

Metaheuristic procedures for the Lexicographic Bottleneck
Assembly Line Balancing Problem

RAFAEL PASTOR
Institute of Industrial and Control Engineering and Department of Management
Universitat Politècnica de Catalunya, Spain
rafael.pastor@upc.edu

ALBERTO GARCÍA-VILLORIA
Institute of Industrial and Control Engineering and Department of Management
Universitat Politècnica de Catalunya, Spain
alberto.garcia-villoria@upc.edu

MANUEL LAGUNA
Leeds School of Business, University of Colorado at Boulder, USA
laguna@colorado.edu

RAFAEL MARTÍ
Department of Statistics and Operations Research
Universitat de València, Spain
rafael.marti@uv.es

ABSTRACT

The goal of this work is to develop an improved procedure for the solution of the lexicographic
bottleneck variant of the assembly line balancing problem (LB-ALBP). The objective of the LB-ALBP is to
minimize the workload of the most heavily loaded workstation, followed by the workload of the second
most heavily loaded workstation and so on. This problem —recently introduced to the literature (Pastor
2011)— has practical relevance to manufacturing facilities. We design, implement and fine-tune GRASP,
tabu search and scatter search heuristics for the LB-ALBP and show that our procedures are able to
obtain solutions of a quality that outperforms previous approaches. We rely on both semi-greedy and
memory-based designs that our experiments show to be effective. Experimental results verify the
advantages of embedding such designs to improve the solution existing in the literature of this complex
problem. Additionally, the extensive experimentation with 48 variants of GRASP, 12 of tabu search and
1 of scatter search establishes the benefits of adding enhanced search strategies to basic procedures.

Keywords: Assembly line balancing, lexicographic bottleneck, metaheuristics.

November 26, 2014

mailto:laguna@colorado.edu
mailto:rafael.marti@uv.es

Pastor, et al. — 2

1. Introduction

Assembly lines are at the core of mass production systems, such as those in the automotive industry. An

assembly line consists of a series of workstations in which the product flows. In each workstation,

several tasks (assembly operations) are performed on the products determining the total duration or

cycle time. The class of assembly line balancing problems (ALBP) consists of assigning the tasks to

workstations to optimize one or multiple objectives while satisfying some specific conditions. The

practical importance of this family of NP-hard problems (Wee and Magazine, 1982) has resulted in a vast

literature. We refer the reader to Becker and Scholl (2006), Scholl and Becker (2006), Boysen et al. (2007,

2008), and Battaïa and Dolgui (2013) for some of the most recent surveys.

The simplest case of ALBP —referred to as simple assembly line balancing problem (SALBP)— consists of

a serial line that processes a single product. In the SALBP, task times are assumed to be deterministic

and precedence constraints are the only design restrictions (Scholl and Becker, 2006). This problem has

been extensively studied in the literature and has been approached with both heuristic and

metaheuristic procedures (e.g., Talbot et al., 1986; Ponnambalam et al., 1999; Corominas and Pastor,

2009), exact procedures based on binary or integer linear programming (e.g., White, 1961; Talbot and

Patterson, 1984; Pastor and Ferrer, 2009), dynamic programming (e.g., Kao and Queyranne, 1982), and

branch and bound (e.g., FABLE by Johnson, 1988; EUREKA by Hoffman, 1992; SALOME by Scholl and

Klein, 1997).

To address more realistic versions of the ALBP, researchers have recently intensified their efforts by

examining further aspects of actual manufacturing systems (Becker and Scholl, 2006). The following are

some of the most prominent examples of ALBP features addressed in the literature: parallel tasks (e.g.,

Inman and León, 1994), incompatibility between tasks (e.g., Park et al., 1997), U-shaped lines (e.g.,

Miltenburg, 2002), mixed-models (e.g., Ding et al., 2006), stochastic task times (e.g., Gamberini et al.,

2006), parallel workstations (e.g., Lusa, 2008), setup times between tasks (e.g., Martino and Pastor,

2010), alternative assembly subgraphs (e.g., Capacho et al., 2009), constrained resources (e.g.,

Corominas et al., 2011) and ergonomics considerations (e.g., Cheshmehgaz et al., 2012).

With respect to the objective function, we can distinguish two main groups. When the objective is to

minimize the number of workstations for a given upper bound on the cycle time, the problem is known

as ALBP-1. When the problem consists of minimizing the cycle time given a number of workstations, the

problem is known as ALBP-2 (Baybars, 1986). Note that ALBP-2 is a problem with a minimax objective,

Pastor, et al. — 3

since it attempts to minimize the workload of the workstation with the maximum load (i.e., the

bottleneck). ALBP-2 ignores the workloads of those workstations that are not the bottleneck. However,

as pointed out in previous works (Boysen et al. 2006), uniformly distributed workloads among

workstations help to improve the reliability of the line and, as it is discussed in Boysen et al. (2006), the

quality defects caused by workstations with disproportionately large processing times are avoided.

[Insert Figure 1 here]

Figure 1 shows the precedence graph of a process with 9 tasks, numbered from 1 to 9. Each node in the

graph represents a task, with its associated processing time in parentheses, and precedence constraints

are represented by arcs between nodes. Table 1 shows two designs that assign these 9 tasks to 5

workstations (W1, W2, …, W5). In both solutions, W1 has the maximum workload of 10, making this

workstation the bottleneck that determines the cycle time for the design. According to ALBP-2, both of

these assignments have the same objective function value.

[Insert Table 1 here]

Figure 2 is a graphical representation of the workloads corresponding to each design in Table 1.

[Insert Figure 2 here]

Although both designs have the same bottleneck (i.e., W1) and a cycle time of 10, it is clear that they are

quite different in terms of their workload distribution. Discriminating between both solutions and, in

general, among all the solutions with the same maximum workload, was the motivation of Pastor (2011)

for proposing a new variant of the ALB problem: the lexicographic bottleneck ALBP (referred to as LB-

ALBP), which takes into account the load of all workstations.

Pastor, et al. — 4

The LB-ALBP employs a hierarchical approach to first minimize the workload of the most heavily loaded

workstation, followed by the workload of the second most heavily loaded workstation, followed by the

third, and so on. It is therefore a multi-objective optimization problem with a hierarchical structure

(Cortés et al., 2006) in which the quality of the solution is determined by the order of the objectives

instead of a trade-off among objectives. We cannot know a priori whether the workload of all

workstations are important in practice with respect to the reliability of the line. For instance, if the

second most workload is also equal (or close) to the cycle time, obviously the third most workload is

important. And if the third most workload is also equal to or close to the cycle time, then the fourth

most workload is important, and so on. Therefore, since a priori we do not know which are the optimal

workloads, the LB-ALBP takes into account hierarchically all of them.

In mathematical terms, we consider 𝑚𝑚 ordered workstations and 𝑛𝑛 tasks, where each task 𝑖𝑖 (𝑖𝑖 =

1, … ,𝑛𝑛) is defined by its processing time 𝑡𝑡𝑖𝑖 and a set 𝑃𝑃𝑖𝑖 of its precedence tasks (i.e., those that must be

processed before task 𝑖𝑖). A feasible solution is an assignment of tasks to workstations verifying their

precedence relationships. Given a feasible solution 𝑠𝑠, let 𝑤𝑤(𝑠𝑠, 𝑗𝑗) be the workload of workstation 𝑗𝑗 in

solution 𝑠𝑠. As mentioned above, while the classical ALBP-2 seeks to minimize the maximum workload;

i.e., max𝑗𝑗=1,…,𝑚𝑚𝑤𝑤(𝑠𝑠, 𝑗𝑗), the LB-ALBP minimizes the lexicographical bottleneck objective.

Pastor (2011) proposed a function 𝜹𝜹(𝒔𝒔) to evaluate the merit of a solution 𝒔𝒔 of an LP-ALBP instance. 𝜹𝜹 is

based on computing differences between the workloads of s and an “ideal” distribution of workloads.

