
Minimizing the passengers’ traveling time in the
stop location problem
Emilio Carrizosa1, Jonas Harbering2* and Anita Schöbel2
1Universidad de Sevilla, Sevilla, Spain; and 2Georg-August Universität Göttingen, Göttingen, Germany

In this paper we consider the location of stops along the edges of an already existing public transportation network.
The positive effect of new stops is given by the better access of the passengers to the public transport network,
while the passengers’ traveling time increases due to the additional stopping activities of the trains, which is a
negative effect for the passengers. The problem has been treated in the literature where the most common model is
to cover all demand points with a minimal number of new stops. In this paper, we follow this line and seek for a set
of new stops covering all demand points but instead of minimizing the number of new stops we minimize the
additional passengers’ traveling time due to the new stops. For computing this additional traveling time we do not
only take the stopping times of the vehicles but also acceleration and deceleration of the vehicles into account. We
show that the problem is NP-hard, but we are able to derive a finite candidate set and two tractable IP formulations.
For linear networks we show that the problem is polynomially solvable. We also discuss the differences to the
common models from literature showing that minimizing the number of new stops does not necessarily lead to a
solution with minimal additional traveling times for the passengers. We finally provide a case study showing that
our new model decreases the traveling times for the passengers while still achieving the minimal number of
new stops.
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1. Introduction

The acceptance of public transportation depends on various
components, among them convenience, punctuality, and relia-
bility. In this paper, we address the question of convenience for
the passengers. In particular, we investigate the problem of
establishing additional stops (or stations) in a given public
transportation network. The goal is, on the one hand, to improve
the accessibility to the transportation network, but on the other
hand not to increase the traveling time of passengers too much.
Due to their great potential for improving public transporta-

tion systems, several versions of the stop location problem (SL)
(also called station location problem) have been considered in
the literature. In order to find ‘good’ locations for new stops,
several objective functions are possible. One of the most
frequently discussed goals is to minimize the number of stops
such that each demand point is covered, that is, it is within a
tolerable distance from at least one stop. The maximal distance
r that a passenger is willing to tolerate is called covering radius.
For bus stops a covering radius of 400m is common. In rail
transportation, the covering radius is larger, often 2 km are used.
In the literature, discrete SLs have been introduced in

Gleason (1975) and considered in Murray et al (1998); Murray
(2001); Laporte et al (2002); Murray (2003); Wu and Murray

(2005), see also references therein. In these papers, a finite set of
potential stops is given. The goal is to choose a minimal number
of stops from this set such that each demand point is covered.
In contrast to this discrete setting, Hamacher et al (2001) are the
first to allow a continuous set of possible locations for the stops,
for instance, all points on the current bus routes or railway
tracks. This is motivated by a real-world application within a
project with the largest German rail company (Deutsche Bahn).
The authors consider the trade-off between the positive and
negative effects of stops. The negative effect of longer passen-
gers’ traveling times due to additional stops is compared with
the positive effect of shorter access times. Based on this
application, the continuous SL has also been treated theoreti-
cally in the literature. The goal is to locate a minimal number of
stops along railway lines to cover a set of given demand points
in the plane. Variants of this problem have been studied in
Kranakis et al (2003); Schöbel (2005); Schöbel (2006); Schöbel
et al (2009). The problem has been solved for the case of two
intersecting lines, see Mammana et al (2004). Algorithmic
approaches for solving the underlying covering problem have
been studied in Mecke and Wagner (2004); Ruf and Schöbel
(2004). Complexity and approximation issues have been pre-
sented in Mecke et al (2006).
A different objective function is to minimize the sum of

distances from the passengers to the public transportation
system, that is, the sum of the distances between the demand
points and their closest stops, see Murray and Wu (2003);
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Poetranto et al (2009). Recently, covering a set of OD-pairs
with a given number of stops has been studied, see, for
example, Körner et al (2014) and references therein.
Research done so far mostly deals with minimizing the

number of new stops. This can be seen as a rough approxima-
tion of the passengers’ traveling time, namely adding a fixed
time penalty (often assumed to be 2min) for each stop, see
Schöbel et al (2009). Since trains have a long acceleration and
deceleration phase such an approximation is unrealistic in
practice, in particular in metropolitan and regional transporta-
tion networks. In this paper we do not minimize the number of
new stops but consider SLs minimizing the passengers’ travel-
ing time while taking the realistic vehicles’ driving times
including acceleration and deceleration into account. Note that
we implicitly assume that there is no interference with other
transportation modes that limits the speed of the vehicles, but
that the trains can accelerate to their planned cruising speed
without any restriction.
The remainder of the paper is structured as follows. We

introduce the realistic driving time function and the SL based on
this function in Section 2. In Section 3 we compare our new
model with the model from Schöbel et al (2009). We derive a
finite dominating set in Section 4. Approaches for solving our
new model are given in Section 5. Its complexity is analyzed
and two different integer programming formulations are given.
Moreover, we show that the problem along one single line is
polynomially solvable. In Section 6 we present a numerical
study with numerical results on the quality and solvability of
our new model.

2. Models for continuous stop location

In this section we first repeat the continuous stop location model
common in the literature: Cover all demand points with a
minimal number of new stops. We then introduce our new
objective function in which we minimize the traveling time of
the passengers instead of the number of new stops.

Basic definitions: Locating stops along the edges of a
network

The continuous SL has been treated in the literature. We repeat
its basic definitions.
LetG= (V, E) be a given railway network with existing stops

V and direct connections E between these stops. For each edge
e= (i, j)∈E an edge length de⩾ 0 and a number of passengers
we⩾ 0 traveling along edge e is given.
A point in G is given as s= (e, x)∈ e, that is, it is defined by

the edge e= (i, j) and its distance d(i, s)= x to the start vertex
of e. The distance from x to the end vertex of e hence is
d(s, j)= de− x, 0⩽ x⩽ de. Note that i= (e, 0) and j= (e, de). The
set of points ofG is denoted as S. The set of points between two
points s1= (e, x1) and s2= (e, x2) on the same edge e is denoted
as [s1, s2]= {(e, x): x1⩽ x⩽ x2}.

A new stop s in the network may be any point s ¼
ðe; xÞ 2 S. In the continuous SL we want to identify a set of
points in S as new stops, see Figure 1 as an example of a
network with six existing and four new stops.

The constraints: Covering all demand points

As in the common models in the literature we require that all
(potential) passengers live close enough to at least one stop. To
this end, we assume that a finite set P � R2 of demand points
is given, that the railway network G= (V, E) is embedded in the
plane and that the access times from the demand points to the
railway network can be measured by a distance function d:

R2 ´R2 ! R being derived from a norm ||⋅||, that is,
dðx; yÞ ¼ y - xk k;

where for e= (i, j) we have de= d(i, j).

