

 A

UTHOR C
OPY

A modular architecture for an interactive
real-time simulation and training environment
for satellite on-orbit servicing
Robin Wolff1*, Carsten Preusche2 and Andreas Gerndt1

1Simulation and Software Technology, German Aerospace Center (DLR), Braunschweig, Germany; 2Institute of
Robotics and Mechatronics, German Aerospace Center (DLR), Oberpfaffenhofen-Wessling, Germany

Maintaining or repairing satellites in orbit is a delicate task that requires expert skills. The planning, training and
analysis of on-orbit servicing (OOS) missions performed by astronauts or through remote operation using a robot is
often time consuming and costly. Virtual Reality (VR) enables simulation and training in a flexible and safe
environment. This paper describes an interactive real-time environment that supports a number of OOS tasks within an
immersive VR environment. The system simulates the dynamic and kinematic behaviour of satellite components and
provides photo-realistic visualization of satellite parts and the space environment. It integrates user interaction with
haptic force feedback through a bi-manual haptic human machine interface, as well as simulates and interfaces to a
humanoid robot for tele-operation.In order to provide a realistic experience at interactive frame rates, we propose a
distributed system architecture, where the load of computing the physics simulation, haptic feedback and visualization
of the complex scene is transferred to dedicated machines. The modular architecture is designed to allow the inclusion of
further simulation processes. Several mechanisms for reducing the communication traffic have been implemented. This
paper gives an overview of the system architecture, outlines the software implementation and documents an evaluation
of the real-time performance of our system in detail. We describe how system performance was measured in terms of
simulation timings and distribution load, as well as report on latencies at several stages. Results show that our
distributed system is capable of providing visual and haptic feedback at high frame rates required for user interaction
with end-to-end latencies of less than 8ms and 3ms, respectively.
Journal of Simulation advance online publication, 10 May 2013; doi:10.1057/jos.2013.10

Keywords: man-machine systems; training; distribution

1. Introduction

On-orbit servicing (OOS) is an inter-disciplinary field with

increasing importance for the space industry. Although engi-

neers take extensive care when designing and launching

satellites, system failures do happen. A survey by Ellery et al

(2008) showed that most failures occur during orbit injection

or in the first year of operation, for example when folding

out the solar panel. As space systems are costly, any failure

is damaging, not only for commercial operators, but also

for research missions. Today, almost no satellite is launched

without insurance to cover for failure. However, not only

failure, but also a limited lifetime and an increasing amount

of space debris are motivations for OOS. With a growing

number of satellites orbiting Earth, there is a growing need

for innovative methods to repair failures, to refuel satellites

for extending its lifetime, or to remove disabled and adrift

satellites and other unused parts from orbit in a controlled

and cost-effective way.

A well known example of OOS is the series of NASA

Hubble Space Telescope repair missions, starting in 1993,

where astronauts fixed and replaced parts in several extra

vehicle activities (EVAs). However, manned missions like

this are both expensive and put a high risk to the astronauts

working outside the spacecraft. With the advances in the

robotic field, robotic servicing constitutes an attractive alter-

native. The Canada arm on the International Space Station

(ISS), for example, has frequently demonstrated successful

operation (Currie and Peacock, 2002). Further ongoing

projects and concepts for robotic OOS studies include the

Deutsche Orbitale Servicing Mission (Rupp et al, 2009) with

the goal to demonstrate the capturing of an uncooperative

spacecraft; and the Orbital Life Extension Vehicle (Sellmaier

et al, 2010), a commercial project with the aim to dock

with communication satellites and take over the attitude and

orbit control system for extending the satellite’s lifetime.

Some service robots work in automatic operation modes,

either pre-programmed or (semi)-autonomous. However,

n complex maintenance tasks or in situations where the

*Correspondence: Robin Wolff, Simulation and Software Technology,
German Aerospace Center (DLR), Software for Space Systems and
Interactive Visualization, Lilienthalplatz 7, Brunswick, Lower Saxony
38018, Germany.
E-mail: robin.wolff@dlr.de

Journal of Simulation (2013), 1–14 r 2013 Operational Research Society Ltd. All rights reserved. 1747-7778/13

www.palgrave-journals.com/jos/

 A

UTHOR C
OPY

cause of the failure is unknown and an investigation is

required, the actions cannot be pre-programmed. In such

cases, it is necessary to manually program the service robot

in sequences or to operate the robot directly via a tele-

operation interface. The German Aerospace Center (DLR)

already started in 1993 to study ways and the effects of

operating a robot in space from a ground station in the

Robot Technology Experiment (Hirzinger et al, 1994), and

later in the Robotic Components Verification on the ISS

(ROKVISS) project (Landzettel et al, 2006). In ROKVISS,

for the first time a force feedback joystick has been inte-

grated to the tele-operation control of a robot in space.

Controlling a robot in complex scenarios is not trivial and

usually requires a robot expert or a well-trained person.

However, analysing and repairing a failure in a satellite

can only be done by a satellite expert. Hence, for planning

and performing appropriate repair tasks both satellite and

robot experts have to work closely hand in hand. DLR

developed a human-scale bi-manual haptic interface (Hulin

et al, 2008), enabling the intuitive operation of a humanoid

servicing robot (Ott et al, 2006) in a way where the user

is able to control the robot’s head and hands with the own

head and hands, while seeing the same view as the robot

sees through a head-mounted display (HMD), displaying the

live video of the stereo-camera built into the robot’s head.

The combination of the bi-manual haptic interface and the

humanoid servicing robot creates a tele-presence interface,

with which a satellite expert can control a robot and intui-

tively perform servicing tasks without the direct help of a

robot expert. The setup was used at the International

Aerospace Exhibition – ILA 2010 in Berlin to demonstrate

tele-operation of a service robot in a number of servicing

tasks using a physical test satellite mock-up (see Figure 1).

Training, programming and testing the tele-operation of

robots for OOS tasks may be done in physically based test

beds, such as in Artigas et al (2006) or that shown in Figure 1.

This has the advantage that specific hardware and control

software to be used during the mission can be inte-

grated directly into the test environment. However, certain

components or environmental effects have to be simulated,

which can make the setup complex. Moreover, testing in

a physical environment induces the risk of damage to equip-

ment or even could harm humans. In addition, making cha-

nges to the mock-up is often time consuming and connected

with costs. Virtual reality (VR) offers a cost-effective alter-

native for simulation within a flexible and safe environment,

and has already been used for simulation and training in many

application areas, such as surgery or crane operation training.

