“Some Tactical Problems in Digital Simulation” for the
Next Ten Years

Barry L. Nelson
Northwestern University
Lancaster University Management School

October 30, 2015

Abstract

In his influential 1963 paper “Some Tactical Problems in Digital Simulation,” Con-
way identified important issues that became the pillars of research in simulation anal-
ysis methodology. Naturally these “problems” were a product of the applications of
interest at the time, as well as the state of simulation and computing, much of which
has changed dramatically. In light of those changes, we attempt to identify the tactical
problems that might occupy simulation researchers for the next ten years.

1 Introduction

Nance and Sargent (2002) credit Conway (1963) with creating the stochastic simulation re-
search area we now call “analysis methodology” (AM). See also the earlier paper by Conway
et al. (1959) that provided a foundation for the later work. AM addresses all of the statis-
tical aspects of the simulation experiment that remain once we are given a valid simulation
model. Conway separated tactical issues, which relate to efficiency, from strategic issues
of experiment design, but AM (and this paper) encompass both. Conway recognized that
design and analysis issues were important, perhaps just as important as proper construction
of the simulation model which was the dominant concern at that time.

Conway (1963) was remarkably prescient. Nelson (2004) traces its influence on eight
award-winning papers that appeared in Management Science through 1994, and it is virtu-
ally impossible to attend a conference or workshop on stochastic simulation without hearing
echoes of Conway’s tactical problems. Of course, Conway (1963) reflected the state of sim-
ulation practice and the type of computing that was available at that time. The reader will
require no convincing that these have changed, and we argue below that they have changed
in ways that raise entirely new problems and perspectives. The goal of this paper is to
identify key AM problems for the next fifty years, or, more realistically, for the next ten. We

consider dynamic, stochastic simulations—discrete event or agent based—that are employed
for system design, evaluation and control, but not simulation as used for training.
Our new tactical problems grow primarily out of three observations:

e Data storage is cheap and effectively unlimited, which means that we can exploit more
of the simulation-generated data than we typically do today.

e Parallel simulation is becoming easy to do, and any simulation experiment that requires
multiple replications or multiple scenarios can benefit dramatically from parallel sim-
ulation.

e More and more current and potential simulation users are interested in risk analysis,
prediction and control, rather than in system design.

We begin in Section 2 with a brief review of the context that gave rise to Conway’s
tactical problems, and follow that with a discussion of the changes from then until now
in Section 3. Sections 4-6 present our thoughts about how the observations above should
reshape AM research and practice. We close with a look at a few other emerging tactical
problems in Section 7.

2 How we got here

Stochastic simulation existed before the advent of computers, but computers made it possible
to solve problems of substantial scale. Computing in the sixties, and for may years thereafter,
was characterized by batch runs on single-processor machines with limited memory, slow,
nonexistent, or inconvenient mass storage of results, and possibly a need to schedule time
on the computer in advance. In such an environment it was natural to try to anticipate
everything you might want from a simulation run, to compile performance estimates on the
fly (as the simulation was running), and to program for computational efficiency. As Conway
noted:

In general, Phase 3 [tactical] involves questions of efficiency of execution. The
use of very large sample sizes can overwhelm virtually all of these difficult tactical
questions, but I do not believe this is a satisfactory or practical answer. Since
computer time is not a free good and the running time to execute a complex
simulation is disappointingly great, sample sizes tend to be rather modest even
with very powerful computers (Conway, 1963, p. 48).

Early applications of simulation were often in manufacturing or telecommunication sys-
tems design, problems that had already been the focus of queueing theory. There is little
doubt that queueing theory, which is generally credited to A. K. Erlang in the early 1900s,
preceded and influenced the development of computer simulation in two important ways:
The first, by representing manufacturing and telecommunication systems as networks of

queues, and the second, by emphasizing long-run average performance measures of stochas-
tically stationary systems. As a result, many simulation programming languages adopted a
queueing network representation of the world (e.g., GPSS, QGERT), and books emphasized
techniques for simulating stationary queueing systems (e.g., Tocher 1967, which is generally
considered to be the first textbook on stochastic system simulation, contains two chapters
on simulating queues but only one on “general simulation problems”).