Definition 2.1 Let a covering radius r⩾ 0 be given. For a set
S � S and a set of demand points P we define: A demand
point p 2 P is covered by S if

dðp; sÞ⩽ r for some s 2 S:

The cover of S is given as

coverðSÞ ¼ p 2 P : dðp; sÞ⩽ r for some s 2 Sf g:
If coverðSÞ ¼ P we say that P is covered by S.
The goal is to find a set of stops S � S such that all demand

points are covered, that is, with coverðS∪VÞ ¼ P.
Since we assumed that all elements of V are stops, demand

points p, which are covered by vertices v∈V, need not be
considered. We hence may assume that

P � R2 n coverðVÞ: (1)

The SL in the literature: Minimizing the number of new stops

In the literature, the SL has been considered: One looks for a set
of stops S* � S with minimal size covering all demand points:

(SL) Let G= (V, E) be a graph and a finite set of points P �
R2 be given. Find a subset S* � S, such that coverðS*Þ ¼ P
and |S*| is minimized.

1 2

3

4

5

6

Figure 1 Locating 4 new stops on a network G= (V, E).
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Our new objective function: Minimizing the passengers’
traveling times

In the SLs considered in the literature so far, the traveling times
for passengers due to new stops can be estimated by adding a
penalty timepen for every stop to be located. This is an exact
estimate if the distance between two stops is larger than the
distance needed for acceleration and deceleration, and if timepen
gives the complete loss of vehicles’ driving time resulting from
the additional stop, that is, the loss resulting from waiting t min
at the stop to allow passengers to board and alight and the loss
resulting from decelerating and accelerating instead of going by
full speed. As an example, timepen is estimated as 2min for
German regional trains (see Hamacher et al, 2001). However,
since trains accelerate slowly, this estimate is not realistic if the
distance between two stops is rather short.
In order to consider acceleration and deceleration in SLs we

first introduce a function describing the driving time of a train
between two consecutive stops. This function depends on the
distance d between those two consecutive stops. It is a simple
consequence from Newton’s laws of motion and has been used,
for example, in Kolesar et al (1975); Vuchic (1981); Drezner
et al (2009).

Lemma 2.2 Let a maximum cruising speed v0> 0, an accel-
eration of a0> 0 and a deceleration of b0> 0 of a vehicle
be given. Then the vehicles’ driving time for a distance d
between two consecutive stops is given as

TðdÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ða0 + b0Þ

a0b0
d

r
if d⩽ dmax

v0;a0;b0

d

v0
+

v0
2a0

+
v0
2b0

if d⩾ dmax
v0;a0;b0

8>>><
>>>:
where dmax

v0;a0;b0
¼ v20

2a0
+
v20
2b0

In Kolesar et al (1975) the driving time function for the case
a0= b0 is used and its practical relevance is analyzed for fire
engines in New York City.
Note that dmax

v0;a0;b0
is the point where the driving time function

turns from a square root behavior to a linear behavior. The
shape and exact values of the function can be easily calculated;
its main properties can be verified straightforwardly:

Lemma 2.3 T(d) is continuous, differentiable, concave,
subadditive and monotonically increasing. Furthermore,
for any d we haveffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2ða0 + b0Þ
a0b0Þd

s
⩽ d

v0
+

v0
2a0

+
v0
2b0

:

A proof of these properties can be found, for example, in
Drezner et al (2009).
We can now derive the passengers’ traveling times, which

depend on the new stop set S � S to be located. In order to do

so, we need to refine the railway network according to the new
stop set S. This is formalized next.
Given a finite set S � S of points of G, every set

Se ¼ S\ e ¼ fs1; ¼ ; spg � e

of points on e= (i, j) can be naturally ordered along the edge e
such that d(s1, i)⩽…⩽ d(sp, i), that is, ‘from left to right’. Let
⩽ e denote this ordering. Adding the p= |Se| points of Se as new
stops to the edge e= (i, j) splits the edge e into |Se|+1 subedges

E′eðSeÞ ¼ fði; s1Þ; ðs1; s2Þ; ¼ ; ðsp; jÞg:
Defining

E′ðSÞ ¼
[
e2E

E′eðSeÞ (2)

we receive a new network (V∪ S, E′(S)) which is a subdivision
of the given network G= (V,E) (see Figure 2). Note that every
edge e′∈E ′(S) can be represented as e′= ((e, xi), (e, xj)), that is,
it belongs to one unique edge e∈E. For an edge e′= ((e, xi),
(e, xj))∈E′(S) we define:

● its length as de′= |xj− xi|,
● the number of passengers traveling along edge e′ as we′=we.

Given a set S of points on the graph G, we can finally define the
passengers’ traveling time function as

gðSÞ :¼
X
e2E

we Sej jt +
X

e02E0
eðSeÞ

Tðde0 Þ
0
@

1
A

¼
X
e2E

we Sej jt +
X

e02E0ðSÞ
we0Tðde0 Þ: ð3Þ

Note that this function depends on the parameters v0> 0,
a0> 0 and b0> 0, which model the vehicles’ behavior in the
vehicles’ driving time function T.
In this formula, we sum over the traveling times on all edges.

The first term, |Se| t, refers to the time that is given by stopping
tmin at every additional stop on edge e∈E. Note that the
stopping times at the already existing stops i∈V are indepen-
dent of the location of the new stops and hence neglected
in the formula. The second term,

P
e02E0

eðSeÞ Tðde0 Þ, accounts for
the vehicles’ driving time on edge e including acceleration and
deceleration at every new stop in Se. Both values are multi-
plied by the number of passengers we on edge e to obtain the

1 2
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Figure 2 The new network (V∪ S, E′(S)) with 4 new stops.
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passengers’ traveling time along this edge. The additional
traveling time for the passengers is given as

f ðSÞ ¼ gðSÞ - gð∅Þ:
In the case that no new stop is built along an edge e∈E we

have that Se=∅ and E′e(Se)= {e} and hence obtain

Sej jt +
X

e02E0
eðSeÞ

Tðde0 Þ ¼ TðdeÞ:

The SL minimizing passengers’ traveling time

We summarize our new model: cover all demand points with a
set of stops S such that the passengers’ traveling time function g
(S) is minimal:

(SL*) Let G= (V, E) be a graph with edge weights we for all
e∈E, P � R2 be a finite set of points, and t⩾ 0. Moreover, let
v0> 0, a0> 0 and b0> 0 be the parameters for the vehicles’
driving time. Find a subset S* � S, such that coverðS*Þ ¼ P
and g(S*) is minimized.

3. Comparing (SL) and (SL*)

(SL) minimizes the number of new stops while (SL*) considers
the traveling times for the passengers. We start by showing that
these may have different optimal solutions: Our example shows
a case in which the passengers’ traveling time can be reduced
by building two stops instead of only one.