The idea distribution may be interpreted as a lower bound given that in general this distribution does

not correspond to a feasible solution. The ideal 𝒋𝒋𝒕𝒕𝒕𝒕 workload is calculated as follows:

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑗𝑗) = 𝑚𝑚𝑚𝑚𝑚𝑚 ��𝑇𝑇−
∑ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑘𝑘)𝑗𝑗−1
𝑘𝑘=1
𝑚𝑚−𝑗𝑗+1

� , 𝑡𝑡𝜎𝜎(𝑗𝑗)�

where 𝑇𝑇 = ∑ 𝑡𝑡𝑖𝑖𝑛𝑛
𝑖𝑖=1 , 𝜎𝜎(𝑗𝑗) is the task with the 𝑗𝑗𝑡𝑡ℎ largest processing time and ⌈𝑥𝑥⌉ is the smallest integer

that is equal to or greater than 𝑥𝑥. The equation produces ideal workloads in decreasing order. That is,

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑗𝑗) ≥ 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑗𝑗′) if 𝑗𝑗 < 𝑗𝑗′. The value of 𝛿𝛿 is then computed as follows:

𝛿𝛿(𝑠𝑠) =
∑ �(𝑤𝑤�𝑠𝑠,𝜋𝜋(𝑗𝑗)� − 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑗𝑗)) ∙ 𝛽𝛽𝑚𝑚−𝑗𝑗+1�𝑚𝑚
𝑗𝑗=1

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(1) ∙ 𝛽𝛽𝑚𝑚−1

where 𝛽𝛽 is a large value that reflect the hierarchy among workstations and 𝜋𝜋(𝑗𝑗) is the workstation with

the 𝑗𝑗𝑡𝑡ℎ largest workload and therefore, for any solution 𝑠𝑠, 𝑤𝑤�𝑠𝑠,𝜋𝜋(𝑗𝑗)� ≥ 𝑤𝑤�𝑠𝑠,𝜋𝜋(𝑗𝑗′)� if 𝑗𝑗 < 𝑗𝑗′.

Pastor, et al. — 5

Note that 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(1) = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑡𝑡𝜎𝜎(1), �𝑇𝑇
𝑚𝑚
��, the lower bound on the cycle time. In the example above, with

𝛽𝛽 = 100 (the typical value employed in the literature, see Pastor (2011) and Pastor et al. (2012)), the

ideal distribution of workloads is 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = (10,8,8,7,7), and the ordered workloads for the first design

are 10, 10, 9, 6, and 5. Therefore, 𝛿𝛿 value for the first design is:

(10 − 10) ∙ 1005 + (10 − 8) ∙ 1004 + (9 − 8) ∙ 1003 + (6 − 7) ∙ 1002 + (5 − 7) ∙ 1001

10 ∙ 1004
= 0.201

The main objective of this work is to improve upon the current competency to find high quality solutions

to the LB-ALBP. With this in mind, we explore the design, implementation and fine-tuning of greedy

randomized adaptive search procedure (GRASP), tabu search (TS) and scatter search (SS) procedures. In

metaheuristic search, the ability to find high quality solutions depends on an effective interplay between

search intensification and diversification. Our experiments are designed to evaluate the role that special

memory structures play in inducing search exploration and exploitation to achieve high quality

outcomes. Comparisons against existing methods reveal that we have been able to establish a new state

of the art for solving LB-ALBP instances.

2. Relevant Previous Work

We review a few aspects of the literature that are directly related to our work.

2.1. Workload Smoothing

The homogeneous distribution of the workload is a goal that appears in the ALBP literature. It has been

usually achieved by minimizing the sum, for all workstations, of the differences between their workloads

and the cycle time (e.g., Moodie and Young, 1965; Rekiek et al., 2002), or the average workload (e.g.,

Rachamadugu and Talbot, 1991; Merengo et al., 1999). The most common objective for smoothing the

workload is to minimize the so-called “smoothness index” (𝑆𝑆𝑆𝑆) by Moodie and Young (1965), which using

our notation, is calculated as follows for a solution 𝑠𝑠:

𝑆𝑆𝑆𝑆(𝑠𝑠) = ��(𝐶𝐶𝐶𝐶(𝑠𝑠) −𝑤𝑤(𝑠𝑠, 𝑗𝑗))2
𝑚𝑚

𝑗𝑗=1

Although the workloads of optimal LB-ALBP solutions tend to be smooth, as explained in Pastor (2011),

the LB-ALBP objective is different from the 𝑆𝑆𝑆𝑆 objective. We illustrate this as follows. Let the workloads

Pastor, et al. — 6

for two solutions, 𝑠𝑠1 and 𝑠𝑠2, be (34,33,33,29,19) and (35,30,29,29,25), respectively. Their

corresponding 𝑆𝑆𝑆𝑆 values are 15.87 and 14.04, making 𝑠𝑠2 better than 𝑠𝑠1 according to this smoothing

objective. However, when considering the lexicographical objective of LB-ALBP, 𝑠𝑠1 is actually better

solution than 𝑠𝑠2.

2.2. SALBP-2

The single objective in SALBP-2 is the minimization of the cycle time, which is the first objective of the

LB-ALBP. The SALBP-2 has been solved by exact and heuristic methods (e.g., Scholl and Becker, 2006).

Most heuristic solutions to the SALBP-2 are based on solving iteratively the simple ALBP-1 (SALBP-1) by

applying the procedure in Figure 3, in which processing times of the tasks are assumed, without loss of

generality to be integers, restricting 𝐶𝐶𝐶𝐶 to integer values.

[Insert Figure 3 here]

The greedy heuristic in Figure 3 is iterative and workstation-oriented; i.e., at each step the best

candidate task (according to the chosen priority rule) is assigned to the workstation 𝑗𝑗 under

consideration. A task 𝑖𝑖 is a candidate to be assigned to workstation 𝑗𝑗 if all its precedent tasks have

already been assigned and the sum of the processing time of the task and the current workload of the

workstation does not exceed the desired cycle time. If there are no available candidate tasks (but there

are still tasks to be assigned) then workstation 𝑗𝑗 is closed and the next workstation 𝑗𝑗 + 1 is opened. The

procedure ends when all tasks have been assigned. Most computational experiments reported in the

literature indicate that workstation-oriented procedures provide better results than task-oriented ones,

although they are not theoretically dominant (Scholl and Voß, 1996).

2.3. LB-ALBP

Two mixed integer linear programming (MILP) approaches, referred to as GHM and SHM, were

proposed in (Pastor 2011) for the LB-ALBP. GHM directly minimizes ∑ 𝛽𝛽𝑚𝑚−𝑗𝑗+1𝑚𝑚
𝑗𝑗=1 𝑤𝑤(𝑠𝑠,𝜋𝜋(𝑗𝑗)), which is a

weighted sum of functions; while SHM sequentially solves 𝑚𝑚 − 1 MILP submodels by not allowing to

deteriorate the optimal values of the higher-priority objectives that have been obtained. Experiments

clearly show that SHM performs better; although, only smallest instances were solved optimally within 5

Pastor, et al. — 7

hours of computational time per instance. For larger instances the author proposed three

straightforward heuristics based on the previous MILP procedures. The heuristics consisted of several

strategies to use a limited computational budget.

Pastor et al. (2012) proposed V-LSPa, a deterministic heuristic based on iteratively solving SALBP-2. V-

LSPa sequentially solves and divides the problem into two smaller subproblems (with lower number of

workstations and tasks to assign) using the most heavily loaded workstation in each subproblem as the

split point. Then, each subproblem is solved as a SALBP-2 by means of the heuristic scheme shown in

Figure 3. Twelve solutions are obtained by applying the SALBP-1 greedy heuristic step with the following

twelve priority rules:

1. Maximum ranked positional weight

2. Maximum task time

3. Maximum total number of follower tasks

4. Maximum number of immediate follower tasks

5. Maximum average ranked positional weight

6. Maximum task time divided by upper bound

7. Maximum total task followers divided by task slack

8. Minimum lower bound

9. Minimum upper bound

10. Minimum slack

11. Minimum task number

12. Minimum upper bound divided by followers

The procedure selects the best of the twelve solutions according to the LB-ALBP objective. The solution

to each subproblem is used to update the global solution of the original problem. Each time that the

global solution is updated, a local search is applied. When a local optimum improves upon the

incumbent solution, the process is reset starting from the new local optimum. The heuristic ends when

no subproblems remain to be solved. The authors compared their best heuristic with the best in Pastor

(2011), and V-LSPa obtains on average the best results.