Taken in this light, Conway’s tactical problems are not surprising: (i) establishing equi-
librium (the time it takes the model to “warm up”), and (ii) consideration of variability and
sample size. Today we would recognize “equilibrium” as the steady-state simulation prob-
lem, which is the simulation version of long-run average results for mathematically tractable
queues. Conway proposes one of the first data truncation rules, as well as intelligent selection
of initial conditions, to address the “warm up” problem. For considerations of variability
and sample size when computing resources are dear, Conway expounds on the benefits of
inducing correlation between alternative scenarios via common random numbers. However,
he also notes that such correlation violates the assumptions of classical analysis of variance,
and therefore provides motivation for research in new ranking-and-selection procedures and
multiple comparisons. Further, the need for efficient computation suggests employing a single
long replication (truncating data only once), rather than multiple independent replications.
This introduces a new research problem: error estimation from dependent data. Conway
proposes estimation of (what we would now call) the asymptotic variance constant and the
use of batching. More subtle, but also apparent in Conway (1963) and the AM literature
in general, is the assumption that simulation is used primarily for performance-measure
estimation in the service of system design and optimization.

We feel confident that, if counted, the number of the theses, papers, presentations and
algorithms that have attacked these tactical problems would be staggering! However, the
assumptions behind Conway’s problems are no longer as relevant, as we elucidate next.

3 From then to now

What has changed since 1963 that should influence AM research and practice today?

On the computational side, expensive and slow storage of data (think magnetic tape) has
been replaced by effectively unlimited storage that is also cheap, and in the case of solid-state
storage, amazingly fast. Dramatically increased data storage has been a driver of big data
analytics, whose motto could be “collect and save everything, then figure out what is useful
later.” The value of saving everything is that when you have enough of “everything” then
you can derive fine-grained, conditional statements, such as what product to recommend to
someone whose home is in A, gender is B, has purchased C, D and E in the past, and has a
projected income of F. It is worth noting that many of the tools for big data analytics were
initially developed outside of the field of statistics while statisticians remained committed to
the classical paradigm of squeezing the maximum possible information out of a small sample
of expensive data (Efron, 2010). This should be a cautionary tale for AM researchers. We
examine the implications of retaining the entire simulated sample path in Section 4.

Also on the computational side we have gone from expensive batch runs on a single-
processor computer to personal computing that is virtually free in terms of cost, although
not in terms of time. This has had an obvious impact on simulation language interfaces and
has made animation of simulation runs routine. Nevertheless, because simulation runs do
take time, the efficient-sequential-experiment-on-a-single-processor mindset is still pervasive
in AM research; two- and four-core personal computers have not yet provided enough par-
allelism to cause substantial rethinking. On the horizon, however, is the relatively seamless
renting of thousands of processors through service providers. This will flip the time vs. cost
tradeoff, making the simulation time required for many applications negligible, but at a
financial cost. In Section 5 we consider the tactical problems that this creates for AM.

There has also been a change in who uses simulation, and for what it is used. At the time
of Conway (1963) the simulation user was a rare bird who had probably invested significant
time and effort in learning how to build and execute simulation models. Simulation was
not a general-use tool. In fact, access to simulation software was not universal, and many
if not most simulations were programmed in lower-level languages, necessitating additional
expertise. Simulation is now taught to undergraduate engineers and management scientists
the world over, many of whom could not imagine programming a simulation in a lower-level
language. Further, they are applying simulation in the widely diverse fields in which they are
employed, and simulation is just one of many modeling and analysis tools that they know
how to use, but perhaps not so much about how they work.

At the same time, an interconnected world is pushing operations research in general,
and simulation in particular, to address systems-of-systems problems that are large in scale,
broad in scope, complex in behavior, and have multiple competing objectives. Further, we
have learned from financial crises, if nothing else, that the quantification of risk is often more
important for day-to-day operation and decision making than long-run average performance.
In fact, reaching a long-run average may be considered a rare event as real-world systems
have to evolve and adapt rapidly to be competitive. In Section 6 we speculate about how
AM research could support decision making for the users and applications described here.

4 Simulation analytics

Big data analytics are used to explore vast quantities of transactional data to discover antic-
ipated and unanticipated relationships, with a focus on conditional statements, prediction
and understanding. Dynamic stochastic simulations, both discrete-event and agent-based,
generate large quantities of synthetic transactional data, but what simulation users typi-
cally do with the data is entirely different: (i) They do not retain the simulated inputs and
state changes, making it difficult to find relationships with the outputs; (ii) they average
everything across time, masking time-dependent, dynamic effects; (iii) they create high-level
summaries, making it difficult to evaluate risk or predict actual system behavior; and (iv)
they assume that every performance measure or relationship of interest can be anticipated
before running the simulation, rather than being discovered afterwards. We believe that the
overwhelming success of data analytics in business and industry will lead simulation users

4

to expect the same sort of fine-grained, conditional analysis from their simulations, which
suggests that there is a need for a field of simulation analytics.