Example 3.1 In Figure 3 two demand points p1 and p2 have
to be covered by stops on e= (v1, v2). As indicated in the
figure, d(p1, v1) and d(p2, v2) is only a little bit larger than
the covering radius r, and both demand points can be
covered from the midpoint of the edge e. For this example
let we= 1.
In order to minimize the number of stops it is sufficient to
build only one stop, namely the midpoint of e, s2. It means,
S= {s2} is an optimal solution to (SL). We compare the

solution provided by S with that of ~S ¼ fs1; s3g, where s1
and s3 are the leftmost and rightmost points on e from
which we can cover p1 and p2, respectively. Given
some ε<dmaxv0;a0;b0

the points s1, s2, and s3 can be con-

structed such that d(v1, s1)= d(v2, s3)= ε and such that
dðv1; s2Þ; dðs2; v2Þ⩾ dmax

v0;a0;b0
.

Then the passengers’ traveling times can be computed as

gðSÞ ¼ t + Tðdðv1; s2ÞÞ +Tðdðs2; v2ÞÞ ¼ t + de
v0
+ v0

a0
+ v0

b0

gð~SÞ ¼ 2t +Tðdðv1; s1ÞÞ + Tðdðs1; s3ÞÞ +Tðdðs3; v2ÞÞ

¼ 2t + 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ða0 + b0Þ

a0b0
ε

q
+ de - 2ε

v0
+ v0

2a0
+ v0

2b0

and by letting ε tend to 0, we see that the relation between

a0, b0, v0 and t determines whether gð~SÞ<gðSÞ. We obtain

that gð~SÞ<gðSÞ if ðv0=2a0Þ + ðv0=2b0Þ>t, that is, if break-
ing and accelerating takes longer than halting.
Even more, examples of the same pattern can be con-
structed, which show that the number of stops in an
optimal solution to (SL*) can differ by an arbitrarily large
number from the number of stops in an optimal solution
to (SL).

It is trivial that in (SL) more stops increase the value of the
objective function. The previous example shows that this is not
the case for (SL*), the objective function g is better for the two
stops s1 and s3 as for the single stop s2. However, adding an
additional stop to a set of stops S always worsens the objective
function even in (SL*):

Lemma 3.2 Let S1⊆ S2 be two sets of points. Then g(S1)⩽
g(S2).

Proof We show that adding a single new stop increases
the traveling time, that is, that g(S1)⩽ g(S2) for S2= S1∪
{s}. If s∈ S1 there is nothing to show. Hence, let s∉ S1,
and let s= (e, x) for some edge e= (i, j)∈E. Clearly,
S1e
�� �� ¼ S1\ e

�� ��⩽ S2\ e
�� �� ¼ S2e

�� ��. Moreover, let sa=
(e, xa)⩽ e s ⩽ e sb = (e, xb) for sa; sb 2 S1e ∪ fi; jg being
the neighbors of s in Se

1. Then we have

Tðxb - xaÞ⩽ Tðxb - xÞ + Tðx - xaÞ
due to the subadditivity of T (see Lemma 2.3), and since
we⩾ 0 the result follows. □

In the next lemma we show that the two models are
equivalent if we require a minimal distance of dmax

v0;a0;b0
between

any two new stops and between any new stop and an existing
stop v∈V. It means that the distance between any two stops is
long enough such that a train always reaches the maximal
cruising speed.

Lemma 3.3 (SL*) with we= 1 for all e∈E and (SL)
are equivalent if both models have the additional
constraints

dðs; s′Þ⩾ dmax
v0;a0;b0

for all s; s′ 2 S

dðs; vÞ⩾ dmax
v0;a0;b0

for all s 2 S; v 2 V :

p1

p2

p1

p2

v1 s1 s2 s3 v2

Figure 3 Example in which an optimal solution to (SL*) has
more stops than an optimal solution to (SL).
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Proof We compute the objective function g using the
assumptions of the lemma and obtain

gðSÞ ¼ t
X
e2E

Sej j +
X
e2E

X
e02E0

eðSeÞ
Tðde0 Þ

¼ t Sj j +
X
e2E

X
e02E0

eðSeÞ

de0
v0
+ v0

2a0
+ v0

2b0

¼ t Sj j +
X
e2E

de
v0
+
X
e2E

ð Sej j+ 1Þ v0
2a0

+ v0
2b0

� �

¼ t + v0
2a0

+ v0
2b0

� �
Sj j+ constant;

that is, minimizing g(S) is equivalent to minimizing the
number |S| of new stops. □

In Theorem 4.7 in Section 4.2 we will provide a special case
in which the additional constraints of the previous lemma are
always satisfied, that is, in which (SL) and (SL*) are equivalent.
Note that a numerical comparison between the solutions

provided by (SL) and those provided by (SL*) will be presented
within a case study in Section 6.

4. Feasibility and a finite candidate set for (SL*)

In this section we analyze the problem (SL*). We discuss its
feasibility and provide a finite candidate set for (SL*). Let us
start with the feasibility of (SL*).

4.1. Feasibility

(SL*) need not be feasible, but if it is it admits a finite solution
whose objective value is bounded.

Lemma 4.1

● (SL*) has a feasible solution if and only if
coverðSÞ ¼ P.

● If (SL*) has a feasible solution, then it also has a finite
solution and

gðS*Þ⩽ max
e2E

we Pj jt + Ej j + Pj jð Þ max
e2E

de
v0

+
v0
2a0

+
v0
2b0

� �� �

Proof The first part of the lemma is obvious. For the second
part, let (SL*) be feasible. Then there exists a point sp 2 S
such that d(p, sp)⩽ r for every demand point p 2 P.
Choose S :¼ fsp : p 2 Pg as a feasible solution, ie
Sj j⩽ Pj j. Each stop s∈ S adds at most one new edge to
E′(S), hence E0ðSÞj j⩽ Ej j + Pj j. Let e′= (i, j)∈E′(S) be a
new edge with i ¼ ðe; xiÞ; j ¼ ðe; xjÞ for some e 2 E. Then
we estimate de0 ⩽ de ⩽maxe2E de, and since T is monotone
we obtain

Tðde0 Þ⩽ max
e2E

TðdeÞ⩽ max
e2E

de
v0

+
v0
2a0

+
v0
2b0

;

where the second inequality holds due to Lemma 2.3.
Hence,

gðS*Þ⩽ gðSÞ⩽ max
e2E

we

X
e2E

Sej jt +
X

e02E0ðSeÞ
Tðde0 Þ

0
@

1
A

⩽ max
e2E

we Pj jt + Ej j + Pj jð Þ max
e2E

de
v0

+
v0
2a0

+
v0
2b0

� �� �

and the result follows. □

4.2. A finite dominating set for (SL*)

In the following we show that (SL*) can be reduced to a
discrete problem by identifying a finite dominating set, that is, a
finite set of candidates Scand � S, for which we know that it
contains an optimal solution S* if the problem is feasible. Such
a finite dominating set will enable us to derive an IP formulation
in Section 5.2. It turns out that we can use the same finite
dominating set which has been used as candidate set for solving
(SL) (see Schöbel et al, 2009). Throughout this section, let us
assume that (SL*) is feasible.
For an edge e= (i, j)∈E we define

TeðpÞ ¼ fs 2 e : dðp; sÞ⩽ rg
as the set of all points on the edge e � S that can be used to
cover demand point p.
Since TeðpÞ ¼ e\fx 2 R2 : dðp; xÞ⩽ rg is the intersec-

tion of two convex sets, and contained in e, it turns out to be a
line segment itself. This observation is due to Schöbel et al
(2009).