This paper presents VR-OOS, a VR environment for

OOS. Our goal is to provide a multi-modal virtual environ-

ment that can be used as a platform for the analysis, training

and programming of OOS tasks, as well as to help to

develop and examine new designs of serviceable satellites

and servicing robots. The environment will be used to train

astronauts in manned servicing missions, as well as to

program, and eventually to tele-operate, service robots in

space in unmanned missions. The challenges are to provide

the accurate real-time simulation of the dynamics of the

satellite components under real conditions, combined with

photo-realistic high-resolution rendering of detailed virtual

objects and environmental effects within an immersive,

haptics-enabled virtual environment. The paper presents our

approach to implement the underlying system of the inter-

active real-time simulation environment using a distributed

architecture and an evaluation of its performance.

The paper is organized as follows: the next section outlines

selected OOS scenarios that form the minimum set our

system is expected to support. Then, an overview of the

involved system components and their function is given. We

then summarize the real-time challenges put on the system

and describe the proposed system architecture. This is

followed by a description of measurements for evaluating

our system and a report of our results. Finally, we close the

paper with a summary and an outlook for future work.

2. OOS scenarios

The repair and maintenance of satellites usually consists

of a number of predefined sub-tasks that must be executed in

Figure 1 Demonstration of robotic on-orbit servicing using a tele-presence interface (left) to control a humanoid robot and
manipulate a physical satellite mock-up (right).

2 Journal of Simulation

 A

UTHOR C
OPY

a specific order. The goal of our proposed simulation

environment is to train the procedure and correct sequence

of actions within various OOS tasks. In order to support

the training of a wide range of possible servicing scenarios,

the system should provide a set of basic sub-tasks that

often occur and can be combined to various complex

servicing scenarios. Therefore, we selected a number of tasks

that would occur in most servicing scenarios based on

common EVAs:

2.1. Remove multi-layer insulation (MLI)

As satellites are usually covered by a MLI foil, the first

action would be to open the MLI in order to reach the

satellite components underneath. In most cases, the foil will

have to be cut using a knife, scissors or other tools and then

pulled open. Some satellites have their MLI foil attached by

Velcro-like fasteners, which can be opened and closed again.

2.2. Loosen and tightening screws

Many parts, such as modules and covers, are fixed with

screws. Thus, a second task is to loosen screws, and after the

main work tighten them again. This is usually done using a

cordless screwdriver.

2.3. Replace a module

A common task will be to replace electronic parts by excha-

nging a module. This will be done using a handle that is

inserted into a module like a bayonet catch. After rotating

the inserted handle by 90 degrees, the module can be pulled

out. Inserting a module is done in the same way.

2.4. Toggle a switch

Before removing a module, a task will be to switch off the

electronics on the module, and after inserting a new module

to switch it on. This is done via a normal lever switch.

2.5. Take measurements

Finally, a common task is to take measurements at electro-

nic parts. This task is represented using a digital voltmeter

and touching specific measurement contacts with the mea-

suring tip.

A milestone of the project is to demonstrate the execution

of these tasks within the virtual environment and compare it

to interacting with a physical mock-up. For this evaluation,

the virtual mock-up, as seen in Figure 2, resembles the

physical mock-up, seen in the foreground in the right image

in Figure 1, in size and arrangement of objects.

The scenarios described above comprise the minimum set

of tasks that are planned for the first prototype. The final

version will have to allow the simulation of arbitrary tasks,

possibly involving the handling of much more complex

mechanisms, such as handling bayonet cable connectors, or

opening covers with lock-spring mechanisms.

3. System overview

Figure 3 shows a block diagram of the system components

and the flow of information between them. Fundamental

components are the physics simulation, visualization, as well

as interaction interfaces, which provide the minimum set of

functions of the simulation and training environment. The

component’s haptic control and the robot control interface

provide additional features for force feedback and tele-

operation, respectively. The following sections describe the

components in more detail.

3.1. Physics simulation

A key element of the application is the real-time simulation

of the kinematic and dynamic behaviour of the satellite

components when manipulated by the user. In the current

stage of the project, we assume that the servicing robot has

already docked with the target satellite, so that the complex

flight dynamics of the flying body dynamics can be neglected

for now. We only concentrate on the simulation of rigid

bodies that make up most of the virtual satellite and robot

components.

In addition to the multi-body dynamics of the rigid

components of the satellite, a further aspect is the simulation

of the realistic behaviour of a foil for the scenario in which

the MLI is removed from the satellite. This involves

modelling and simulating the dynamics of bending, cutting

or tearing the MLI material.

Figure 2 The virtual satellite mock-up.

Robin Wolff et al—Modular architecture for satellite OOS 3

 A

UTHOR C
OPY

3.2. Haptic control

The haptic control component generates the necessary

data for providing force feedback to the user via a haptic

device. This includes the detection of collisions between the

haptic interaction point (HIP) and any objects within the

virtual scene, as well as the computation of the resulting

force and torque affecting the HIP. The haptic device

delivers the transformation of the end-effector held in the

hand of the user, which is used for collision detection. In case

the user grasps a virtual object, the complexity of resolving

the chain of forces between the interacting objects (virtual

scene, grasped object, HIP) can be reduced by attaching the

grasped objects with a constant offset to the HIP and apply-

ing the resulting transformation based on the HIP’s trans-

formation. The resulting force and torque is used to update

manipulated objects in the physics simulation.

The force feedback device we use is a human-scale bi-

manual haptic interface (Karkee et al, 2011), depicted in

Figure 4. It is based on light weight robot (LWR) (Hirzinger

et al, 2002) arms mounted horizontally on a vertical column.

It offers a working area similar to human arms and matches

that of the humanoid robot ‘JUSTIN’, described in the next

section. For software development and experiments, we

occasionally use a Phantom Omnis from SensAble, which

provides only translational force feedback but no torque.

3.3. Robot control

As mentioned above, we intend to simulate the humanoid

service robot ‘JUSTIN’ (Ott et al, 2006), shown in Figure 5.

It is based on two LWR arms. These are designed similar to

the human arm in its size and working area, aiming at an

self-weight to payload ratio of at least 1:1. A robot arm has

seven revolute joints, each with motor, gear unit, power

supply, force and torque sensors built-in. It reaches 0.9m

when fully stretched, weights 13.5 kg, while it can lift up to

15 kg. The robot hands are made human-like too with four

joints at each finger and house 15 motors. The arms and

hands are mounted to a torso, also based on LWR tech-

nology, covering a workspace similar to that of a human.

The head accommodates a stereo camera, a laser-stripe

sensor and an inertial measurement unit.