3. GRASP

The greedy randomized adaptive search procedure (GRASP) metaheuristic was designed by Feo and

Resende (1989) and belongs to the family of multi-start approaches. Each GRASP iteration consists of

Pastor, et al. — 8

constructing and improving solutions. The constructions are semi-greedy, meaning that they involve the

probabilistic selection of a reduced set of top choices. The improvement typically consists of a local

search. Unlike tabu search, GRASP is a memoryless metaheuristic since no information is transferred

from one iteration to the next.

Our construction procedures for the LB-ALBP are based on the scheme in Figure 3, where the heuristic

for the SALBP-1 is replaced with the procedure in Figure 4. Therefore, instead of choosing the top task in

the candidate list of tasks (𝐶𝐶𝐶𝐶) according to the priority rule, a so-called restricted candidate list (𝑅𝑅𝑅𝑅𝑅𝑅) is

created and the next task is randomly selected from this list. The procedure is outlined in Figure 4.

The construction procedure of Figure 4 starts with the first workstation and a new workstation is

opened only if the current workstation does not have the capacity to perform an additional task and the

set of unassigned tasks is not empty. We use the notation 𝑠𝑠(𝑗𝑗) to represent the set of tasks assigned to

workstation 𝑗𝑗 in solution 𝑠𝑠. We consider two strategies to generate 𝑅𝑅𝑅𝑅𝑅𝑅 and two strategies to choose a

task from the 𝑅𝑅𝑅𝑅𝑅𝑅. The strategies to build 𝑅𝑅𝑅𝑅𝑅𝑅 are:

• Cardinality-based — Let 𝑏𝑏 be a parameter controlling the size of the 𝑅𝑅𝑅𝑅𝑅𝑅. Then the 𝑅𝑅𝑅𝑅𝑅𝑅

consists of the 𝑏𝑏 tasks with the highest priority, given by the rule being applied. If 𝑏𝑏 > |𝐶𝐶𝐶𝐶|,

then 𝑅𝑅𝑅𝑅𝑅𝑅 = 𝐶𝐶𝐶𝐶.

• Value-based — Let 𝛼𝛼 be a parameter controlling the merit (measured by the priority rule) of

the tasks in the 𝑅𝑅𝑅𝑅𝑅𝑅. Then, the 𝑅𝑅𝑅𝑅𝑅𝑅 consists of all tasks for which their priority is within 𝛼𝛼% of

the task with the best priority.

The strategies to select a task from the 𝑅𝑅𝑅𝑅𝑅𝑅 are:

• Equal Probability — All tasks in the 𝑅𝑅𝑅𝑅𝑅𝑅 have equal probability to be selected. This is the

classical selection strategy in the GRASP methodology.

• Priority-based Probability — The probability of selecting a given task is proportional (for rules 1

to 7) or inversely proportional (for rules 8 to 12) to its priority index value.

Combining the priority rules (twelve) and the strategies for building the 𝑅𝑅𝑅𝑅𝑅𝑅 (two) and selecting a task

from the 𝑅𝑅𝑅𝑅𝑅𝑅 (two) results in a total of 48 variants of the procedure outlined in Figure 4. When a

solution with 𝑚𝑚 workstations is found, an attempt is made to improve upon the cycle time. This is done

by reducing the current cycle time and calling the procedure in Figure 4 several times, up to an

experimentally set limit of 10. Recall that heuristic in Figure 4 has stochastic elements and therefore a

solution with 𝑚𝑚 workstations and shorter cycle time may be found by multiple calls to the procedure.

Pastor, et al. — 9

[Insert Figure 4 here]

Our improvement method is the 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 local search in (Pastor et al. 2012), which is the best among those

published in the literature for LB-ALBP. 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 is a hill climbing procedure that employs trade and

transfer of tasks between pairs of workstations (Moodie and Young, 1965). In a solution 𝑠𝑠 with

workstations 𝑗𝑗 and 𝑗𝑗′ such that 𝑤𝑤(𝑠𝑠, 𝑗𝑗) > 𝑤𝑤(𝑠𝑠, 𝑗𝑗′), the neighborhood of 𝑠𝑠 consists of all the solutions

obtained by generating all feasible trades (i.e., those satisfying the precedence relations) between the

tasks in workstation 𝑗𝑗 and the tasks in workstation 𝑗𝑗′, as well as all feasible transfers of the tasks in

workstation 𝑗𝑗 to workstation 𝑗𝑗′. 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 explores the neighborhood in the following order:

For 𝑘𝑘 = 1, … ,𝑚𝑚 − 1 do

For 𝑙𝑙 = 𝑚𝑚, … ,𝑘𝑘 + 1 do

𝑗𝑗 = 𝜋𝜋(𝑘𝑘)

𝑗𝑗′ = 𝜋𝜋(𝑙𝑙)

End for

End for

Recall that 𝜋𝜋 represents the order according to decreasing workload values and therefore 𝜋𝜋(1) is the

workstation with the heaviest workload and 𝜋𝜋(𝑚𝑚) is the one with the lightest. These are the

workstations that are paired first according to the procedure above. 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 uses a first-improving

strategy, meaning that improving moves are immediately executed.

4. Tabu Search

Tabu search (TS) is a well-known metaheuristic originally proposed by Glover (1986) to emulate flexible

and responsive memory of the form humans employ in solving challenging problems. Most of the tabu

search implementations consist of straightforward short term memory structures, and are limited to a

reduced subset of the elements that are part of the general methodology. For instance, constructive TS

methods have been largely ignored in the literature, with the notable exception of (Duarte and Martí

2007). As reported in Glover and Laguna (1997), constructive TS procedures are based on memory

structures used to favor or discourage the inclusion of an element in a solution during the constructive

Pastor, et al. — 10

process. We couple a tabu search constructive procedure with a short term memory local search for this

problem.

Workstation-oriented procedures for the ALBP assign a task 𝑖𝑖 to a workstation 𝑗𝑗. We represent such

assignment by the pair (𝑖𝑖, 𝑗𝑗). Our tabu search implementation employs two memory structures: 𝑞𝑞 (for

quality) and 𝑓𝑓 (for frequency). In 𝑞𝑞(𝑖𝑖, 𝑗𝑗), we record the average 𝛿𝛿 values of the solutions for which task 𝑖𝑖

was assigned to workstation 𝑗𝑗 and in 𝑓𝑓(𝑖𝑖, 𝑗𝑗) the number of times that the assignment (𝑖𝑖, 𝑗𝑗) was made in

all the solutions visited during the search. Since the workstations are ordered, their assigned number

serves as an identifier. The 𝑞𝑞 and 𝑓𝑓 values are used to modify the attractiveness of an unassigned task

during the solution construction process. In particular, we favor assignments with high quality and low

frequency values, as indicated in the following greedy function:

𝑔𝑔(𝑖𝑖, 𝑗𝑗) = 𝑎𝑎(𝑖𝑖) + 𝜅𝜅 ∙ 𝑟𝑟(𝑈𝑈) ∙
𝑞𝑞(𝑖𝑖, 𝑗𝑗)
𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚

− 𝛾𝛾 ∙ 𝑟𝑟(𝑈𝑈) ∙
𝑓𝑓(𝑖𝑖, 𝑗𝑗)
𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚

Where

𝑎𝑎(𝑖𝑖): the priority index (attractiveness) of unassigned task 𝑖𝑖 according to the rule being used

𝑟𝑟(𝑈𝑈): the range of 𝑎𝑎(𝑖𝑖) for all unassigned tasks (𝑟𝑟(𝑈𝑈) = max𝑖𝑖∈𝑈𝑈 𝑎𝑎(𝑖𝑖) −min𝑖𝑖∈𝑈𝑈 𝑎𝑎(𝑖𝑖))

𝑞𝑞𝑚𝑚𝑚𝑚𝑚𝑚: the maximum value of 𝑞𝑞(𝑖𝑖, 𝑗𝑗)

𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚: the maximum value of 𝑓𝑓(𝑖𝑖, 𝑗𝑗)

𝜅𝜅 and 𝛾𝛾: parameters

The priority rules 1 to 7 indicate that the attractiveness of a task is given by maximizing the

corresponding index, while for rules 8 to 12 the most attractive task is the one with the minimum index.