Lemma 4.2 (Schöbel et al, 2009) For each demand point p 2
R2 the set Te(p) is either empty or an interval contained in
edge e.

Let f ep ; l
e
p denote the endpoints of the interval T

e(p) We write

½f ep ; lep� ¼ TeðpÞ. For each edge e= (i, j) we define

Se
cand :¼

[
p2P

ff ep ; lepg∪ fi; jg;

which can be ordered along the edge e with respect to ⩽ e. Let
the resulting set be given as Se

cand ¼ fs0; s1; ¼ ; sNeg. In the
following we show that

Scand ¼
[
e2E

Se
cand

is a finite dominating set for (SL*).
From Schöbel et al (2009) we know that moving a point

s 2 S until it reaches an element of Scand does not decrease
cover({s}):

Lemma 4.3 (Schöbel et al, 2009) Let s∈ e for an edge e of E,
and let sj; sj + 1 2 Scand be two consecutive elements of the
finite dominating set with sj< e s< e sj+1. Then

coverðfsgÞ � coverðfsjgÞ \ coverðfsj + 1gÞ;
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in particular, the cover of s does not decrease when
moving s to sj or to sj+ 1.

Now we are able to prove that Scand ¼
S

e2E Se
cand is, indeed,

a finite dominating set for (SL*).

Theorem 4.4 Either (SL*) is infeasible, or there exists an
optimal solution S* � Scand nV .

Proof Let S* � S
e2E;p2P TeðpÞ be a feasible solution.

Assume that S* � Scand does not hold. Our goal is to
replace each ~s 2 S* nScand by a point in Scand without
loosing feasibility and without worsening the objective
function. To this end, take some ~s 2 S* nScand. If ~s 2 V
there is nothing to show. Otherwise ~s ¼ ðe; xÞ 2 E with
0< x< de. Now find the following points on edge e:

● sj ¼ ðe; xjÞ; sj + 1 ¼ ðe; xj + 1Þ 2 Scand with sj<e~s<esj + 1
for two consecutive elements of Se

cand (which exist on
e), and

● moreover, find a point sleft∈ e such that sleft∈ (S* ∪V)∩
e, sleft <e~s and no other point s′∈ (S* ∪V)∩ e exists
with sleft < e s′< e~s.

Analogously, find sright∈ e such that sright∈ (S* ∪V)∩ e,
~s< e~sright and no other point s′∈ (S* ∪V)∩ e exists with
~s< e s0 < e sright.

We investigate the objective function if we move ~s. For all
s= (e, x) with sleft< e s< e sright the objective function
hðxÞ :¼ gðS n~s∪ fðe; xÞgÞ is given as

hðxÞ ¼ constant +we Tðx - xleftÞ +Tðxright - xÞ
� 	

where the constant part is independent of the choice of x in
s= (e, x), since x only influences the subedges (sleft, s) and
(s, sright) and leaves all other parts of the objective function
untouched.
We hence have the following two properties:

(P1) Since the composition of a concave and a linear
function is concave, and the sum of two concave functions
is also concave, we obtain that h(x) is concave in x on the
segment between sleft and sright.

(P2) From Lemma 4.3 we furthermore know that
coverðfsgÞ � coverðf~sgÞ for all s= (e, x) between sj and
sj+1, so we can shift ~s between si and si+1 without loosing
feasibility.
Hence, due to the concavity (see (P1)) of h, the minimiza-
tion problem

min hðxÞ ¼ we Tðx - xleftÞ + Tðxright - xÞ
� 	

:



maxfxleft; xjg⩽ x⩽minfxright; xj + 1g
�

has an optimal solution

x* 2 maxfxleft; xjg;minfxright; xj + 1g

 �

which is feasible for (SL*), see (P2).

● In case that x*= xj or x*= xj+1 we may replace ~s by s ¼
ðe; x*Þ 2 Scand and hence obtain a feasible solution with
the same objective value.

● In case that x*= xleft or x*= xright we may delete ~s since
the new solution is still feasible and improve the same
objective value.

In both cases, we have reduced the number of points in
S* nScand. Proceeding with the remaining points of S*,
which do not belong to Scand, finally yields a feasible
solution that is completely contained in Scand and has the
same (or a better) objective value as S*.
In the proof we added the existing stops V to Scand .
This has only been done for technical reasons. Since
we know that no optimal solution contains a stop from
V (since we assumed in (1) that P � R2 n coverðVÞ)
we can also delete V from Scand. This finally finishes
the proof. □

Remark 4.5 Note that the proof shows more than stated in the
theorem, namely: For every feasible solution S′ � S to
(SL*) there exists a solution S � Scand, which is also
feasible for (SL*) and satisfies g(S)⩽ g(S′).

We hence have shown that (SL*) is equivalent to the
following discrete problem:

(SL*-discrete) Let G= (V, E) be a graph with edge weights we

for all e∈E, P � R2 be a finite set of points, and t⩾ 0.
Moreover, let v0> 0, a0> 0 and b0> 0 be the parameters for the
vehicles’ driving time. Find a subset S* � Scand nV , such that
coverðS*Þ ¼ P and g(S*) is minimized.

We remark that there can be at most two candidates for
each demand point on every edge, hence the total number of
candidates Scandj j is bounded by

Scandj j⩽ 2 Ej j Pj j + Vj j:
Given the finite candidate set Scand we define the candidate

edge set

Ecand ¼fc ¼ ðs; s0Þ : s; s0 2 Scand and

s; s0 2 e for some edge e 2 E and s⩽ es
0g; ð4Þ

and dc as the length of c 2 Ecand. Note that

Ecandj j ¼
X
e2E

Se
cand

�� ��
2

 !
:

From Theorem 4.4 we obtain the following corollary, which
addresses the edges of the refined railway network E′(S*) with
new stops S*, see (2).

Corollary 4.6 If (SL*) is feasible there exists an optimal
solution S* with S* � Scand nV and E0ðS*Þ � Ecand.
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As another consequence of Theorem 4.4 we will present a
case in which (SL) and (SL*) are equivalent (as already
promised in Section 3).

Theorem 4.7 Let dc ⩾ dmax
v0;a0;b0

for all c 2 Ecand, and let we= 1

for all e∈E. Then (SL) and (SL*) are equivalent.