The control software of the robot dynamics is currently

implemented in a number of Simulinks modules. For our

simulation environment, these are accessed via an User

Datagram Protocol (UDP) communication interface. The

robot control reads transformations of either the haptic

device or that of the tracked user, in case interaction is

performed without force feedback. As output, it delivers the

transformation of the robot parts in the form of a rotation

Figure 3 Block diagram of the system components and the information flow between them.

Figure 4 Bi-manual haptic human machine interface
(Karkee et al, 2011).

Figure 5 Humanoid service robot ‘JUSTIN’ (Ott et al, 2006).

4 Journal of Simulation

 A

UTHOR C
OPY

angle of each robot joint, where the joints are organized in a

hierarchical tree and placed at relative positions in the

virtual environment. Alternatively, it can deliver the absolute

location and orientation of joints when these are organized

in a flat hierarchy or a list. These data are used by the

physics simulation to update the rigid bodies resembling the

robot parts.

Data from the robot’s force and torque sensors, as well

as data from the other sensors, are fed into the control

unit. In the case where the robot is not connected for

tele-operation but is fully simulated, these sensors have

to be simulated in the form of virtual sensors. In this case,

the inertial measurement unit and the laser-stripe sensor

are emulated within the physics simulation, while the images

of the simulated stereo camera are generated within the

visualization component.

3.4. Visualization

Apart from training the correct sequence of sub-tasks, a goal

of the simulation environment is to allow the user to get an

awareness of the appearance and arrangement of parts and

tools. Hence, the realistic and high-quality visualization of

the satellite components and the environment are important

factors for the success of a training simulation. This does not

only include the photo-realistic rendering of detailed virtual

objects with correct shading and high-resolution textures,

but also the correct representation of the environmental

effects that exist in orbit, such as bright sunlight, hard

shadows and a moving Earth sky in the background.

Being a training and analysis tool, another research aspect

of the visualization component is to augment the photo-

realistic visualization of the virtual scene with the informa-

tion-based, non-photo-realistic visualization of scientific

data. Examples are the display of collisions between the

robot and satellite parts, or the visualization of possible

motion paths avoiding collisions. In addition, hints on the

order of servicing sub-tasks or other instructions could be

overlaid on top of satellite parts.

3.5. Interaction

In the proposed simulation and training system, the user

interacts through a VR display, and optionally the haptic

device. In order to support the user’s feeling of presence in

training, the preferred display would be an immersive

display, such as an HMD, a Cave Automatic Virtual

Environment (CAVE)-like surround projection-based dis-

play system. However, the system should not be bound to a

specific type of display. It should scale from large multi-

display VR environments to simple desktop systems. Both,

the haptic device and the VR display, track the position and

orientation of the user’s hands for two-handed interaction.

Finger tracking is provided either by using a CyberGloves

when interacting through the bi-manual haptic device, or

using an optical finger tracking system. In addition, tracking

the user’s head is provided by the optical tracking system as

part of the immersive VR display, which monitors the

position and orientation of the head. This is used to render

the view in the correct perspective based on the user’s current

viewpoint. Apart from the manipulation of virtual objects,

interaction includes the navigation within the virtual

environment, as well as the control and configuration of

the running simulation.

Interaction within the environment should be intuitive and

easy to adapt for non-expert users. In order to train realistic

motion of actions, the interaction interface must be as

transparent to the user as possible. If the interaction

interface is too complex, for example, it could disturb and

hinder the training process, or even train wrong actions. In

order to aid the development of effective interaction

methods, the proposed system will act as a research platform

for studying novel interaction techniques and metaphors.

4. Real-time challenges

One of the main challenges of the interactive simulation

environment is the modelling and simulation of the dynamic

behaviour of the satellite components and their interactions

with the user or the simulated robot in real-time. The

computed dynamics and their kinematic effects must reflect

the real conditions and behaviour of servicing a satellite in

orbit. The 3D models used in the simulation environment will

be taken from computer-aided design drawings of the original

construction designs. These are often highly detailed and not

necessarily optimized for use in a VR environment. Moreover,

some mechanical mechanisms of satellite components can be

quite complex, involving many individual parts. For example,

the latching mechanism of a bayonet cable connector may

involve threaded caps, rings, springs, several pins and holes,

where all the collisions, linear and angular constraints and

friction have to be resolved every simulation cycle. Comput-

ing the dynamics of several satellite components or even the

complete satellite in real-time is a high target.

The requirement to visually display the results of the

simulation in real-time is another challenge. The detailed

complex geometric models of the satellite and robot have to

be rendered in high resolution and photo-realistic quality at

rates of at least 60Hz in stereo (30Hz per eye). Moreover,

for immersive visualization, high responsiveness to view-

point changes is crucial for the feeling of presence, and if too

low can result in motion sickness (Meehan et al, 2003).

A further challenge is derived from the integration of

haptic feedback. The haptic rendering of stiff surfaces

typically requires sampling rates of at least 1 kHz to achieve

sufficient stability (Mark et al, 1996). This puts high

requirements on a fast collision detection and force

computation, as the geometry of the 3D models in the scene

is expected to be complex.

Robin Wolff et al—Modular architecture for satellite OOS 5

 A

UTHOR C
OPY

Finally, being an interactive simulation, any responses

to actions made by the user within the virtual environ-

ment should be displayed with minimum delay. Acceptable

end-to-end delay in object-focused tasks is known to be in

the area of 35ms (Ellis et al, 1999). Informal experiments

have shown that in haptic-enabled applications, latency for

calculating collision responses should be below 25–30ms,

otherwise responses may feel unrealistic (Marsh et al, 2006).

5. Implementation

There were two key aspects involved in designing the

system’s software architecture. First, the system had to

fulfill the demanding computational needs for enabling the

real-time simulation of a complex dynamic environment.

Second, the system had to be flexible and extensible to be

able to explore and experiment with different approa-

ches for optimizations of algorithms and state-of-the-art

high-performance computing hard- and software, such as

supercomputers, PC-clusters, multi-core and GPGPU pro-

gramming. In addition, the system had to provide an inter-

face to easily add future subsystems. Therefore, the system

was implemented in a distributed architecture, where the

components of physics simulation, the haptic rendering

and the visualization are transferred to separate processes

running on dedicated machines interconnected through a

network switch, as illustrated in Figure 6. We call such an

independent component implementation, a module.