Simulation analytics, as we envision it, is more than just “saving all the simulation data”
and then applying modern data-analysis tools (although this capability alone would be ben-
eficial). Instead, simulation analytics research should address and exploit the differences
between simulation-generated data and real-world transactional data, as well as the differ-
ences in problem context that necessitate a simulation as opposed to a field data analysis.
Some features that distinguish the simulation analytics context from the big data analytics
context are the following:

e Simulation data are clean, complete, and (could be) conveniently organized (but, we
contend, should not be summarized) as generated. Further, within computational
budget constraints, the quantity of data is under our control.

e The probability models that describe the underlying stochastic inputs are known and
also under our control, as are the random-number assignments that generate realiza-
tions.

e The logical structures that cause state transitions (e.g., entity networks or agent rules)
are also known, and can be manipulated.

e Simulations generate sample paths, as opposed to transaction instances, that are (of-
ten) nonstationary and strongly dependent; further the outputs are more often ratio
(real valued, measured from zero), rather than attribute or categorical data.

e Alternative scenarios are simulated, often to optimize the performance of systems that
do not yet exist. Thus, simulations produce multiple sample paths from within each
alternative (i.e., replications) and across different alternatives. These need to be stored,
analyzed and compared.

As noted in Section 2, the focus of AM research and practice has been on precise, efficient
estimation of system performance measures. Simulation analytics could provide a more
comprehensive view of system performance by facilitating a more complete understanding of
the system behavior that might actually occur if a simulated system design is implemented.
Simulation is often touted as a “what if?” tool because any change in system design that can
be conceived can be simulated. Simulation analytics could add a “what matters?” and “how
will it behave?” capability by looking more deeply at the simulated sample paths. We could
ask questions such as, what system conditions or behavior predict simulated periods of poor
system performance, and what conditions seem to mitigate them? This moves simulation
beyond system design and toward gaining insight into how to manage and control the system
without having to anticipate all possible management or control actions up front and then
simulate them as “what if’s?”

Here are five general objectives for simulation analytics:

1. To generate dynamic conditional statements: relationships of inputs and system state
to outputs; and outputs to other (possibly time-lagged) outputs.

2. To generate dynamic distributional statements: full characterization of the observed
output behavior, marginally at a point in time, and dynamically across time.

3. To generate statements on multiple time scales: high-level aggregation and drilling
down to individual event times.

4. To generate comparative statements: a comprehensive understanding about how and
why alternative system designs differ, and how they will behave if implemented.

5. To generate inverse conditional statements: relationships of outputs to inputs or the
system state.

We provide an example of #2 below.

How does an analytics view change simulation experiment design? Most simulation
textbooks contain advice that goes something like this: Before you build a simulation model,
or design an experiment on that model, identify all of the questions that the simulation study
is required to answer. This fixes the level of detail of the model, the performance measures
that should be instrumented into the model, and the precision that needs to be achieved.
Such advice makes sense when we think of the simulation as a time-consuming way to
optimize system performance.

However, when generating and saving simulated data is fast and cheap, a generic objective
can be to explore the data to find relationships that might be useful for system control, to
understand how the system will actually behave over time, or to assess risk. The simulation
then becomes a way to fill a database with many detailed sample paths, paths that can be
explored post-run using a variety of tools. Viewed in this way, we might want the simulation
to include more details than are strictly needed to answer specific design questions, and we
might simulate a host of scenarios that fill some feasible system-design space, rather than
directly optimizing. Of course this may require more model building effort. After learning
from this data, additional simulations could be targeted to achieve a more narrow objective,
attain a specific level of precision, test system control strategies, or optimize. In AM we are
unaccustomed to thinking about designing simulations for this purpose.

To facilitate simulation analytics, some hard thinking about what it means to “save the
entire sample path” will be required. For some thoughts on this from as far back as the
1980’s see Pritsker (1990) Chapter 7.3 and references therein. We do not expect the amount
of data to be the bottleneck as even complicated simulations generate far less than what
is considered “big data” today. However, the desire to recreate and explore every aspect
of a high-dimensional, time-dependent, dynamic process may make some strategies better
than others. The generalized semi-Markov process view of discrete-event simulation (see, for
instance Glasserman 1991) might be a good place to start.