We use the negative index value for rules 8 to 12 in order to always choose the assignment that

maximizes the greedy function 𝑔𝑔(𝑖𝑖, 𝑗𝑗). Figure 5 shows the TS for the LB-ALBP.

[Insert Figure 5 here]

The construction procedure in Figure 5 is a modification of the one described in Section 2 above and

that is based on the outline of Figure 3 and the twelve priority rules. The difference is that instead of

using the unmodified index value, the constructions are done applying the greedy function 𝑔𝑔(𝑖𝑖, 𝑗𝑗) to

Pastor, et al. — 11

choose the tasks and assign them to the workstations. Since in the first iteration the memory structures

are empty, 𝑔𝑔(𝑖𝑖, 𝑗𝑗) = 𝑎𝑎(𝑖𝑖) and the construction is identical to the original procedure suggested by Pastor

et al. (2012).

The improvement method is a short-term memory tabu search based on the local search LSPa. At each

iteration, the entire trade and transfer neighborhoods are explored and the best move is selected. If the

best move leads the search to a solution that is better than the current best solution, then the move is

made. Otherwise, the move to be made is the non-tabu trade or transfer with the best value even if it

leads the search to a solution that is inferior to the current solution. After a move that trades task 𝑖𝑖 in

workstation 𝑗𝑗 for task 𝑖𝑖′ in workstation 𝑗𝑗′, the tabu attributes to be stored in short-term memory are the

pairs (𝑖𝑖, 𝑗𝑗) and (𝑖𝑖′, 𝑗𝑗′). After a move that transfers task 𝑖𝑖 in workstation 𝑗𝑗 to workstation 𝑗𝑗′, the tabu

attribute to be stored in short-term memory is the pair (𝑖𝑖, 𝑗𝑗). Attributes remain tabu-active for

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 iterations. A trade (𝑖𝑖 → 𝑗𝑗′, 𝑖𝑖′ → 𝑗𝑗) is tabu if both pairs (𝑖𝑖, 𝑗𝑗′) and (𝑖𝑖′, 𝑗𝑗) are tabu-active. A

transfer (𝑖𝑖 → 𝑗𝑗′) is tabu if the pair (𝑖𝑖, 𝑗𝑗′) is tabu-active. The improvement procedure stops after

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 consecutive iterations without improving the best solution found during the current

application of the improvement method.

5. Scatter Search

The scatter search (SS) metaheuristic was first introduced by Glover (1977). As other evolutionary

methods, SS operates at each iteration on a reference set of solutions rather than on a single solution at

a time, as TS and GRASP do. SS combines the solutions of the reference set to create new ones in order

to improve it iteratively. However, in contrast to other evolutionary methods, a good reference set of

solutions not only implies having high quality solutions, but also diversity. For a detailed description of

the SS methodology see Laguna and Martí (2003).

Our SS procedure is based on the following well-known five methods (Glover 1998) to implement it: a

diversification generation method to generate a pool of diverse trial solutions, an improvement method

to transform a trial solution into an enhanced trial solution, a reference set update method to build and

maintain a reference set consisting in 𝑏𝑏𝑏𝑏 2⁄ high quality solutions and 𝑏𝑏𝑏𝑏 2⁄ diverse solutions (where 𝑏𝑏s

is a parameter), a subset generation method to produce subsets (usually pairs) of solutions in the

reference set for creating combined solutions, and a solution combination method to transform the

subsets of solutions into combined solutions. Figure 6 outlines the designed procedure.

Pastor, et al. — 12

[Insert Figure 6 here]

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺() is used at the beginning of the search to build the set 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 of 𝑏𝑏𝑏𝑏2 solutions. To

generate the solutions, we propose the stochastic construction procedure used for GRASP (see Section 3

and Figure 4) with priority rule 1 (maximum ranked positional weight), cardinality-based 𝑅𝑅𝑅𝑅𝑅𝑅 with 𝑏𝑏 =

4, and priority-based selection probability. This procedure and settings not only provide solutions of

reasonable quality (as it is shown in Section 6.2) but also diverse solutions.

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) constructs the reference set 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 using the solutions in the current set

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃. The solutions in 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 will be combined to generate new solutions. According to the SS

methodology, the 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 solutions should be good, according to its 𝛿𝛿 value, and diverse, according to a

distance metric. We evaluate the distance between two solutions 𝑠𝑠1 and 𝑠𝑠2, 𝑑𝑑(𝑠𝑠1, 𝑠𝑠2), as follows:

𝑑𝑑(𝑠𝑠1, 𝑠𝑠2) = ∑ |𝑤𝑤𝑤𝑤(𝑖𝑖, 𝑠𝑠1)−𝑤𝑤𝑤𝑤(𝑖𝑖, 𝑠𝑠2)|𝑛𝑛
𝑖𝑖=1 , where 𝑤𝑤𝑤𝑤(𝑖𝑖, 𝑠𝑠) is the workstation assigned to task 𝑖𝑖 in

solution 𝑠𝑠. For example, the distance between the two designs shown in Table 1 is |1 − 1| + |2 − 3| +

|2 − 2| + |3 − 2| + |4 − 3| + |3 − 4| + |4 − 5| + |5 − 4| + |5 − 5| = 6. The construction of the

reference set starts with the addition of the 𝑏𝑏𝑏𝑏 2⁄ best local optima in the 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 solutions (and the

original solutions are removed from 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃). The local search proposed is LSPa. Then, the minimum

distance from each solution in 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 to the solution in 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is computed. The solution with the

maximum of these minimum distances is selected. This solution is added to 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 and deleted from

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and the minimum distances are updated. This process is repeated 𝑏𝑏𝑏𝑏 2⁄ times.

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) applies a combination method, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑠𝑠1, 𝑠𝑠2), to all pairs of solutions

𝑠𝑠1 and 𝑠𝑠2 in the current 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅. Since 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑠𝑠1, 𝑠𝑠2) may produce a different solution from

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑠𝑠2, 𝑠𝑠1), it is therefore applied 𝑏𝑏𝑏𝑏2 at each iteration of SS (recall that the size of 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 is 𝑏𝑏𝑏𝑏).

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑠𝑠1, 𝑠𝑠2) does not operate directly with the solutions but with their representations as

sequences of tasks ordered according to their execution. For example, the first design shown in Table 1

is represented as the sequence (1,2,3,4,6,5,7,8,9).

The design that we propose of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑠𝑠1, 𝑠𝑠2) is known in the GA literature as the fragment

reordering crossover, and it has been specifically designed for ALBPs (Rubinovitz and Levitin, 1995).

Additionally, it has the advantage that always returns a feasible sequence of tasks (that is, the

precedence constraints are satisfied) and no reparation mechanism is needed. The combination method

Pastor, et al. — 13

works as follows. First, the combined sequence of tasks, 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶, is equal to the tasks sequence of 𝑠𝑠1.

Then all the tasks of a random fragment in 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 are reallocated within this fragment according to the

order in which they appeared in the tasks sequence of 𝑠𝑠2. Finally, the sequence of tasks 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 has to be

decoded into a solution 𝑠𝑠. We use the decoding method proposed in Rubinovitz and Levitin (1995). It

aims to divide the tasks sequence 𝑠𝑠𝑠𝑠𝑠𝑠 between the 𝑚𝑚 workstations (without changing the order of the

tasks) looking for a maximum equality between the workloads of all workstations. The decoding method

consists in executing the recursive division method 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑠𝑠, 𝑠𝑠𝑠𝑠𝑠𝑠,𝑓𝑓𝑓𝑓, 𝑙𝑙𝑙𝑙,𝑀𝑀, 𝑗𝑗) as

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑠𝑠,𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ,1,𝑛𝑛,𝑚𝑚, 1). Figure 7 shows the division method, where 𝑇𝑇(𝑗𝑗, 𝑠𝑠𝑠𝑠𝑠𝑠) is the task at position 𝑝𝑝

of the sequence 𝑠𝑠𝑠𝑠𝑠𝑠 (and recall that 𝑠𝑠(𝑗𝑗) is the set of tasks assigned to workstation 𝑗𝑗).