In order to aid easy development of alternative module

implementations and extensions with new features, the func-

tional structure of a module is made generic. As illustrated in

in Figure 7, each module consists of a communication and

a simulation process. Both are running in separate threads

and exchange data via thread-safe queues in a producer-

consumer pattern (Gamma et al, 1994). The simulation

process is the heart of a module. Specific modules implement

their individual functionality here. The communication

process is responsible for distributing updates between the

modules. The current system consists of physics simulation,

haptic control, visualization and a manager module. Other

modules, such as the robot control module for tele-operation

and a module to enable collaboration between remote sites

across the Internet within a shared simulation environment,

are added in the near future. The manager module is a

central component of the system that acts as server, while all

other modules are clients that connect to the master and can

be added and removed on demand, even at runtime.

Each module manages its own internal representation

of the scene. A scene consists of a hierarchy of objects,

also called nodes, each with a given state. Common state

parameters include at minimum a unique identification

string and a transformation matrix to describe the pose of

the object within the scene. Other information, such as mass,

friction or shading effects, that is specific to a particular

module implementation is added to the internal node’s state.

For example, a physics module would internally represent

the scene in a physics world with rigid bodies and

constraints, while the visualization module would represent

the scene with geometry nodes and shading materials in a

scene graph.

All modules implement the same functional structure.

Within a processing cycle, each module

1. reads state updates received from other modules;

2. interprets the messages and updates the internal scene

representation;

3. steps the simulation or processes object behaviour;

4. gathers any state changes and communicates these and

any other necessary status messages to the other modules.

Figure 6 Distributed computation hardware setup of the simulation environment (without tele-operation component).

Figure 7 Logical structure of the modularized system architecture (without tele-operation module).

6 Journal of Simulation

 A

UTHOR C
OPY

The most important module implementations are now

described in detail.

5.1. Haptics module

The haptics module is responsible for controlling the haptic

device, as well as for the necessary collision detection and

force computation to provide force feedback. Discrete

collision detection and force computation is implemented

using an extension of the Voxmap-Point-ShellTM (VPS)

algorithm (Renz et al, 2001). The algorithm utilizes two data

structures, voxel map and point shell, representing the solid

parts of static objects as volume-based pixels (voxels) and

the surface of moving objects as a net of contact points each

with a normal pointing inwards. This allows traversing the

point shells efficiently to test for intersections with voxels

and thus detect collisions. The penetration depth is obtained

through the voxel layer. The penetration depth and the point

normal yield a collision force, which is summed together to

compute force and torque. With this algorithm we are able

to compute collision responses within the boundary of 1ms

and meet the required 1kHz update-rate even in highly

complex scenes.

The haptic module receives the transformations of moving

objects and updates the nodes in the internal representation,

before starting the collision detection and force calculation

in the simulation process. The transformation of the HIP

and the calculated forces and torques of grasped objects are

distributed to other modules by the network process.

5.2. Physics module

The simulation of rigid body physics is currently implemen-

ted using the open source real-time physics engine Bullet.

Compared to other available real-time physics simulation

systems, it provides good overall results (Boening and

Bräunl, 2007; Hummel et al, 2012c). Bullet offers discrete

and continuous collision detection and rigid body dynamics

including various constraint solvers and generic constraints

with support for constraint limits and motors. Soft body

dynamics is supported via cloth, rope or deformable object

structures. For accelerated internal collision detection,

simple objects are approximated through basic collision

shapes, such as box, sphere or cylinder, which allow for

optimized collision detection algorithms. More complex

objects are either decomposed into a group of several

collision shapes, or their triangle mesh is used directly. In the

latter case, the physics engine utilizes the efficient Gilbert-

Johnson-Keerthi algorithm to perform convex collision

detection. In future versions, we plan to exploit the collision

detection of the VPS algorithm, as used in the haptics

module, offering high performance and high accuracy of

contacts with very complex geometries.

The relationship between bodies that are part of a

mechanical system is defined via constraints. In Bullet,

constraints are described by special joints, such as hinge,

slider or generic joints with individual limits on their six

degrees of freedom. These can be combined with a motor

adding linear or angular force to simulate engines or springs.

The mechanism of a lever switch, for example, is approxi-

mated using two rigid bodies, the base and the lever handle,

connected via a hinge joint. An angular motor is applied to

keep the handle to one side. If the handle is moved over its

toggle threshold, the motor force is inverted so that the

handle is pulled to the other side. Other mechanisms can be

approximated in a similar manner.

The use of simplified rigid body dynamics and constraint

management does increase simulation speed on one side.

However, on the other side the simulation accuracy is

compromised. Thus, a balance has to be found between

simulation speed and fidelity. A solution may be a multi-rate

simulation of sub-systems each with different performance

settings (Karkee et al, 2011). The modular design of the

system architecture allows us to experiment with alternative

implementations of the physics simulation. In the near

future, we plan to investigate the suitability of other real-

time physics engines, such as PhysXTM and ODE, as well as

interfaces to simulation systems often found in the

engineering area, such as Simulinks and Modelica.s

5.3. Visualization module

Visualization and interaction via VR displays is provided by

the visualization module. Utilizing the modular system

architecture, we currently developed three independent

implementations of the visualization module based on

InstantReality, ViSTA VR-toolkit (van Reimersdahl et al,

2000) and an experimental real-time ray-tracing system

based on NVIDIA OptiX, each with their own specific

advantages. The scene is organized in a scene graph that is

continuously synchronized with state updates from the

physics module and rendered during the simulation process

of the module. High-quality real-time rendering is managed

through the use of high resolution textures and advanced

rendering techniques enabling the visualization of realistic

material effects of satellite components, as well as the

visualization of a realistic space environment with exact star

positions and Earth with clouds and atmospheric scattering.

5.4. Manager module

The manager module hosts the central logic of the system.

While the physics module handles the dynamics and

kinematics of the individual parts in the simulation, the

manager handles the semantics. This includes not only, for

example, monitoring the on/off state of a switch, but also

the management of dynamic constraints. For example, in the

case of the lever switch, as mentioned above, this would

be the change of the angular motor to its inverse if the

handle crosses the toggle point. This semantic could of

Robin Wolff et al—Modular architecture for satellite OOS 7

 A

UTHOR C
OPY

course be implemented within the physics module directly.

However, as we wanted a platform to experiment with

different implementations of the physics and haptic control,

we wanted to remove most of the semantics from the

modules in order to simplify their development.

As the physics engine is expected to implement measures

for increasing stability, such as spring and dampers, the

manager is responsible for the recognition and management

of inter-part geometric constraints between colliding objects.

It monitors the result of the physics engine for allowable

rigid body motion and intervenes if violations of geometric

constraints or semantic states were detected.