Here is an example that illustrates the change in perspective relative to #2 above: Smith
and Nelson (2015) consider the problem of estimating a summary measure (e.g., mean) of

the virtual waiting time of a customer arriving at time (or a collection of times) ¢ to a
complex queueing system with a time-varying arrival rate. By “virtual waiting time” they
mean the waiting time a customer would expect to experience if they arrived at time t,
an event that may never actually happen even in multiple replications of the simulation.
They approach the problem by defining time buckets (e.g., hourly), and instrumenting the
simulation to accumulate and calculate statistics for waiting times of customers who arrive
during the bucket, rather than by the order in which they depart. The focus of the paper
is on assessing the error in the virtual waiting time estimates, but the point of relevance
here is that the approach to modeling and experiment design is traditional: the performance
measures are known in advance, the time buckets are prespecified, and the statistics are
accumulated dynamically as the simulation runs, giving point and error estimates at the
end.

Clearly if detailed sample paths of all customer arrivals from all replications had been
retained then precisely the same analysis could be achieved; but so much more is possible.
The time-bucket size could be adjusted to deal with the bias-variance tradeoff, and even
varied throughout the simulated day to reflect the intensity of arrivals. If excessive waiting
times for arrivals around time ¢t were observed, then they could be decomposed by customer
and by stage of the service process to identify the pinch points. Is the arrival rate around
time t the only reason for the long delays? This question could be explored by looking for
other predictors of long delay. And, of course, the entire distribution of virtual waiting time
could be estimated, not just a predetermined summary measure, for any time ¢t we desired.

The analysis described above is not straightforward, since it deals with multivariate,
time-dependent, highly correlated outputs across multiple replications. But it is a problem
of significant practical importance: when one goes to the airport for a 10 AM flight the
long-run average check-in time matters not at all, but the 99th percentile of my check-in
time is very relevant. A simulation analytics perspective opens the door to a more complete
understanding of system dynamics through time, but we need appropriate output analysis
tools to estimate and explore them.

5 Parallel simulation

There are at least three reasons to perform a stochastic simulation experiment:

Feasibility: We have a plan, will it work? “Work” could mean produce enough profit,
complete a project before a deadline, or be able to serve 80% of the demand in less
than one week, for instance.

Sensitivity: We are not really sure about everything, so how much does it matter? The
things we are not sure about could include environmental conditions, the validity of
our input models, or how well we can actually set the control parameters.

Optimization: What are the good options, and how good are they? This category includes
any situation that requires comparing simulated alternatives, whether we need to find

7

a unique optimal or not.

How are these three tasks affected by the availability of parallel simulation, meaning the
capability to execute multiple runs simultaneously? For the discussion in this section, we
suppose that in each case the problem would be solved if we knew a performance parameter
0(x), possibly as a function of parameters/decision variables/environmental conditions x.
We call x a scenario. Simulation can generate an estimator §(X; T,n,U) that is itself a
function of three additional quantities:

e A stopping time, 7', that is the simulation clock time when a replication ends; it might
be fixed or random, part of the definition of the problem or part of the experiment
design.

e A number of independent and identically distributed (i.i.d.) replications, n, which
might also be fixed, but could be random if 6 is created by a sequential procedure.

e The pseudorandom numbers, U, which we think of as both random—the reason why

0(x;T,n,U) is treated as a random variable—but also as part of the experiment design
because they are in fact pseudorandom and therefore can be assigned.

The only thing we assume about the estimator is that for any fixed x, the quality of
0(x;T,n,U), as measured by mean squared error (MSE), improves as the number of repli-
cations n increases and as the run length 7' increases, when T can be treated as a design
variable. For instance, in the steady-state simulation setting increasing n reduces variance,
while increasing 1" reduces variance and bias.

Whether checking feasibility, assessing sensitivity or optimizing, it is the nature of simula-
tion to solve the problem by choosing instances of (x, T, n, U) and executing them. Feasibility
focuses on a specific scenario xg, so the experiment design decisions are n and possibly T'; we
only require that U come from a pseudorandom number generator that has good properties.
Sensitivity may also focus on a single xqg—if é(x; T,n,U) is an estimator of the gradient with
respect to x, for instance—or it might require simulations of scenarios {xy,Xs, ..., X} if we
are interested in more than just local sensitivity. Whenever there are multiple x’s then the
choice of U comes into play because we have the option of assigning distinct or common U’s
to different scenarios. Optimization always involves simulating a collection {x;, X2, ..., Xk},
but K might be random if we are searching over a large scenario space that we cannot
exhaust.