[Insert Figure 7 here]

Finally, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) applies the local search LSPa to the best 𝑏𝑏𝑏𝑏 2⁄ solutions in 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (and the

original solutions are removed).

6. Computational Experiments

The designed procedures were implemented in Java SE 1.6.21 and run on a PC 3.16 GHz Pentium Intel

Core 2 Duo E8500 with 3.46 GB of RAM. Our experiments to compare existing procedures with our

proposed procedures are performed on the same 301 problem instances used in (Pastor et al. 2012).

The test set is generated using seventeen cases with characteristics listed in Table 2. For each case,

Table 2 shows its name, the number of tasks, the minimum, maximum and average processing times,

the order strength of the precedence graph, and the range on the number of workstations.

[Insert Table 2 here]

6.1. Fine-tuning of Search Parameters

Our computational experience starts with a set of preliminary experiments for parameter tuning. For

each of the seventeen cases in Table 2, we generate two instances. The first one with number of

Pastor, et al. — 14

workstations set at the minimum value in the last column of the table minus one. The second instance

has a number of workstations equal to the maximum value in the last column of the table plus one. For

example, for the Arcus1 case we generate two training instances, one with 𝑚𝑚 = 2 and one with 𝑚𝑚 = 23.

This results in a training set of 34 instances.

The fine-tuning of GRASP involves the selection of a priority rule (12 choices), the strategies to build the

𝑅𝑅𝑅𝑅𝑅𝑅 (cardinality-based and value-based) together with the associated parameters (𝛼𝛼 and 𝑏𝑏), and the

strategies to select a task from the 𝑅𝑅𝑅𝑅𝑅𝑅 (equal probability and priority-based probability). We consider

five values for 𝛼𝛼 (from 0.1 to 0.5 in increments of 0.1) and four values for 𝑏𝑏 (2, 3, 4 and 5). This results in

a full factorial design with 216 (12 × 5 × 2 + 12 × 4 × 2) parameter settings. Each setting is applied to

the training set of 34 instances, resulting in 7,344 executions of GRASP. The number of iterations was set

to 1,000 for these runs. This experiment identifies the following three top parameter settings (according

to the average 𝛿𝛿 value obtained) for the standard GRASP (equal selection probability) and the non-

standard GRASP (priority-based selection probability) implementations, where 𝑃𝑃𝑃𝑃 is the priority rule

and 𝛿𝛿̅ is the average 𝛿𝛿 value:

• Standard GRASP: 𝑃𝑃𝑃𝑃 = 9, α = 0.1 (δ� = 1.59167), 𝑃𝑃𝑃𝑃 = 9, 𝛼𝛼 = 0.2 (𝛿𝛿̅ = 1.7577) and 𝑃𝑃𝑃𝑃 = 4,

𝛼𝛼 = 0.2 (𝛿𝛿̅ = 1.99617).

• Non-standard GRASP: 𝑃𝑃𝑃𝑃 = 1, 𝑏𝑏 = 4 (𝛿𝛿̅ = 1.57504), 𝑃𝑃𝑃𝑃 = 7, 𝑏𝑏 = 4 (𝛿𝛿̅ = 1.59290) and 𝑃𝑃𝑃𝑃 = 1,

𝑏𝑏 = 3 (𝛿𝛿̅ = 1.75245).

We applied the non-parametric Friedman test for multiple correlated samples to the solutions obtained

by each of the standard and non-standard GRASPS. This test computes, for each instance, the rank value

of each setting according to solution quality (where rank 1 is assigned to the best method and rank 3 to

the worst one). Then, it calculates the average rank values of each method across the 34 training

instances solved. If the averages differ greatly, the associated 𝑝𝑝-value or significance will be small. The

resulting 𝑝𝑝-value of 0.55 and 0.58 obtained in this experiment for the standard and non-standard

GRASPs, respectively, indicates that there are not statistically significant differences among their

respective three best settings. Specifically, the rank values produced by this test for the standard GRASP

are 1.91 (𝑃𝑃𝑃𝑃 = 9, α = 0.1), 1.96 (𝑃𝑃𝑃𝑃 = 9, α = 0.2) and 2.13 (𝑃𝑃𝑃𝑃 = 4, α = 0.2), and for the non-

standard GRASP are 1.90 (𝑃𝑃𝑃𝑃 = 7, b = 4), 1.99 (𝑃𝑃𝑃𝑃 = 1, b = 4) and 2.12 (𝑃𝑃𝑃𝑃 = 1, b = 3).

Pastor, et al. — 15

Since the best parameter settings for each type of GRASP are not statistically different, we focus on the

settings that return the lowest average 𝛿𝛿 value. We refer as GRASP1 to the standard GRASP 𝑃𝑃𝑃𝑃 = 9,

α = 0.1, and as GRASP2 to the non-standard GRASP with 𝑃𝑃𝑃𝑃 = 1, 𝑏𝑏 = 4. It must be noted that the two

best methods among the 216 GRASP variants tested do not apply the same strategy neither to build the

𝑅𝑅𝑅𝑅𝑅𝑅 nor to select an element from it. In particular, GRASP1 builds the 𝑅𝑅𝑅𝑅𝑅𝑅 based on the value of the

candidate elements, while GRASP2 simply selects a pre-established number of candidate elements to

construct 𝑅𝑅𝑅𝑅𝑅𝑅. On the other hand, GRASP1 selects an element in 𝑅𝑅𝑅𝑅𝑅𝑅 according to a uniform

distribution, as it is customary in the GRASP methodology, while GRASP2 employs a biased selection

process.

The tabu search implementation has five parameters: a priority rule, 𝜅𝜅 and 𝛾𝛾 for the construction phase

and 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 and 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 for the improvement phase. Since, in our design, the 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

depends on the number of tasks in the problem, we tune this parameter indirectly by searching for the

best value of 𝜃𝜃 and making 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = 𝜃𝜃𝜃𝜃. We used CALIBRA (Adenso-Díaz and Laguna 2006) to

find effective values for these parameters. CALIBRA is a tool specifically designed for fine-tuning the

parameters of algorithms and is based on using conjointly Taguchi’s fractional factorial experimental

designs and a local search procedure. This tool, which can be downloaded at

http://coruxa.epsig.uniovi.es/~adenso/file_d.html, automatically returns the best parameter values. We

executed CALIBRA runs of 1000 iterations with the following settings:

• Priority rule = {1, 2, 3, …, 12}

• 𝜅𝜅 = {0.01, 0.02, … , 1.0}

• 𝛾𝛾 = {1.0, 1.1, … ,10.0}

• 𝜃𝜃 = {0.25,0.5,0.75}

• 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = {50,100,150,200}

CALIBRA identified the best parameter setting as priority rule 1, 𝜅𝜅 = 0.06, 𝛾𝛾 = 4.8, 𝜃𝜃 = 0.25 and

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 150. We refer to this setting as TS.

The scatter search implementation has one parameter: 𝑏𝑏𝑏𝑏. We calibrated this parameter considering

the following values: 𝑏𝑏𝑏𝑏 = {2,4, … ,30}. Again, the number of iterations was set to 1,000 for these

runs. The three best settings are identified as 𝑏𝑏𝑏𝑏 = 18 (𝛿𝛿̅ = 1.55453), 𝑏𝑏𝑏𝑏 = 14 �𝛿𝛿̅ = 1.61131� and

𝑏𝑏𝑏𝑏 = 16 (𝛿𝛿̅ = 1.62152). We performed a Friedman test and the resulting 𝑝𝑝-value of 0.26 indicates that

Pastor, et al. — 16

there are not statistically significant differences among the 3 settings. Specifically, the rank values

produced by this test are 1.81 (𝑏𝑏𝑏𝑏 = 16), 2.06 (𝑏𝑏𝑏𝑏 = 18) and 2.13 (𝑏𝑏𝑏𝑏 = 14). Thus, we focus on the

setting that return the best average 𝛿𝛿 value (𝑏𝑏𝑏𝑏 = 18) and refer to this setting as SS.