5.5. Communication layer

The disadvantage of using a distributed system architecture

is that the necessary network communication induces delay

and other negative effects due to network characteristics,

such as jitter and packet loss. As mentioned above, our

system adopts a client/server architecture. This means that

all state updates are mediated across the manager, rather

than sent directly to the target module. The reason for this

was the easier management of semantics across modules.

However, a consequence is that the delay between interac-

tions and their response is double of that of a peer-to-peer

architecture. Although our simulation environment (exclud-

ing tele-operation) is generally situated within a local area

network (LAN), where round-trip-times of less than 1ms are

typical today, mechanisms to minimize delay should be in

place. Our system provides the following features and

mechanisms to minimize delay caused by communication:

Decoupled from simulation. In order to free the simula-

tion process from message transfer, the communication is

implemented in its own threaded network handler. As

mentioned above, both processes exchange data via queues.

Two queues are used: one for incoming messages and one

for outgoing messages. The communication process uses

these queues to handle messages in parallel to the

simulation process. There are two communication threads

per module. One thread is responsible for receiving

messages from remote modules and placing them into the

inbound queue. The other thread removes any pending

messages from the outbound queue and distributes them.

In a simulation cycle, all pending incoming messages are

removed from the inbound queue and used to update the

internal representation of the scene. Then the simulation is

advanced one step and all changes in the scene are collected

and pushed into the outgoing message queue. The queues

are made thread-safe, so that no synchronization bet-

ween the sending/receiving threads and the simulation is

necessary.

Managed queues. The majority of messages sent in our

system describe discrete updates of absolute force and/or

location, for example from rigid bodies. With a continuous

stream of such updates, it is preferable to communicate

only the latest update, rather than to enforce that every

single update is processed. Thus, the queues offer a sorting

mechanism to keep only the most recent update of an

object.

Vital and non-vital message types. As a most-recent

sorting method cannot be applied to all types of messages,

the system divides them into vital and non-vital messages.

Vital messages include system commands or changes to

constraint parameters, for example, while non-vital mes-

sages are continuous motion and force updates. These are

then sent using reliable and unreliable protocols, respec-

tively, via dedicated network channels.

Optional direct messages. The default method for

distributing a message is to broadcast it via the manager

module. In the case where no checks on semantics are

necessary, a module is allowed to send a message directly to

another module, without passing the manager.

Loose synchronization. In order to achieve highest

performance of the local simulations in the modules, our

architecture provides a loose synchronization mechanism,

enabling the simulations to asynchronously run at their

highest rate without needing to wait for synchronization.

However, this means that update messages are generated

and consumed at different rates. For example, the haptics

module generates updates every millisecond, while the

physics module is able to read them only every 16.67ms, if

running at the usual 60Hz (this is often done to match the

refresh rate of the visual display). If modules communicate

the updates at their local processing rate, this may cause

messages queuing up in the network buffers and processing

queues. To overcome this problem, the system incorporates

an update distribution rate control, where update messages

are sent depending on the average simulation processing

time of the receiving target module and the estimated

network delay.

Data reduction. A common measure to reduce traffic for

communicating state updates of continuous motion, such

as tracking data, is to employ spatial-temporal filtering

(Roberts et al, 2005). Spatial filtering sets a threshold on

differences in translation and rotation data before issuing a

new update message. However, this is not useful when subtle

movements are important. With temporal filtering, an update

is only sent after minimum time between distribution cycles

has passed. Our system implements a combined spatial-

temporal filtering mechanism on a per object basis. In order

to reduce the overhead induced by the communication layer

for processing single incoming and outgoing network packets,

as well as to increase synchronization, several updates of the

same simulation frame can be bundled into one message, as

8 Journal of Simulation

 A

UTHOR C
OPY

long the resulting data fits into a single packet. Further

optimizations applied in tele-presence systems, such as

perception-based data reduction of transmitted haptic data

based on just noticeable differences (Hinterseer et al, 2008),

may be investigated in future versions.

6. Evaluation

During implementation, the proposed system was tested on

a regular basis in two VR Labs. One lab was equipped with a

three-pipe active stereo 3� 2m Powerwall driven by a four-

node visualization cluster, optical motion tracking and a

Phantom Omnis haptic device. This setup was mainly used

for developing and testing the visualization module and the

underlaying framework. The other lab housed the robot and

the bi-manual haptic interface and used a 42-inch passive

stereo screen for the visualization. A prototype implementa-

tion of the system has also already been used in a user study,

which investigated suitable interaction methods for control-

ling a virtual robot hand when grasping and moving the

MLI foil (Hummel et al, 2012a, b).

In this paper, we focus on the evaluation of the real-time

performance of our prototype. We measured the perfor-

mance of the simulation cycles in the implemented modules,

as well as the latency for transmitting messages across the

distributed architecture. The following sections describe the

measurements in detail, followed with the results we found.

6.1. Module performance

The performance of a module was measured in terms of

simulation time and the load caused by message handling.

Simulation time is the time it takes to run a full simulation

cycle, including: fetching incoming updates from the in-

bound queue; updating and processing the simulation across

all scene objects for one time step; collecting changes and

pushing them into the outbound queue. In order to measure

the simulation time we logged the time stamp just before

triggering the simulation to advance one step and after

returning from the simulation call. We also logged the

elapsed time between calls to the simulation trigger to

measure the time required for emptying the inbound queues

and filling the outbound queues.

The number of processed messages within a simulation

cycle is a measure for the load of a module. It includes the

handling of received messages containing simulation updates

from remote modules and handling messages with local

changes to be distributed to other modules. We measured

the load by logging the number of pending messages in the

module’s inbound queue after a receive cycle has finished, as

well as logging the number of pending messages in the

outbound queue before starting a distribution cycle. We

provide these measurements in values of messages per

second (msg/s) in the results section.

6.2. Latency

Distributed systems induce delay through the overhead of

communicating state updates between the remote processes.

As mentioned above, latency is an important factor in

interactive object-focused tasks and can influence user

experience. Hence, it is important to know how much

latency our system introduces. We identified four stages of

user interaction within a haptic-enabled virtual environment

where latency is directly affecting user experience:

� Feeling the force when touching object surfaces.

� Seeing the virtual hand move.

� Feeling the force from moving virtual objects.

� Seeing dynamic virtual objects move.

Feeling the force when touching object surfaces occurs

when moving the end-effector of the haptic device by moving

the hand and immediately feeling a force feedback. This is

primarily happening when touching static (non-moving)

objects, but also when touching slow moving dynamic

objects. In the latter case, the last known state sent from the

physics module would be used for rendering haptic feedback.