Proof Let S* be an optimal solution to (SL*). Due to Theorem
4.4 we can assume without loss of generality that
S* � Scand nV . From the assumption that dc ⩾ dmax

v0;a0;b0

for all c 2 Ecand we know that

dðs; s0Þ⩾ dmax
v0;a0;b0

for all s; s0 2 S*

dðs; vÞ⩾ dmax
v0;a0;b0

for all s 2 S* and for all v 2 V :

Since we= 1 for all e∈E we can use Lemma 3.3 and
conclude that (SL) and (SL*) are equivalent. □

Theorem 4.4 has several other important consequences that
will be exploited next: First, using the finite candidate set we
can clarify the complexity status of (SL*) (see Section 5.1).
Second, we can use the finite candidate set to derive IP
formulations in Section 5.2. Finally, it also helps to solve the
problem in polynomial time in a special case in Section 5.3.

5. Solving (SL*)

Using the finite candidate set Scand nV we can theoretically
enumerate all potential solutions S � Scand nV . However, this
leads to a number of O 22 Ej j Pj j� 	

different solutions to be tested.
In the following we hence discuss the complexity, IP formula-
tions and a polynomially solvable case of (SL*-discrete).

5.1. Complexity of (SL*)

Having the finite candidate set we can now clarify the complex-
ity status of (SL*).

Theorem 5.1 (SL*) is NP-hard.

Proof To see that (SL*) is NP-hard, we reduce the decision
version of (SL), which is NP-complete according to Schöbel
et al (2009), to the decision version of (SL*). To this end,
we need another result of Schöbel et al (2009) (similar to
Remark 4.5), namely that for every feasible solution S′ � S
for (SL) there exists a solution S � Scand, which is also
feasible for (SL) and satisfies |S|⩽ |S′|. Let an instance of
(SL) be given. We define the following instance of (SL*):

● We leave the network G and the demand points p 2 P
as they are.

● We choose we= 1 for all e∈E.

● For choosing the parameters v0, a0 and b0 we proceed as
follows. We use the finite candidate set Scand for (SL)
and determine m :¼ minfdðs; s′Þ : s; s′ 2 Scand; and s;
s0 2 e for some e 2 Eg as the closest distance between
two candidate locations on the same edge. We then

choose v0, a0, b0 such that dmax
v0;a0;b0

⩽m. (This is possible

since dmaxv0;a0;b0
! 0 if a0, b0→∞).

We now claim that a solution to (SL) with |S|⩽K exists if
and only if a solution S* to (SL*) exists with

gðS*Þ⩽Kt +
X
e2E

de
v0

+ ð Ej j +KÞ v0
2a0

+
v0
2b0

� �
:

To see this, we reformulate the objective g as follows: If
de0 ⩾ dmax

a0;b0;v0
for all e′∈E′(S) and we= 1 for all e∈E the

objective function of (SL*) becomes

gðSÞ ¼ Sj jt +
X

e02E0ðSÞ

de0

v0
+

v0
2a0

+
v0
2b0

� �

¼ Sj jt + 1
v0

X
e02E0ðSÞ

de0 + E0ðSÞj j v0
2a0

+
v0
2b0

� �

¼ Sj jt + 1
v0

X
e2E

de + E0ðSÞj j v0
2a0

+
v0
2b0

� �
ð5Þ

“⇒ ” Let S be a solution to (SL) with |S|⩽K. Then there
exists a solution S* to (SL) with S* � Scand according to
the result of (Schöbel et al, 2009) mentioned above. S* is
the required solution to (SL*): Clearly, S* is feasible for
(SL*). Furthermore, de0 ⩾m⩾ dmax

a0;b0;v0
for all e′∈E′(S*)

(since S* � Scand), and |E′(S*)|⩽ |E|+K. Hence

gðS*Þ⩽ jKjt +
X
e2E

de
v0

+ ð Ej j +KÞ v0
2a0

+
v0
2b0

� �
:

“⇐ ” Let S* be a solution to (SL*) with

gðS*Þ⩽ jKjt +
X
e2E

de
v0

+ ð Ej j +KÞ v0
2a0

+
v0
2b0

� �
:

From Remark 4.5 we know that there exists S � Scand

with g(S*)= g(S). We show that S is the required solution:
Clearly, S is feasible. Since de0 ⩾m⩾ dmax

a0;b0;v0
for all

e′∈E′(S*) and |E′(S)| = |E|+ |S| we have

Kj jt +
X
e2E

de
v0

+ ð Ej j +KÞ v0
2a0

+
v0
2b0

� �
⩾ gðS*Þ

¼gðSÞ ¼ Sj jt +
X
e2E

de
v0

+ ð Ej j + Sj jÞ v0
2a0

+
v0
2b0

� �

which is equivalent to |S|⩽K. □

As an immediate consequence we obtain:

Corollary 5.2 (SL*-discrete) is NP-hard.

Proof This follows directly from Theorems 5.1 and 4.4. □

5.2. Integer programming formulations for (SL*)

In this section we develop two different IP-formulations for
(SL*) and discuss their performance. Both IP-formulations are
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based on the candidate set developed in Section 4.2. We first
define the covering matrix Acov ¼ ðap; sÞp2P; s2Scand

by

ap; s ¼
1 if p 2 cover sf gð Þ
0 otherwise:

(

Then (SL) can be formulated as a covering problem (see, eg,
Murray, 2001), namely

ðIP-SLÞ min
X

s2Scand

xs (6)

s:t:
X

s2Scand

ap; sxs ⩾ 1 8 p 2 P (7)

x 2 f0; 1gjScandj

where the variables xs have the following meaning:

xs ¼
1 if stop s 2 Scand is built:

0 otherwise:

(

We now develop two IP formulations for (SL*).
To this end, let ⩾ e denote the canonical ordering along edge

e∈E, Ecand be defined as in (4), and let the length dc and T(dc)
be pre-calculated for all c 2 Ecand. Our first—straightforward—
IP formulation of the discrete version of (SL*) is given by a
classical covering formulation in which we additionally require
that all edges between consecutive stops must be built.

ðIP1 -SL*Þ min

X
e2E

we t
X

s 2 Scand

s 2 e

xs +
X

c 2 Ecand

c � e

TðdcÞyc

0
BBBBBBBBBB@

1
CCCCCCCCCCA

(8)

s:t:
X

s2Scand

apsxs ⩾ 1 8 p 2 P (9)

xsi + xsj -
X

s2 si;sj½ �\ Scand

s=2 si;sjf g

xs ⩽ yc + 1

8c ¼ si; sj
� 	 2 Ecand ð10Þ
xs ¼ 1 8 s 2 V (11)

x 2 0; 1f g Scandj j (12)

y 2 0; 1f g Ecandj j (13)

The variables xs have the same meaning as before while the
variables yc for c 2 Ecand have the following interpretation:

yc ¼ ysi;sj ¼
1 if edge c ¼ ðsi; sjÞ 2 Ecand is built:

0 otherwise:

(

Constraint (9) ensures that every demand point is covered as
in (7). Constraints of type (10) ensure that a candidate edge is

considered in the objective function if and only if it is built, that
is, if and only if its two endpoints are stops and no candidate
between the two endpoints is also a stop. Recall that all v∈V are
considered as stops. This is ensured by constraint (11). Finally,
the objective function (8) gives the passengers’ traveling time:

Lemma 5.3 (IP1-SL*) is a correct IP formulation for (SL*).