6.2. Comparison of our GRASP, TS and SS Implementations

We now test the performance of the GRASP configurations that were identified as the best (GRASP1 and

GRASP2) and the fine-tuned tabu search and scatter search procedures (TS and SS, respectively). For this

experiment, we consider all 301 test instances and a run time of 1,000 seconds per procedure and

instance. Quality is measured with the average 𝛿𝛿 values (denoted by 𝛿𝛿̅) and the number of times a

procedure matches the best-known solution (denoted by #Best). We first compare the performance of

the procedures with and without the improving phase. The results are shown in Table 3.

[Insert Table 3 here]

Overall, results in Table 3 confirm the effectiveness of including an improving phase. All procedures yield

better results when an improving phase is added. According to these results, GRASP2 outperforms the

other competing procedures. It seems that in this context there is no gain in adding memory to the

construction process (as TS and SS do). However, there seems to be an advantage in using a non-

uniform probabilistic selection of the tasks within the GRASP construction.

We applied a Friedman test to the best solutions obtained by each of the four methods with the

improving phase. The resulting 𝑝𝑝-value of 0.000 obtained in this experiment clearly indicates that there

are statistically significant differences among the four methods tested. Specifically, the rank values

produced by this test are 1.70 (GRASP2), 2.46 (SS), 2.88 (GRASP1), and 2.96 (TS). If we apply the same

test to the four methods without the improvement phase, we also obtain a 𝑝𝑝-value of 0.000; but now

the ranks are 1.74 (GRASP2), 1.84 (SS), 3.14 (TS), and 3.27 (GRASP1).

Considering that GRASP2 and SS obtain the best average results, we compared both with a well-known

nonparametric test for pairwise comparisons: the Wilcoxon test. This test is designed to answer the

question: Do the two samples (i.e., the objective function values of the solutions obtained by GRASP2

and SS) represent two different populations? We perform two pairwise comparisons, with and without

Pastor, et al. — 17

the local search. The resulting 𝑝𝑝-value of 0.000 with the improving phase indicates that the values

belong to two different populations. On the other hand, a 𝑝𝑝-value of 0.039 is obtained without the

improving phase. Since this last value is borderline, we apply the non-parametric sign test for paired

samples. The resulting 𝑝𝑝-value of 0.95 indicates that we cannot ensure that GRASP2 performs better

than SS without their improving phases. We can therefore conclude that when solving LB-ALBP, the

non-standard GRASP2 (with the improving phase), in which the random selection from the 𝑅𝑅𝑅𝑅𝑅𝑅 is

biased, is the best method.

Next, we analyze the influence of the characteristics of the instances (as outlined in Table 2) on the

quality of the results. Specifically, we create subset of instances according to the order strength and the

number of tasks. The order strength is respectively classified (according to Pastor et al. 2012) as low,

medium and high according to the ranges (22.67, 25.80), (40.38, 59.50) and (77.55, 83.82). Likewise, the

number of tasks is respectively considered low, medium and high according to the ranges (29, 35), (45,

111) and (148, 297). Tables 4 and 5 report the results obtained by each procedure for combinations of

order strength and number of tasks. The column headers use L, M and H for low medium and high,

respectively. The first letter is for the order strength and the second letter for the number of tasks. This

is followed by the number of instances in the subset, which are shown between parentheses. Table 4

shows the average 𝛿𝛿-values and Table 5 contains the number of best solutions found by each procedure.

[Insert Table 4 here]

[Insert Table 5 here]

The results in Tables 4 and 5 indicate that GRASP2 is on average superior to the other two procedures

regardless of the characteristics of the instances although there are two exceptions. First, when the

order strength is low and the number of tasks is medium, TS slightly outperforms GRASP2, with an

average objective function value that is 0.6% better and 2 more best solutions. Second, when the order

strength is medium and the number of tasks is high, SS slightly outperforms GRASP2, with an average

objective function value that is 0.4% better and 4 more best solutions.

6.3. Comparison against the State of the Art

Pastor, et al. — 18

In our last experiment, we compare GRASP2 and SS, both with their respective improvement method,

with the best heuristic for the LB-ALBP reported in the literature, namely V-LSPa (Pastor, et al. 2012).

Since this method presents an average CPU time of 50 seconds, we run our both procedures for the

same running time per procedure and instance to perform a fair comparison. Table 6 reports the

average 𝛿𝛿 values (denoted by 𝛿𝛿̅) and the number of times a procedure matches the best-known solution

(denoted by #Best) on this experiment.

[Insert Table 6 here]

Table 6 shows that GRASP2 seems to improve upon SS on a short term horizon (i.e., when both methods

are run for 50 seconds), since it is able to obtain a smaller value of 𝛿𝛿̅ and a larger number of best

solutions. Moreover, GRASP2 clearly outperforms the best previously published method, V-LSPa. We

performed a Friedman test in an attempt to draw some statistically significant conclusions. The

resulting 𝑝𝑝-value of 0.000 indicates that there are statistically significant differences among the 3

methods. Specifically, the rank values produced by this test are 1.70 (GRASP2), 1.82 (SS), and 2.47 (V-

LSPa). Thus, it is confirmed that our two methods, GRASP2 and SS, obtain better solutions than the best

published heuristic. Moreover, the 𝑝𝑝-value of 0.119 obtained with the Wilcoxon test and the 𝑝𝑝-value of

0.087 obtained with the sign test when comparing GRASP2 and SS outlines that we cannot ensure that

GRASP2 performs better than SS.

To complement the information shown in Table 6, we run our best method, GRASP2, and the best

previous method, V-LSPa, for 1000 seconds, and track their solution quality over the execution of the

procedure. Specifically, the profile of the 𝛿𝛿̅ values for a 1,000-second execution is shown in Figure 8.

This figure shows the value of 𝛿𝛿̅ for the best solutions found at intervals of 10 seconds.

[Insert Figure 8 here]

Pastor, et al. — 19

From Figure 7 we can confirm that GRASP2 obtains better solutions than V-LSPa for similar computing

time. The 𝛿𝛿̅ value for GRASP2 within 50 seconds is 1.81175 and, even within the first 10 seconds, the

average solution quality of 2.00885 is considerably better than V-LSPa’s (2.63578).

7. Conclusions and future research

The Assembly Line Balancing is a difficult combinatorial optimization problem. Our goal is to improve

the state of the art resolution of the lexicographical bottleneck version of the assembly line problem,

which can be considered particularly challenging. In particular, we have implemented 48 different

GRASPs, 12 tabu search variants and 1 scatter search procedure. Moreover, we have tested this large

number of variants according to different search parameters on several types of instances. Through

extensive experimentation, we have been able to determine that the designed best heuristics

outperform the incumbent state of the art. We show that our proposals benefit from the addition of

enhanced search strategies. Additionally, we can conclude that in this problem, the non-standard

GRASP implementation, in which the random selection from the RCL is biased, performs better than the

classical one based on a uniform random distribution.

The solution of the LB-ALBP has been studied in the context in which a single model is processed in the

line and its shape is straight. An interesting issue that is worth exploring in the future is to extend the LB-

ALBP in the presence of mixed-model assembly lines or U-shaped lines.

Acknowledgments

This research has been partially supported by the Ministerio de Educación Cultura y Deporte of Spain

(Grant Ref. PRX12/00016) and by the Ministerio de Economía y Competitividad of Spain (Grant Ref.

TIN2012-35632). We would like to thank the reviewers for their valuable comments and suggestions

that improved the quality of the paper.

References

Adenso-Díaz, B., Laguna, M., 2006. Fine-tuning of algorithms using fractional experimental designs and

local search. Operations Research, 54, 99-114.

Battaïa, O., Dolgui, A., 2013. A taxonomy of line balancing problems and their solution approaches.

International Journal of Production Economics, 142, 259-277.

Pastor, et al. — 20

Baybars, I., 1986. A survey of exact algorithms for the simple assembly line balancing problem.

Management Science, 32, 909-932.

Becker, C., Scholl, A., 2006. A survey on problems and methods in generalized assembly line balancing.

European Journal of Operational Research, 168, 694-715.

Boysen, N., Fliedner, M., Scholl, A., 2006. A classification of assembly line balancing problems. Working

paper 12/2006, Friedrich-Schiller-Universität Jena: Thuringia, Germany.

Boysen, N., Fliedner, M., Scholl, A., 2007. A classification of assembly line balancing problems. European

Journal of Operational Research, 183, 674-693.