Delay is induced by distributing the hand position (or that of

the end-effector) acquired from the haptic device to the

haptics module; updating the internal state; detecting

collisions and calculating the resulting force; and finally

sending the force back to the haptics device.

Seeing the virtual hand move on the screen provides visual

feedback of the user’s hand movements. It is affected by the

time it takes to send the hand position acquired from the

haptics device across the haptics and the manager module to

the visualization module; updating the internal scene

representation; and rendering the user’s virtual hand on

the screen at the respective position and orientation.

The scenario of feeling the force from moving virtual

objects occurs when the user feels a force feedback caused by

physically simulated dynamic objects in response to user

actions, such as pushing an object in the virtual environment

and feeling the resistance due to the object’s momentum. Here,

latency is caused from passing messages of the current hand

position across the system to the physics module; updating the

internal scene; stepping the simulation; distributing the new

positions of dynamic objects to the manager and back to the

haptics module; detecting collisions and calculating the force;

and sending this force to the haptics device.

Finally, seeing virtual objects move is the visual feedback

from dynamic object behaviour calculated by the physics

engine in response to user interaction, such as seeing a

pushed object move. Similar to the scenario above, this is

affected by the delay from sending hand positions across the

system to the physics module; computing a simulation step;

sending resulting object positions via the manager to the

Robin Wolff et al—Modular architecture for satellite OOS 9

 A

UTHOR C
OPY

visualization module; and finally updating the internal scene

and rendering it on the screen.

All latencies were measured in the communication layer.

We did not measure the effective end-to-end latency,

including delays caused by hardware for rendering visual

and haptic feedback, at this point. Our system incorporates a

mechanism to monitor the passing of messages between

modules. It tags messages with an unique identifier allowing

us to consolidate messages from logs taken on different

machines. The mechanism also stores the time of creating a

message. Measuring the creation time extracted from a

message and subtracting it from the arrival time yields the

time for travelling through the system. Furthermore, the

system distinguishes messages between their types. There are

three fundamental message types: pose of user (eg hand or

end-effector) created by the haptic device or the visualization

module; transformations of objects, either due to dynamic

behaviour or in response to user interactions created by the

physics module; and forces in response to collisions created

by the haptics module. With these three methods, it was

possible to identify messages being communicated across the

system and track them from its origin to its target to

determine the latency.

In 11 test runs, we measured the delay from the event of

creating a movement update by the haptic device driver to

receiving it in the haptics module, and the delay from

creating the respective force update message until receiving it

at the haptic device. We also measured the delay from

creating user movement updates at the haptic device until

they were received in the visualization module and in the

physics module. This includes the delay induced by

forwarding the message via the manager module. Further-

more, we measured the delay from creating position updates

in the physics module, forwarding them via the manager,

until receiving them in the haptics module, just before

updating the scene and calculating the force. Finally, we

measured the delay from creating resulting position updates

in physics module, forwarding them via the manager, and

receiving them in the visualization module, just before

updating the scene and rendering.

6.3. Test environment

For the evaluation described in this paper, we set up the

implemented prototype in our lab using four workstations,

named host.58, host.59, host.60 and host.62. The manager

module was running on host.58, the haptics module on

host.59, the physics module on host.60 and the visualization

on host.62. Each workstation had equal hardware and

software components, employing two Intel Xeon Quad-Core

E5530 processors, 24GB RAM, 1Gbit Ethernet and ran the

SuSE Linux Enterprise Desktop 11 operating system. As we

were mainly interested in a performance evaluation, no

immersive display system nor VR interaction device was

involved in the test. Instead, the visualization display used

was a standard 24-inch TFT screen without stereo option. A

Phantom Omnis was used as haptic device. Due to technical

reasons, this was not connected directly to the machine

running the collision detection in the haptics module on

host.59. Instead, it was placed close to the visualization

system, and thus connected to host.62. The device driver

communicated with host.59 by sending messages with the

current hand position to the haptics module and receiving

force messages from it via a dedicated UDP channel.

All host machines where interconnected via a LAN using

a Cisco Catalyst 4900 series switch. The workstations’ clocks

were synchronized using PTPd, which implements the IEEE

1588-2002 Precision Time Protocol standard. Table 1 lists

the average low-level network delay as round trip time

(RTT) between host.58 and the other hosts measured with

the Unix tool ping using Internet Control Message Protocol

(ICMP) echo requests. Measuring the difference between

timestamps written into UDP packets sent between the hosts

and host.58 confirmed that their clocks were in sync with

70.06ms accuracy.

The test scene used in the evaluation consisted of a simple

satellite model moving on an orbit around the Earth that

had a small number of movable parts, see Figure 8. The

complexity of the scene was approximately 100.000 polygons

for the geometry. The scene had 11 rigid bodies: the satellite

base, four module objects, one module handle, four switches

each with a 1 degree of freedom rotation constraint, and a

gripper representing the robot end-effector. The MLI foil

was modelled using a 10� 10 node flat soft body.

During the test, the spatial threshold in all moving objects

was set to 5mm for translation and 0.1 degree for rotation

around all axes. With exception of the force calculation in

the haptics module, the temporal threshold was set to

16.67ms matching that of the visualization module, which

was bound to the fixed update rate of 60Hz in the renderer.

Force update messages were not filtered in order to provide

high update rates for haptic rendering.

7. Results

The following sections report on the results from our

measurements.

7.1. Module performance

Table 2 shows the results of measuring the time it takes for

executing a simulation step, as well as the time required for

Table 1 Low-level network delay between hosts and host.58
measured with ping

Host host.59 host.60 host.62

RTT (ms) 0.209 0.186 0.229

10 Journal of Simulation

 A

UTHOR C
OPY

emptying the inbound and filling the outbound queues.

The simulation processes in all modules perform at around

30–50MHz. The processing of the inbound and outbound

queues took approximately 0.02ms in the manager and

physics module. The haptics module took longer to process

the queues, presumably because more messages arrived and

were queued per cycle due to the high update rate of

messages sent between the haptics module and haptic device.

The table shows that the visualization took about 17ms

for processing the queues. As this was determined by the

elapsed time between triggering the simulation, this actually

includes the idle time for waiting until the next simulation

call. The timing is in accordance to the fixed render refresh

rate of 60Hz.

Table 3 shows the average number of pending incoming

and outgoing messages in a simulation cycle. One can see

that incoming messages got queued up in the haptic module.

