93308 1.22891 0.78598 3.50687 1.66536 
TS 3.93725 0.73804 3.42808 1.70481 1.02533 4.52720 2.44273 
SS 4.13795 0.86063 3.10029 1.47599 0.78298 3.84472 1.83373 

Table 4 𝛿𝛿̅ values for each combination of order strength and number of tasks 
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Procedure LM (28) LH (38) ML (26) MM (127) MH (28) HL (5) HM (49) 
GRASP1 19 9 13 39 1 1 14 
GRASP2 22 31 26 104 10 4 43 
TS 24 23 5 32 3 0 10 
SS 13 17 15 35 14 1 26 

Table 5 #𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 values for each combination of order strength and number of tasks 

 

Procedure GRASP2 SS V-LSPa 
𝛿𝛿̅ 1.81175 1.87038 2.63578 

#𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 163 149 75 

Table 6 Performance comparison with the best previous method 
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Figure 1. Precedence graph (task time in parenthesis) 

 

 
Figure 2 Workload profiles of two designs 

 

Calculate the lower bound on the cycle time 𝐿𝐿𝐿𝐿 = 𝑤𝑤𝑟𝑟(1) 
Initialize 𝐶𝐶𝐶𝐶 ← 𝐿𝐿𝐿𝐿 − 1 
Repeat 

𝐶𝐶𝐶𝐶 ← 𝐶𝐶𝐶𝐶 + 1 
Apply a greedy heuristic for the SALBP-1 with cycle time equal to 𝐶𝐶𝐶𝐶 

Until number of workstations in the solution is less than or equal to 𝑚𝑚 

Figure 3 Simple heuristic for the SALBP-2 
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𝑈𝑈 ← {1, … ,𝑛𝑛} List of unassigned tasks 
𝑗𝑗 ← 1; 𝑠𝑠(𝑗𝑗) ← ∅;𝑤𝑤(𝑠𝑠, 𝑗𝑗) ← 0 Start from workstation 1 
Repeat 

𝐶𝐶𝐶𝐶 ← {𝑖𝑖 ∈ 𝑈𝑈:𝑃𝑃𝑖𝑖 ∩ 𝑈𝑈 = ∅ ∧ 𝑡𝑡𝑖𝑖 + 𝑤𝑤(𝑠𝑠, 𝑗𝑗) ≤ 𝐶𝐶𝐶𝐶} Build candidate list 
If 𝐶𝐶𝐶𝐶 ≠ ∅ then 

𝑅𝑅𝑅𝑅𝑅𝑅 ← 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝐶𝐶𝐶𝐶) Build RCL 
𝑖𝑖∗ ← 𝐶𝐶ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑅𝑅𝑅𝑅𝑅𝑅) Select a task from 𝑅𝑅𝑅𝑅𝑅𝑅 
𝑠𝑠(𝑗𝑗) ← 𝑠𝑠(𝑗𝑗) ∪ {𝑖𝑖∗} Add chosen task to workstation 𝑗𝑗 
𝑤𝑤(𝑠𝑠, 𝑗𝑗) ← 𝑤𝑤(𝑠𝑠, 𝑗𝑗) + 𝑡𝑡𝑖𝑖∗ Update workload of workstation 𝑗𝑗 
𝑈𝑈 ← 𝑈𝑈\{𝑖𝑖∗} Update list of unassigned tasks 

Else 
𝑗𝑗 ← 𝑗𝑗 + 1; 𝑠𝑠(𝑗𝑗) ← ∅;𝑤𝑤(𝑠𝑠, 𝑗𝑗) ← 0 Open a new workstation 

End if 
Until 𝑈𝑈 = ∅ End when all jobs are assigned 

Figure 4 Semi-greedy procedure for SALBP-1 

 

𝑞𝑞(𝑖𝑖, 𝑗𝑗) ← 0;𝑓𝑓(𝑖𝑖, 𝑗𝑗) ← 0 Initialize memory structures 
Repeat 

𝑠𝑠 ← 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑞𝑞,𝑓𝑓) Apply constructive heuristic 
𝑠𝑠 ← 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑠𝑠) Apply short-term tabu search 
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(𝑠𝑠∗, 𝑞𝑞,𝑓𝑓) Update best solution 𝑠𝑠∗ and memory 

Until stopping criterion satisfied  

Figure 5 Tabu search for the LB-ALBP 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ← 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺() Initialize pool of solutions 
Repeat 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ← 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) Update RefSet 
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ← 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) Update Pool by combining solutions 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) Improve the best solutions in Pool  
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ← 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∪ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 Add the RefSet solutions to Pool 

Until stopping criterion satisfied  

Figure 6 Scatter search for the LB-ALBP 
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if 𝑀𝑀 = 1 then 𝑠𝑠(𝑗𝑗) ←∪𝑝𝑝=𝑓𝑓𝑓𝑓
𝑙𝑙𝑙𝑙 {𝑇𝑇(𝑝𝑝, 𝑠𝑠𝑠𝑠𝑠𝑠)} 

Else 
𝑀𝑀1 ← ⌊𝑀𝑀 2 + 0.5⁄ ⌋; 𝑀𝑀2 ← 𝑀𝑀 −𝑀𝑀1 

𝑐𝑐∗ ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐=𝑓𝑓𝑓𝑓
𝑙𝑙𝑙𝑙 �

∑ 𝑡𝑡𝑇𝑇(𝑝𝑝,𝑠𝑠𝑠𝑠𝑠𝑠)
𝑐𝑐
𝑝𝑝=𝑓𝑓𝑓𝑓

∑ 𝑡𝑡𝑇𝑇(𝑝𝑝,𝑠𝑠𝑠𝑠𝑠𝑠)
𝑙𝑙𝑙𝑙
𝑝𝑝=𝑐𝑐+1

−
𝑀𝑀1

𝑀𝑀2
�  

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑠𝑠, 𝑠𝑠𝑠𝑠𝑠𝑠,𝑓𝑓𝑓𝑓, 𝑐𝑐∗,𝑀𝑀1, 𝑗𝑗)  
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑠𝑠, 𝑠𝑠𝑠𝑠𝑠𝑠, 𝑐𝑐∗ + 1, 𝑙𝑙𝑙𝑙,𝑀𝑀2, 𝑗𝑗 + 𝑀𝑀1)  

End if 

Figure 7. The division method 𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫(𝒔𝒔, 𝒔𝒔𝒔𝒔𝒔𝒔,𝒇𝒇𝒇𝒇, 𝒍𝒍𝒍𝒍,𝑴𝑴, 𝒋𝒋) 

 

 

 
Figure 8 Average 𝜹𝜹 values of the best solution found by GRASP2 
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