Boysen, N., Fliedner, M., Scholl, A., 2008. Assembly line balancing: Which model to use when?

International Journal of Production Economics, 111, 509-528.

Capacho, L., Pastor, R., Dolgui, A., Gunshinskaya, O., 2009. An evaluation of constructive heuristic

methods for solving the alternative subgraphs assembly line balancing problem. Journal of Heuristics,

15, 109-132.

Cheshmehgaz, H.R., Haron, H., Kazemipour, F., Desa, M.I., 2012. Accumulated risk of body postures in

assembly line balancing problem and modelling through a multi-criteria fuzzy-genetic algorithm.

Computers & Industrial Engineering, 63, 503-512.

Corominas, A., Pastor, R., 2009. A note on “A comparative evaluation of assembly line balancing

heuristics”. International Journal of Advanced Manufacturing Technology, 44, 817.

Corominas, A., Ferrer, L., Pastor, R., 2011. Assembly line balancing: general resource-constrained case.

International Journal of Production Research, 49, 3527-3542.

Cortés, P., Muñuzuri, J., Onieva, L., Larrañeta, J., Vozmediano J.M., Alarcón, J.C., 2006. Andalucía

assesses the investment needed to deploy a fiber-optic network. Interfaces, 36, 105-117.

Ding, F-Y., Zhu, J., Sun, H., 2006. Comparing two weighted approaches for sequencing mixed-model

assembly lines with multiple objectives. International Journal of Production Economics, 102, 108-131.

Duarte, A., Martí, R., 2007. Tabu search and GRASP for the maximum diversity problem. European

Journal of Operational Research, 178, 71-84.

Feo, T.A., Resende, M.G.C., 1989. A probabilistic heuristic for a computationally difficult set covering

problem. Operations Research Letters, 8, 67-81.

Gamberini, R., Grassi, A., Rimini, B., 2006. A new multi-objective heuristic algorithm for solving the

stochastic assembly line re-balancing problem. International Journal of Production Economics, 102,

226-243.

Pastor, et al. — 21

Glover, F., 1977. Heuristics for integer programming using surrogate constraints. Decision Sciences, 8,

156-166.

Glover, F., 1986. Future paths for Integer Programming and Links to Artificial Intelligence. Computers

and Operations Research, 5, 533-549.

Glover, F., Laguna, M., 1997. Tabu Search. Kluwer Academic Publisher.

Glover, F., 1998. A Template for Scatter Search and Path Relinking. In: Hao, J.-K., Lutton, E., Ronald, E.,

Schoenauer, M., Snyers, D. (Eds.), Artificial Evolution, Lecture Notes in Computer Science 1363,

Springer, pp. 13-54.

Hoffman, T.R., 1992. EUREKA: a hybrid system for assembly line balancing. Management Science, 38, 39-

47.

Inman, R.R., Leon, M., 1994. Scheduling duplicate serial stations in transfer lines. International Journal of

Production Research, 32, 2631-2644.

Johnson, R.V., 1988. Optimally balancing large assembly lines with Fable. Management Science, 34, 240-

253.

Kao, E.P.C., Queyranne, M., 1982. On dynamic programming methods for assembly line balancing.

Operations Research, 30, 375-390.

Laguna, M., Martí, R., 2003. Scatter Search. Kluwer Academic Publisher.

Lusa, A, 2008. A survey of the literature on the multiple or parallel assembly line balancing problem.

European Journal of Industrial Engineering, 2, 50-72.

Martino, L., Pastor, R., 2010. Heuristic procedures for solving the general assembly line balancing

problem with setups. International Journal of Production Research, 48, 1787-1804.

Merengo, C., Nava, F., Pozzetti, A., 1999. Balancing and sequencing manual mixed-model assembly lines.

International Journal of Production Research, 37, 2835-2860.

Miltenburg, J., 2002. Balancing and scheduling mixed-model U-shaped production lines. International

Journal of Flexible Manufacturing Systems, 14, 1119-151.

Moodie, C.L., Young, H.H., 1965. A heuristic method of assembly line balancing for assumptions of

constant or variable work element times. Journal of Industrial Engineering, 16, 23-29.

Park, K., Park, S., Kim, W., 1997. A heuristic for an assembly line balancing problem with incompatibility,

range, and partial precedence constraints. Computers & Industrial Engineering, 32, 321-332.

Pastor, R., 2011. LB-ALBP: the lexicographic bottleneck assembly line balancing problem. International

Journal of Production Research, 49, 2425-2442.

Pastor, et al. — 22

Pastor, R., Chueca, I., García-Villoria, A., 2012. A heuristic procedure for solving the Lexicographic

Bottleneck Assembly Line Balancing Problem (LB-ALBP). International Journal of Production Research,

50, 1862-1876.

Pastor, R., Ferrer, L., 2009. An improved mathematical program to solve the simple assembly line

balancing problem. International Journal of Production Research, 47, 2943-2959.

Ponnambalam, S.G., Aravindan, P., Mogileeswar, G., 1999. A comparative evaluation of assembly line

balancing heuristics. International Journal of Advanced Manufacturing Technology, 15, 577-586.

Rachamadugu, R., Talbot, B., 1991. Improving the equality of workload assignments in assembly lines.

International Journal of Production Research, 29, 619-633.

Rekiek, B., Lit, P., Delchambre, A., 2002. Hybrid assembly line design and user’s preferences.

International Journal of Production Research, 40, 1095-1111.

Rubinovitz, J., Levitin, G., 1995. Genetic algorithm for assembly line balancing. International Journal of

Production Economics, 41, 343-354.

Scholl, A., Becker, C., 2006. State-of-the-art exact and heuristic solution procedures for simple assembly

line balancing. European Journal of Operational Research, 168, 666-693.

Scholl, A., Klein, R., 1997. SALOME: a bidirectional branch and bound procedure for assembly line

balancing. Informs Journal on Computing, 9, 319-334.

Scholl, A., Voß, S., 1996. Simple assembly line balancing-Heuristic approaches. Journal of Heuristics, 2,

217-244.

Talbot, F.B., Patterson, J.H., 1984. An integer programming algorithm with network cuts for solving the

assembly line balancing problem. Management Science, 30, 85-99.

Talbot, F., Patterson, J.H., Gehrlein, W.V., 1986. A comparative evaluation of heuristic line balancing

techniques. Management Science, 32, 431-453.

Wee, T.S., Magazine, M.J., 1982. Assembly line balancing as generalized bin packing. Operations Research

Letters, 1, 56-58.

White, W.W., 1961. Comments on a paper by Bowman. Operations Research, 9, 274-276.

Pastor, et al. — 23

Design W1 W2 W3 W4 W5
1 1 2, 3 4, 6 5, 7 8,9
2 1 3, 4 2, 5 6, 8 7,9

Table 1 Task assignments of two designs

 Number

of Tasks
Processing Time Order

Strength
Number of

Workstations Name Minimum Maximum Average
Arcus1 83 233 3691 912.1 59.09 3 to 22
Arcus2 111 10 5689 1354.9 40.38 3 to 27
Barthold 148 3 383 38.1 25.80 3 to 15
Barthol2 148 1 83 28.6 25.80 27 to 51
Buxey 29 1 25 11.2 50.74 7 to 14
Gunther 35 1 40 13.8 59.50 6 to 15
Hahn 53 40 1775 264.6 83.82 3 to 10
Killbridge 45 3 55 12.3 44.55 3 to 11
Lutz1 32 100 1400 441.9 83.47 8 to 12
Lutz2 89 1 10 5.4 77.55 9 to 28
Lutz3 89 1 74 18.5 77.55 3 to 23
Mukherje 94 8 171 44.8 44.80 3 to 26
Sawyer 30 1 25 10.8 44.83 7 to 14
Scholl 297 5 1386 234.5 58.16 25 to 52
Tonge 70 1 156 50.1 59.42 3 to 24
Warnecke 58 7 53 26.7 59.10 3 to 29
Wee-Mag 75 2 27 20.0 22.67 3 to 30

Table 2. Test problems

Measure With improving phase Without improving phase
GRASP1 GRASP2 TS SS GRASP1 GRASP2 TS SS