As its simulation time was similar to that of the other

modules, it is evident that significantly more messages had to

be handled. For optimization, the update rate for sending

messages by the haptic device could be reduced or a filtering

mechanism could be applied to reduce the amount of

messages sent to the haptics module. The low values for the

manager and physics module indicate that there often were

cycles without any pending messages. The average of one

pending message in the inbound queue of the visualization

module is likely to be a result of the relatively low simulation

and queue processing performance, compared to the other

modules. Filtering of messages sent to this module by the

manager could be applied too. The value of zero for the

average pending outgoing messages is due to the fact that the

visualization did not create any update messages, as no

tracking was used during the test.

7.2. Latency

Figure 9 shows a graph of the measured delay for sending

messages from the haptic device driver to the haptics

module. The delay was on average 0.625ms (st

dev¼ 0.244ms). Note, that this time includes the time for

messages pending in the inbound queue of the haptics

module. As shown above, the haptics module has to handle

a significant amount of messages, while additionally running

Figure 8 Snapshot of the test scene used in the evaluation.

Table 2 Timings of executing a simulation step and required
time for processing the inbound and outbound queues

Module Simulation step Queue processing

(Mean)
(ms)

(St dev)
(ms)

(Mean)
(ms)

(St dev)
(ms)

Haptics 0.021 0.011 0.163 0.023
Manager 0.018 0.001 0.019 0.002
Physics 0.018 0.004 0.019 0.004
Visualization 0.032 0.011 16.760 0.177

Table 3 Average number of pending messages in the inbound
and outbound queues per simulation cycle

Module Pending inbound
messages

Pending outbound
messages

(Mean)
(msg/cycle)

(St dev)
(msg/cycle)

(Mean)
(msg/cycle)

(St dev)
(msg/cycle)

Haptics 10.19 10.42 0.051 0.045
Manager 0.078 0.048 0.093 0.054
Physics 0.118 0.048 0.037 0.012
Visualization 1.056 0.530 0.0 0.0

Figure 9 Delay for sending messages from the haptics device to the haptics module.

Robin Wolff et al—Modular architecture for satellite OOS 11

 A

UTHOR C
OPY

the simulation cycle for detecting collisions and calculating

forces. The average load of handled messages per second was

measured as 988.2msg/s (st dev¼ 11.49 msg/s) and shows

that the required 1 kHz update rate for haptic force

computation can be achieved.

Figure 10 shows the delay for sending force messages from

the haptics module to the haptic device. The measured

latency was on average 0.119ms (st dev¼ 0.004ms). This is

close to half of the RTT measured by ping in our network, as

listed in Table 1, and shows that distributing the forces

between force calculation and haptic device is optimal and

does not introduce much additional delay. The load of

handling messages was measured as 976.1msg/s (st

dev¼ 19.41 msg/s).

The latency for displaying visual feedback to user

movement is shown in Figure 11. We measured an average

latency of 2.792ms (st dev¼ 1.604ms) with an upper bound

of 8ms, and a lower bound of 1ms. The average load of

handled messages was 57.5msg/s (st dev¼ 0.88 msg/s),

which confirms the fixed update rate of the visualization

process.

In the graph in Figure 12, we show the latency of user

movement messages arriving at the physics module. With an

average delay of 1.281ms (st dev¼ 1.283ms) it is double of

that of acquiring these messages from the haptic device to the

haptics module, as it includes forwarding through the mana-

ger module. However, the message load was measured as 57.6

msg/s (st dev¼ 0.70 msg/s). This shows that the initially high

load of incoming data from the haptic device was successfully

reduced to meet the target simulation rate in the physics

module. It is the effect of the temporal filtering mechanism

applied to reduce the overall message traffic in our system.

The latency for transferring new object positions from the

physics module to the haptics module in response to user

actions, shown in Figure 13, was measured as 1.219ms (st

dev¼ 0.291ms) delay on average and an average load of

54.0msg/s (st dev¼ 2.55 msg/s). On some occasions, the

latency doubles or triples. This seems to be due to increased

Figure 10 Delay for sending messages from the haptics module to the haptics device.

Figure 11 Delay for showing visual feedback of user moving the hand.

Figure 12 Delay for receiving updates of user movement at the physics module.

12 Journal of Simulation

 A

UTHOR C
OPY

load from messages sent by the physics when the object

collides with other objects, which create more movement

updates.

Finally, Figure 14 shows the latency for transferring new

object positions from the physics module to the visualization

module. Similar as in Figure 11, this graph shows the effect

of pending messages waiting in the inbound queue in

between render cycles. The average latency was 2.553ms

(st dev¼ 0.931ms) with an upper bound of 5.3ms and a

lower bound of 0.9ms. The load of handling messages was

58.7msg/s (st dev¼ 1.17 msg/s).

On the basis of our measurements, we can make

estimations on the communication-level end-to-end latency

induced by our implemented system in the four identified

stages, as shown in Table 4.

8. Conclusion

This paper introduced a real-time interactive simulation and

training environment used as a platform for the analysis,

training and programming of OOS tasks. The aim is to allow

performing manual and robotic assembly and disassembly

tasks within a haptic-enabled immersive virtual environ-

ment. The challenges are the real-time simulation and rende-

ring of the correct dynamic behaviour and the realistic

appearance of satellite components and their complex

mechanisms resembling the real conditions in space, as well

as to integrate interaction through haptic devices. The paper

described our proposed distributed system architecture utili-

zing dedicated computing resources to fulfill the real-time

constraints. The architecture divides the physics simulation,

visualization and haptic rendering into separate modules

that run in parallel on dedicated machines. A central mana-

ger mediates the communication of state updates, while

managing the global semantics of object behaviours.

In a system performance evaluation, we measured the

timings of simulation cycles, as well as the processing load

based on the number of messages handled per second. We

further measured the delay caused for communicating

data between simulations across the distributed system. It

was shown that our system is capable of providing the

required high update rates of 1 kHz for haptic rendering and

60Hz for visual rendering. On the basis of measurements of

latency at several communication paths, we find an end-to-

end latency for presenting visual and haptic feedback for

user movement and movement of simulated dynamic virtual

objects in response to user interaction of on average 7.1ms

and 2.8ms, respectively.

The modular design of the proposed architecture facili-

tates the research and development of improvements and

extensions with focus on individual aspects of the simulation

Figure 13 Delay for transferring new object positions from the physics module to the haptics module.

Figure 14 Delay for transferring new object positions from the physics module to the visualization module.