Proof It is obvious that a solution is only feasible if all
demand points are covered. This is ensured by constraint
(9) of the IP formulation. Furthermore we need to show that
in any optimal solution a candidate edge c is built if and
only if its two endpoints are chosen as stops and there is no
other stop on c, that is, that for c ¼ ðsi; sjÞ 2 Ecand we have:

xsi ¼ 1
xsj ¼ 1 , yc ¼ 1

xsk ¼ 0 8i<k<j
“⇒ ” Suppose xsi ¼ 1, xsj ¼ 1 and xs= 0 for all s 2 ½si; sj�
\ Scand n fsi; sjg. Then 2 ¼ xsi + xsj -

P
s2½si;sj�\Scand

s=2fsi;sjg
xs ⩽ yc

+ 1 (since (10) is satisfied), that is, we conclude that yc= 1.
“⇐ ” Suppose we do not have xsi ¼ 1, xsj ¼ 1 and xsk
¼ 0 for all sk∈ [si, sj] and sk∉ {si, sj}. Then xsi +
xsj -

P
s2½si;sj�\Scand

s=2fsi;sjg
xs ⩽ 1, that is, yc= 0 satisfies (10),

hence, due to optimality yc≠1. □

The second IP-formulation is based on an interpretation of
the problem as a flow problem. It involves less constraints.
In our numerical results we show that it is clearly superior
to (IP1-SL*). The definition of the variables x and y of
the IP-formulation remains the same as in (IP1-SL*). The
IP-formulation (IP2-SL*) is given as

ðIP2 -SL*Þ

min
X
e2E

we t
X

s 2 Scand

s 2 e

xs +
X

c 2 Ecand

c � e

TðdcÞyc

0
BBBBBBBBB@

1
CCCCCCCCCA

(14)

s:t:
X

s2Scand

ap;sxs ⩾ 1 8 p 2 P (15)

X
s<esj

s 2 Se
cand

ys;sj ¼ xsj 8 e 2 E; 8 sj 2 Se
cand (16)

X
si<es

s 2 Se
cand

ysi;s ¼ xsi 8 e 2 E; 8 si 2 Se
cand (17)

xs ¼ 1 8 s 2 V (18)
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x 2 f0; 1g Scandj j (19)

y 2 f0; 1g Ecandj j (20)

Constraints (15) define the covering condition (see (7) in
(IP-SL)). The flow understanding of the problem is expressed in
constraints (16)–(17), which ensure that exactly one candidate
edge is built on either side of a stop s with xs= 1, and no
candidate edge is built, which ends at a stop s with xs= 0.
Finally, as in (IP1-SL*), constraint (18) ensures that all v∈V
are considered as stops.

Lemma 5.4 (IP2-SL*) is a correct IP-formulation for (SL*).

Proof Let (x, y) be a feasible solution to (IP2-SL*). Assuming
x to be fixed we may rewrite constraints (16) and (17) for
every edge e∈E toX

s0<es
s02Se

cand

ys0; s ¼
X
s<es0

s02Se
cand

ys; s0 for all swith xs ¼ 1; and (21)

X
u<es0

s02Se
cand

yu; s0 ¼ 1 (22)

X
s0<ev

s02Se
cand

ys0;v ¼ 1; (23)

that is, the y-variables describe a path passing exactly
through the set of stops s with xs= 1. We now show that a
candidate edge c= (si, sj) is built if and only if its endpoints
si, sj are built and no stop in between si and sj is built.
“⇐ ”: If si and sj are built and no stop between si and sj are
built then X

si<es0
s02Se

cand

ysi;s0 ¼ 1

hence there exists a unique s with ysi;s ¼ 1. If si< e s′< e sj
then from (16) it follows xs′= 1 which is a contradiction to
the assumption that no stop between si and sj is built. If
sj< e s′ then from (21) it follows that there exists a path
from si to v. But since xsj ¼ 1 and (21) there also exists a
path (independent to the si− v-path due to (21)) from sj to v.
This is a contradiction to (23). Hence, s′= sj and c= (si, sj)
is built.
“⇒ ”: We now assume a candidate edge c= (si, sj) is built
and show that, hence, the stops si and sj are built and no
stop between si and sj is built. Since c is built, from (16) we
know that si is built and from (17) we know that sj is built.
From (21) it follows that sj and v are connected by a path.
Assume there was any ~s such that si < e~s< e sj and x~s ¼ 1.
From (21) we then know that there is also a path from~s to v
(independent to the si− v-path due to (21)). Hence, we have
a contradiction to (23) as the si− v-path and the ~s - v-path
can not exist at the same time.
As before, (15) ensures that all demand points are
covered. □

Note that any feasible solution to (IP2-SL*) consists of a set of
paths in the network ðScand; EcandÞ, namely exactly one path
from u to v for any edge e= (u, v) in the original networkG= (V,
E). Hence, (IP2-SL*) is similar to the shortest covering path
problem as defined in Current et al (1994). The differences are
that the we seek for a set of shortest paths—one on each edge—
such that the covering constraints are satisfied while in Current
et al (1994) one single shortest path is sought. Another difference
is that the demand points to be covered are contained in the plane
and are not nodes of the network (as in Current et al, 1994); that
is, in our version we combine the discrete nature of choosing a
potential solution with the geometric aspect of covering.
We now compare the sizes of the two different IP-

formulations. The number of variables is the same for both
formulations, namely Scandj j + Ecandj j, but the number of
constraints varies quite substantially. In the first formulation
(IP1-SL*) we have Pj j + Ecandj j constraints, which is of order

Oð Scandj j2Þ while in (IP2-SL*) we have Pj j + 2 Scandj j + 2 Vj j
constraints, that is, of linear order O Scandj jð Þ only.

5.3. The special case (Line-SL*): Covering all demand
points from a line

In this section we consider a special case in which (SL*) is
polynomially solvable. Namely, we consider the problem (SL*)
on a line, that is, V= {u, v} and E= {e}. To refer to the line
structure of the underlying network G we call this problem
(Line-SL*).

(Line-SL*) LetG= ({u, v}, {e}) be a (single-edge) graph,P �
R2 be a finite set of points and t⩾ 0. Moreover, let v0> 0, a0> 0
and b0> 0 be the parameters for the vehicles’ driving time.
Find a subset S* 2 S, such that cover ðS*Þ ¼ P and g(S*) is
minimized.