𝛿𝛿̅ 2.10587 1.62926 2.04308 1.81935 2.87519 1.91586 2.61364 2.05554
#𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 96 240 97 121 37 82 31 75

Table 3 Performance comparison with and without the improving phase

Procedure LM (28) LH (38) ML (26) MM (127) MH (28) HL (5) HM (49)
GRASP1 3.99137 1.28776 3.36447 1.52528 1.13074 3.50804 2.91401
GRASP2 3.96106 0.68476 2.93308 1.22891 0.78598 3.50687 1.66536
TS 3.93725 0.73804 3.42808 1.70481 1.02533 4.52720 2.44273
SS 4.13795 0.86063 3.10029 1.47599 0.78298 3.84472 1.83373

Table 4 𝛿𝛿̅ values for each combination of order strength and number of tasks

Pastor, et al. — 24

Procedure LM (28) LH (38) ML (26) MM (127) MH (28) HL (5) HM (49)
GRASP1 19 9 13 39 1 1 14
GRASP2 22 31 26 104 10 4 43
TS 24 23 5 32 3 0 10
SS 13 17 15 35 14 1 26

Table 5 #𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 values for each combination of order strength and number of tasks

Procedure GRASP2 SS V-LSPa
𝛿𝛿̅ 1.81175 1.87038 2.63578

#𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 163 149 75

Table 6 Performance comparison with the best previous method

Pastor, et al. — 25

Figure 1. Precedence graph (task time in parenthesis)

Figure 2 Workload profiles of two designs

Calculate the lower bound on the cycle time 𝐿𝐿𝐿𝐿 = 𝑤𝑤𝑟𝑟(1)
Initialize 𝐶𝐶𝐶𝐶 ← 𝐿𝐿𝐿𝐿 − 1
Repeat

𝐶𝐶𝐶𝐶 ← 𝐶𝐶𝐶𝐶 + 1
Apply a greedy heuristic for the SALBP-1 with cycle time equal to 𝐶𝐶𝐶𝐶

Until number of workstations in the solution is less than or equal to 𝑚𝑚

Figure 3 Simple heuristic for the SALBP-2

(4)

(2)

(2)

(6)

(3)

(3) (5)

(5)

(10)

1 3 4

2 6

7

8

9

5

Pastor, et al. — 26

𝑈𝑈 ← {1, … ,𝑛𝑛} List of unassigned tasks
𝑗𝑗 ← 1; 𝑠𝑠(𝑗𝑗) ← ∅;𝑤𝑤(𝑠𝑠, 𝑗𝑗) ← 0 Start from workstation 1
Repeat

𝐶𝐶𝐶𝐶 ← {𝑖𝑖 ∈ 𝑈𝑈:𝑃𝑃𝑖𝑖 ∩ 𝑈𝑈 = ∅ ∧ 𝑡𝑡𝑖𝑖 + 𝑤𝑤(𝑠𝑠, 𝑗𝑗) ≤ 𝐶𝐶𝐶𝐶} Build candidate list
If 𝐶𝐶𝐶𝐶 ≠ ∅ then

𝑅𝑅𝑅𝑅𝑅𝑅 ← 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝐶𝐶𝐶𝐶) Build RCL
𝑖𝑖∗ ← 𝐶𝐶ℎ𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜(𝑅𝑅𝑅𝑅𝑅𝑅) Select a task from 𝑅𝑅𝑅𝑅𝑅𝑅
𝑠𝑠(𝑗𝑗) ← 𝑠𝑠(𝑗𝑗) ∪ {𝑖𝑖∗} Add chosen task to workstation 𝑗𝑗
𝑤𝑤(𝑠𝑠, 𝑗𝑗) ← 𝑤𝑤(𝑠𝑠, 𝑗𝑗) + 𝑡𝑡𝑖𝑖∗ Update workload of workstation 𝑗𝑗
𝑈𝑈 ← 𝑈𝑈\{𝑖𝑖∗} Update list of unassigned tasks

Else
𝑗𝑗 ← 𝑗𝑗 + 1; 𝑠𝑠(𝑗𝑗) ← ∅;𝑤𝑤(𝑠𝑠, 𝑗𝑗) ← 0 Open a new workstation

End if
Until 𝑈𝑈 = ∅ End when all jobs are assigned

Figure 4 Semi-greedy procedure for SALBP-1

𝑞𝑞(𝑖𝑖, 𝑗𝑗) ← 0;𝑓𝑓(𝑖𝑖, 𝑗𝑗) ← 0 Initialize memory structures
Repeat

𝑠𝑠 ← 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑞𝑞,𝑓𝑓) Apply constructive heuristic
𝑠𝑠 ← 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑠𝑠) Apply short-term tabu search
𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈𝑈(𝑠𝑠∗, 𝑞𝑞,𝑓𝑓) Update best solution 𝑠𝑠∗ and memory

Until stopping criterion satisfied

Figure 5 Tabu search for the LB-ALBP

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ← 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺() Initialize pool of solutions
Repeat

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 ← 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) Update RefSet
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ← 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅) Update Pool by combining solutions
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃) Improve the best solutions in Pool
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ← 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∪ 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 Add the RefSet solutions to Pool

Until stopping criterion satisfied

Figure 6 Scatter search for the LB-ALBP

Pastor, et al. — 27

if 𝑀𝑀 = 1 then 𝑠𝑠(𝑗𝑗) ←∪𝑝𝑝=𝑓𝑓𝑓𝑓
𝑙𝑙𝑙𝑙 {𝑇𝑇(𝑝𝑝, 𝑠𝑠𝑠𝑠𝑠𝑠)}

Else
𝑀𝑀1 ← ⌊𝑀𝑀 2 + 0.5⁄ ⌋; 𝑀𝑀2 ← 𝑀𝑀 −𝑀𝑀1

𝑐𝑐∗ ← 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐=𝑓𝑓𝑓𝑓
𝑙𝑙𝑙𝑙 �

∑ 𝑡𝑡𝑇𝑇(𝑝𝑝,𝑠𝑠𝑠𝑠𝑠𝑠)
𝑐𝑐
𝑝𝑝=𝑓𝑓𝑓𝑓

∑ 𝑡𝑡𝑇𝑇(𝑝𝑝,𝑠𝑠𝑠𝑠𝑠𝑠)
𝑙𝑙𝑙𝑙
𝑝𝑝=𝑐𝑐+1

−
𝑀𝑀1

𝑀𝑀2
�

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑠𝑠, 𝑠𝑠𝑠𝑠𝑠𝑠,𝑓𝑓𝑓𝑓, 𝑐𝑐∗,𝑀𝑀1, 𝑗𝑗)
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑠𝑠, 𝑠𝑠𝑠𝑠𝑠𝑠, 𝑐𝑐∗ + 1, 𝑙𝑙𝑙𝑙,𝑀𝑀2, 𝑗𝑗 + 𝑀𝑀1)

End if

Figure 7. The division method 𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫𝑫(𝒔𝒔, 𝒔𝒔𝒔𝒔𝒔𝒔,𝒇𝒇𝒇𝒇, 𝒍𝒍𝒍𝒍,𝑴𝑴, 𝒋𝒋)

Figure 8 Average 𝜹𝜹 values of the best solution found by GRASP2

	Feo, T.A., Resende, M.G.C., 1989. A probabilistic heuristic for a computationally difficult set covering problem. Operations Research Letters, 8, 67-81.
	Gamberini, R., Grassi, A., Rimini, B., 2006. A new multi-objective heuristic algorithm for solving the stochastic assembly line re-balancing problem. International Journal of Production Economics, 102, 226-243.
	Glover, F., 1977. Heuristics for integer programming using surrogate constraints. Decision Sciences, 8, 156-166.
	Glover, F., 1986. Future paths for Integer Programming and Links to Artificial Intelligence. Computers and Operations Research, 5, 533-549.
	Glover, F., Laguna, M., 1997. Tabu Search. Kluwer Academic Publisher.
	Laguna, M., Martí, R., 2003. Scatter Search. Kluwer Academic Publisher.
	Talbot, F., Patterson, J.H., Gehrlein, W.V., 1986. A comparative evaluation of heuristic line balancing techniques. Management Science, 32, 431-453.