Table 4 Estimated end-to-end latency in the four stages of
haptic interaction

Stage of user interaction Estimated
latency (ms)

Feeling the force when touching object surfaces: 0.8
Seeing the virtual hand move: 6.0
Feeling the force from moving virtual objects: 2.8
Seeing dynamic virtual objects move: 7.1

Robin Wolff et al—Modular architecture for satellite OOS 13

 A

UTHOR C
OPY

environment. Future work will investigate alternative real-

time physics engines, develop optimizations to the haptic

rendering and explore two-handed interaction techniques.

References

Artigas J, Kremer P, Preusche C and Hirzinger G (2006). Testbed
for telepresent on-orbit satellite servicing. In Proceedings of the
Human-centered Robotic Systems Conference (HCRS); Munich,
Germany.

Boening A and Bräunl T (2007). Evaluation of real-time physics
simulation systems. In Proceedings of the 5th international
conference on Computer Graphics and Interactive Techniques in
Australia and Southeast Asia (GRAPHITE); Perth, Australia,
pp 281–288.

Currie NJ and Peacock B (2002). International space station
robotic systems operations—A human factors perspective. In
Proceedings of the Human Factors and Ergonomics Society
46(1): 26–30.

Ellery A, Kreisel J and Sommer B (2008). The case for robotic on-
orbit servicing of spacecraft: Spacecraft reliability is a myth.
Acta Astronautica 63(5–6): 632–648.

Ellis SR, Young MJ, Adelstein BD and Ehrlich SM (1999).
Discrimination of changes of latency during voluntary hand
movement of virtual objects. In Proceedings of the Human
Factors and Ergonomics Society. 43(22): 1182–1186.

Gamma E, Helm R, Johnson R and Vlissides JM (1994). Design
Patterns: Elements of Reusable Object-oriented Software. Addison-
Wesley Professional: Boston, MA.

Hinterseer P, Hirche S, Chaudhuri S, Steinbach E and Buss M
(2008). Perception-based data reduction and transmission of
haptic data in telepresence and teleaction systems. IEEE
Transactions on Signal Processing 56(2): 588–597.

Hirzinger G, Brunner B, Dietrich K and Heindl J (1994). ROTEX–
The first remotely controlled robot in space. In Proceedings of
IEEE Internationl Conference on Robotics and Automation
(ICRA’94); San Diego, CA.

Hirzinger G, Sporer N, Albu-Schäffer A, Krenn R, Pascucci A and
Schedl M (2002). DLR’ torque-controlled light weight robot
III—Are we reaching the technological limits now? In Proceed-
ings of IEEE Internationl Conference on Robotics and Automa-
tion (ICRA2002); Washington DC, pp 1710–1716.

Hulin T, Sagardia M, Artigas J, Schaetzle S, Kremer P and
Preusche C (2008). Human-scale bimanual haptic interface. In
Proceedings of the 5th International Conference on Enactive
Interface; Pisa, Italy.

Hummel J, Wolff R, Gerndt A and Kuhlen T (2012a). Comparing
three interaction methods for manipulating thin deformable
virtual objects. In Proceedings of IEEE Virtual Reality; Costa
Mesa, CA, pp 139–140.

Hummel J, Wolff R, Dodiya J, Gerndt A and Kuhlen T (2012b).
Towards interacting with force-sensitive thin deformable virtual
objects. In Proceedings of EGVE – EuroVR Joint Virtual Reality
Conference of ICAT (JVRC’12); Madrid, Spain, pp 17–20.

Hummel J, Wolff R, Stein T, Gerndt A and Kuhlen T (2012c). An
evaluation of open source physics engines for use in virtual
reality assembly simulations. In Lecture Notes in Computer
Science Vol. 7432. Springer: Berlin Heidelberg, pp 346–357.

Karkee M, Steward BL, Kelkar AG and Kemp II ZT (2011).
Modeling and real-time simulation architectures for virtual
prototyping of off-road vehicles. Virtual Reality 15(1): 83–96.

Landzettel K et al (2006). ROKVISS verification of advanced light
weight robotic joints and tele-presence concepts for future space
missions. In Proceedings of the 9th ESA Workshop on Advanced
Space Technologies for Robotics and Automation (ASTRA),
ESTEC; Noordwijk, Netherlands.

Mark WR, Randolph SC, Finch M, van Verth JM and Taylor II R
(1996). Adding force feedback to graphics systems: Issues and
solutions. In Proceedings of ACM SIGGRAPH Computer
Graphics and Interactive Techniques; New Orleans, Louisiana,
USA, pp 447–452.

Marsh J, Glencross M, Pettifer S and Hubbold R (2006). A network
architecture supporting consistent rich behavior in collaborative
interactive applications. IEEE Transactions on Visualization and
Computer Graphics 12(3): 405–416.

Meehan M, Razzaque S, Whitton MC and Brooks Jr FP (2003).
Effect of latency on presence in stressful virtual environments.
In Proceedings of IEEE Virtual Reality, Los Angeles, CA,
pp 141–148.

Ott C et al (2006). A humanoid two-arm system for dexterous
manipulation. In Proceedings of IEEE-RAS International Con-
ference on Humanoid Robots; Genova, Italy, pp 276–283.

Renz M, Preusche C, Potke M, Kriegel H and Hirzinger G (2001).
Stable haptic interaction with virtual environments using an
adapted voxmap-pointshell algorithm. In Proceedings of the
Eurohaptics, Birmingham, UK, pp 149-154.

Roberts D, Marshall D, McLoone S, Delaney D and Aspin R
(2005). Exploring the use of local inconsistency measures as
thresholds for dead reckoning update packet generation. In
Proceedings of IEEE Distributed Simulation and Real-Time
Applications; Montreal, Canada, pp 95–102.

Rupp T, Boge T, Kiehling R and Sellmaier F (2009). Flight
dynamics challenges of the german on-orbit servicing mission
DEOS. In Proceedings of the 21st International Symposium on
Space Flight Dynamics; Toulouse, France.

Sellmaier F, Boge T, Spurmann J, Gully S, Rupp T and Huber F
(2010). On-orbit servicing missions: Challenges and solutions for
spacecraft operations. In SpaceOps 2010 Conference, American
Institute of Aeronautics and Astronautics; Huntsville, Alabama,
USA.

van Reimersdahl T, Kuhlen T, Gerndt A, Henrichs J and
Bischof C (2000). Vista: A multimodal, platform-independent
vr-toolkit based on wtk, vtk, and mpi. In Proceedings of the 4th
International Immersive Projection Technology Workshop (IPT);
Ames, Iowa.

Received 23 April 2012;
accepted 28 March 2013 after one revision

14 Journal of Simulation