Note thatG only consists of one edge and hence there is only
one weight we appearing in the objective function which in
consequence has no effect on the solution and hence can be
neglected.
As before, we will use the finite dominating set Scand instead

of the set of all points S. Since only one edge is considered we
can assume Scand to be ordered with respect to ⩽ e. This order
has a nice property (see Hamacher et al, 2001; Schöbel, 2006),
namely, in the covering matrix Acov the ones appear consecu-
tively in every row. This property is called consecutive-ones
property (C1P). It ensures that (SL) can be solved in poly-
nomial time by linear programming. In Hamacher et al (2001)
and Schöbel (2006) a more efficient shortest path algorithm
on a special graph is designed for solving (SL) on a line.
In the following we transfer these results to our problem (Line-
SL*), that is, to the case of minimizing the passengers’
traveling times.
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Let us define

lp :¼minfj : sj 2 Scand; ap;sj ¼ 1g for p 2 P;

rp : ¼maxfj : sj 2 Scand; ap;sj ¼ 1g for p 2 P:
Recall that a matrix Acov with (C1P) is called strictly

monotone if lp1< � � �< lpm and rp1< � � �< rpm hold.

Lemma 5.5 (Schöbel, 2006) Let Acov define the covering
matrix for an instance of (Line-SL*), then there exists an

equivalent (Line-SL*) problem with covering matrix A
cov
,

such that A
cov

is a strictly monotone matrix.

Thus, we can assume Acov to be given as a strictly monotone
matrix. Implicitly, this gives an ordering of P according to
the ordering of the rows in the strictly monotone matrix. From
the ordering also the minimum and the maximum are well
defined. We will assume that P ¼ fp1; ¼ ; pmg is given in
this ordering. Let us now define

ls :¼minfi : pi 2 P; api;s ¼ 1g for s 2 Scand;

rs :¼maxfi : pi 2 P; api;s ¼ 1g for s 2 Scand:

Now, we are able to construct a graphN ¼ ðV;AÞ on which
we will later solve a shortest path problem. Let

V :¼ Scand:

Note that u; v 2 Scand. Furthermore, let

A :¼fðsj; skÞ : sj<sk and lsk ⩽ rsj + 1g

∪ fðu; sjÞ : lsj ¼ 1g∪ fð j; vÞ : rsj ¼ mg:
Finally, we define costs for each edge a ¼ ðsj; skÞ 2 A as

follows

costsj;sk ¼
T dðsj; skÞ
� 	

if sk ¼ v

t +T dðsj; skÞ
� 	

else:

(

N is a directed cycle-free graph. Let P be any u− v− path inN .
Then P � Scand is uniquely described by its nodes, and its
costs are given by cost(P)=∑a∈P costa. Based on this notation
the following theorem holds.

Theorem 5.6 (Schöbel, 2006) Let P � V. Then cover ðPÞ ¼
P if and only if P is an u− v− path inN .

With these results we can now provide a polynomial
algorithm for solving (Line-SL*).

Theorem 5.7 (Line-SL*) is solvable in polynomial time.

Proof The problem (Line-SL*) is solved as a shortest u− v−
path problem on the respective graph N . Let P ¼
fu; sj1 ; ¼ ; sjp ; vg be an optimal solution of the shortest
u− v−path problem in N . From Theorem 5.6 we obtain
that P fulfills the covering constraint and thus is a feasible
solution to (Line-SL*). We have to show that the solution is

also optimal for (Line-SL*). Suppose no, that is, there exists
a solution P* ¼ fu; s*j1 ; ¼ ; s*jq ; vg for (Line-SL*) with

gðPÞ>gðP*Þ:
Again using Theorem 5.6 we may interpret this solution as
u− v−path inN . This means

CostðPÞ ¼ costu;sj1 +
Xp - 1
i¼1

costsji ;sji+ 1 + costsjp ;v

¼ pt +Tðdðu; sj1ÞÞ +
Xp - 1
i¼1

Tðdðsji ; sji + 1ÞÞ

+Tðdðsjp ; vÞÞ

>qt + Tðdðu; s*j1ÞÞ +
Xq - 1
i¼1

Tðdðs*ji ; s*ji+ 1ÞÞ

+Tðdðs*jq ; vÞÞ

¼ costu;s*j1
+
Xq - 1
i¼1

costs*ji ;s
*
ji + 1

+ costs*jq ;v

¼CostðP*Þ

Hence, P* defines a shorter u− v− path in N which is a
contradiction to the optimality of P. The complexity apply-
ing Dijkstra’s shortest path algorithm results in
O Pj jlog Pj jð Þ, where |Scand| and jP j are of the same order
since we consider a linear graph G. □

We conclude that simplifications of the general problem turn
out to be solvable in polynomial time, while (SL*) is NP-hard
due to Theorem 5.1.

6. Experiments

Environment. All our experiments were conducted on a PCwith
24 six-core Intel Xenon X5650 Processor running at 2.67GHz
with 12MB cache and a main memory of 94GB. The IPs were
solved using Xpress Optimizer v27.01.02. The running time
limit of the solver was set to 300 s.
Benchmark sets. The southern part of the existing railway

network of Lower Saxony, Germany, is used as the existing
network G= (V, E). From the same area the 34 largest cities are
considered as demand points if they are not already close
enough to an existing stop (as assumed in (1)). This is the
setting for the first benchmark set (LoSa=Lower Saxony).
In our second benchmark set we removed existing stops

which have only two adjacent edges in order to obtain another
set (LoSaRe=Lower Saxony Reduced) with longer tracks and
more uncovered demand points. This set has higher complexity.
The values for the vehicles’ driving times are chosen

according to realistic properties, which are an acceleration and
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deceleration of 0.6m/s2, a cruising speed of 160 km/h and a
stopping time t of 30 s. For a set of different radii (r∈ {1500,
2000, 2500 ,…, 15000} (in meters)), we constructed instances
containing all demand points which can be covered by r, that is,

fp 2 P n coverðVÞ : there exists s 2 S : dðp; sÞ⩽ rg:
This means that P increases with the radius.
Setup. The quality and computation times when solving the

IP formulations for (SL) and for (SL*) are compared. To this
end, for each of the benchmark sets and every radius r∈ {1500,
2000, 2500 ,…, 15000} both models have been solved by
Xpress Optimizer. Then for each run the quality of the solution
is measured by evaluating the passengers’ traveling time and
the number of stops.
If it is not explicitly stated, the IP-formulation (IP2-SL*) is

used to solve (SL*) since it turned out to be more efficient, see
Section 6.1.
Results. Table 1 summarizes our results calculating the

average values of the additional traveling time for all instances.
With additional traveling time for a solution S we mean the
passengers traveling time g(S) reduced by the traveling time
which is not avoidable, that is, the traveling time g(∅) obtained
when no additional stop is established:

f ðSÞ ¼ gðSÞ - gð∅Þ:
Note that minimizing the traveling time g(S) and minimizing
the additional traveling time f(S) are equivalent problems, since
g(∅) is a constant.

6.1. Computing times for solving (SL) and (SL*)

The generation of instances for different radii also allows to
study the computation time for the IP-formulation of (SL) and
for the two IP formulations (IP1-SL*) and (IP2-SL*) for (SL*).
Note that all the IP formulations are based on the finite
candidate set Scand.
In Figure 4 (lower part) we depict that the number of such

candidates increases (linearly) with increasing radius. However,
even a linear increase in Scandj j leads to an exponential increase
of the number of possible solutions S � Scand. We hence
expect an exponential increase of the running time. Such an
exponential increase is shown in the upper part of Figure 4, but
only for solving (SL*) with the first IP formulation (IP1-SL*).

(Since the maximal running time is set to 300 s we have a flat
part at the end of the graph.)
The figure also clearly shows that the IP-formulations for

(SL) and our second IP formulation (IP2-SL*) for (SL*) are
good enough to be still able to solve the problem of bigger sizes
in the same time (about 2 s). We conclude that (IP2-SL*) is
much better than (IP1-SL*).
This justifies using the solutions of (IP2-SL*) for comparing

the quality of the solutions in the following tests.

6.2. Comparison of objective function values of (SL) and
(SL*)

(SL) minimizes the number of new stops and (SL*) minimizes
the passengers’ traveling time.We tested on our two benchmark
sets (LoSa) and (LoSaRe) how big these differences are. The
results are depicted in Figure 5.
We see that the solutions of (SL) and (SL*) in terms of the

number of stops do not vary at all while in terms of the resulting
additional passengers’ traveling times (SL*) performs better
than (SL).

● On the benchmark set (LoSa) the average additional passen-
gers’ traveling time can be reduced by 13 s, which amounts
to an improvement of about 5.6% by using (SL*) instead of
(SL). The maximal improvement on this instance reduces the
additional passengers’ traveling time by about 75 s, which
are about 16.6%.

● On the instance (LoSaRe) we obtain an average time saving
of 21 s, which results in an improvement of 2.1%. The
maximal improvement achieves to save 78 s, which means
an improvement of 5.1%. We conclude that on real-world
instances (SL*) is not worse in the number of new stops but
improves the additional passengers’ traveling time.

Note that in terms of the absolute time saving the model (SL*)
performs better on the network with longer edges, first because

Table 1 Average values of the additional traveling time for the
solutions of (SL) and (SL*)

(SL) (SL*)

Instance (LoSa):
Passengers’ traveling time f(S) 243.6 230.5
Number of stops |S| 35.9 35.9

Instance (LoSaRe):
Passengers’ traveling time f(S) 1019.6 998.6
Number of stops |S| 17.6 17.6

Figure 4 Comparing computing time and number of candidates.
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in (LoSaRe) more demand points have to be covered (less are
uncovered), so more new stops are needed. Second, longer
edges grant more freedom to do a bad allocation of the stops in
terms of the traveling time (since the network structure remains
the same for (LoSa) and (LoSaRe)).
We summarize that the relative improvement is higher on

(LoSa) while the absolute improvement is larger on (LoSaRe).
We also looked at some other properties of our solutions.

Dependence on the covering radius. There is another inter-
esting observation to be mentioned when looking at Figure 5:
We generated a new instance for every radius r (as described
in the benchmark set), which consists of all demand points that
can potentially be covered by some new stop. The effect of the
radius on the number of new stops and on the traveling time
cannot be clearly predicted since we have two conflicting
effects: On the one hand, the number of demand points to be
covered increases, we hence may need more stops. On the
other hand, every stop covers more demand points if r is
increased. In our experiments we see that the latter effect is the
dominating one. Although there are instances in which the
number of stops and the passengers’ traveling time increases
with increasing radius, the tendency is that increasing the
radius leads to fewer new stops and less traveling time.

Dependence on acceleration and deceleration. We com-
puted optimal solutions for (SL) and (SL*) on (LoSaRe) for
different values for the acceleration and deceleration. For
simplicity, acceleration and deceleration are assumed to be
equal. As expected, with increasing values of acceleration and
deceleration the traveling time values decrease. The traveling
time function T behaves in a0 and b0 like x − 1, which is of a
similar shape as the traveling time values depicted in Figure 6.
In order to justify Theorem 4.7 we compared the solutions of
(SL) and (SL*) in terms of traveling times as follows: Let

a0= b0 be fixed, then denote by Sa0 an optimal solution to (SL)
and by S*a0 an optimal solution to (SL*) for the specific accel-
eration and deceleration a0. We evaluate the difference of tra-
vel times between these solutions, that is,

hða0Þ :¼ gðSa0Þ - gðS*a0Þ:
Figure 6 shows this function h. We recognize that the gap

between the two traveling time values decreases for increasing
values for acceleration and deceleration. It means that the
smaller the acceleration and deceleration, the higher the
difference between the traveling time values for (SL) and
(SL*), that is, the bigger the error when using (SL) instead of
(SL*). Hence, for smaller acceleration and deceleration values
such as in train transportation it is more desirable to use the
(SL*) model with an accurate computation of the traveling time.

6.3. Summary

From our numerical experiments, we hence conclude

1. (IP2-SL*) is clearly superior to (IP1-SL*).
2. In the experiments, (SL*) leads to the same (minimal)

number of stops as (SL) but improves the additional
traveling time.

3. The difference between (SL*) and (SL) is larger for small
acceleration and deceleration. It means that in bus transpor-
tation one can use the easier model (SL) and expect a good
traveling time while it becomes more important to use (SL*)
in train transportation.

4. Increasing the covering radius leads to fewer new stops and
less traveling time.

7. Conclusion and further research

In this paper we minimized the passengers’ traveling time
function in SLs. We derived a finite dominating set and two IP

Figure 5 Comparing passengers’ traveling time and number of
new stops.

Figure 6 Difference of traveling time values for (IP2-SL*) and
(IP-SL) with different acceleration and deceleration values on
(LoSaRe).
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formulations and showed the applicability of the model on two
different benchmark sets. It turns out that the solutions of (SL*)
slightly outperform the solutions of (SL) with similar computa-
tion time values and with the same (minimal) number of new
stops. Even more we have seen two different IP-formulations
for (SL*) and their performance. Judging from the experiments,
the second of those (IP2-SL*) has a high potential to even solve
complex instances.
Further research on this topic goes into two directions. First,

we assumed that all vertices of the existing network are built as
stops. However, it may be better to close or move some of
these. In order to model this appropriately, an integration with
line planning is necessary.
Second, the traveling time for the passengers could be even

more realistic if OD-pairs are considered. Minimizing an OD-
pair based traveling time leads to a different model and thus
analysis. It would also allow to take congestion into account: if
more passengers are boarding or alighting this leads to larger
stopping times of the trains at the stops. Integrating routing of
passengers into planning problems has only been done rarely,
for example, in Körner et al (2014); Perea et al (2014), whereas
first approaches exist for line planning (see, eg, (Schmidt, 2014;
Schmidt and Schöbel, 2015a), timetabling (Borndörfer et al,
2015; Schmidt and Schöbel, 2015b), or delay management
(Dollevoet et al, 2012; Schmidt, 2013). It is a challenging task
to develop similar integrated approaches also for stop location.
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