The computing paradigm within which AM tends to think about solving feasibility, sen-
sitivity and optimization problems is one in which instances (x;, T3, n;, U;) are executed one,
or a few, at a time until the problem is solved using processors that are effectively free. Since
time is the consumed quantity, this paradigm puts a premium on reducing the number of
scenarios x that need to be simulated as well as the effort (n,T") expended on them. There
will always be problems for which this approach makes sense. However, we believe that

computing with the characteristics described below will become increasingly accessible and
affordable:

e Instances (x;,n;, 1;, U;) can be conveniently, even automatically, assigned to distinct
processors, and the number of available processors, P, will be large.

e The monetary cost of renting one processor to simulate an instance (xq, 70,70, Up)
will be almost identical to the cost of renting ny processors to simulate instances
(x0,1,70,Uj), j=1,2,...,ng in parallel.

e When no coordination is required and ng is less than the number of processors P, the
time to simulate (xo,ng, To, U;) on a single processor will be approximately ngx the
time to simulate all (x¢, 1,7y, Uj), j = 1,2,...,ng in parallel.

e For applications that require multiple replications or scenarios, the overhead to dis-
tribute and coordinate a single instance (xo, 1,7y, U;) across multiple processors will
typically make that approach less attractive than distributing whole instances to dis-
tinct processors.

The tactical implications of this sort of computing environment are profound, and should
drive research and practice in new ways.

The most basic question is: how should multiple processors be deployed? The answer
depends on, among other things, whether there are greater or fewer processors P than sce-
narios k to be simulated. As the number of processors that one can rent grows (and we are
aware of services that can provide 10,000), then there will be problems for which P > k. If,
in addition, P > kn, where n is the average number of replications needed, then the time to
solve many feasibility and sensitivity problems, and some small- to medium-scale optimiza-
tion problems, is effectively the time to execute one replication of one scenario! This happy
situation opens up a host of new applications for simulation, including using it for real-time
decision support, a topic that has attracted little attention in AM.

However, all is not quite as simple as we just made it appear. Achieving the maximal
speedup means avoiding coordination. Therefore, the simulation effort (n;, T;) that is needed
for scenario x; to obtain acceptable MSE must be known up front; otherwise some sort of
sequential, coordinated experiment is required. This suggests that methods for robust a
priori planning—as in Whitt (1989, 2006) for queueing simulation—or for planning based
on results from previous similar experiments (see, for instance, Feng and Staum 2015), will
become more important. Stated differently, there will be applications for which the practical
benefits of being able to execute the entire experiment using only one pass through the P
processors will make it more valuable to be able to predict in advance an (n;,T;) that is large
enough, rather than sequentially finding an (n;,T;) that is no larger than necessary.

When P > k, for instance when there is only £ = 1 scenario, it seems clear that single-
replication experiment designs, or designs for which the next simulation run depends strongly
on completion of the previous one, will rarely make sense. For example, in steady-state
(equilibrium) simulation problems the standard recommendation of n = 1 and T as large
as possible—which goes back at least as far as Conway (1963)—looks foolish. Why idle so
many processors? However, the reason that small n and large 7" is recommended is that we
have not been as successful in solving the warm-up problem as we have in deriving error

estimates from dependent data. Thus, we anticipate that the initialization-bias problem
may re-emerge, motivating a desire for a priori planning tools or empirical solutions that
can exploit multiple processors, as in Hsieh and Glynn (2009).

One of the most striking benefits of massively parallel simulation is that it facilitates
optimization by exhausting the collection of feasible scenarios, rather than searching over
a subset. This is clearly the case when the number of feasible scenarios is finite, but it
also makes it attractive to solve continuous-decision-variable optimization problems by dis-
cretizing x and simulating all feasible combinations. Point-to-point searches that move in
improving directions are unappealing for the same reason that single-replication designs for
steady-state simulation are: they waste cheap parallel processing.

Unfortunately, statistical guarantees such as a lower bound on the probability of cor-
rect selection are hampered by the curse of multiplicity, which is that the computational
effort required to guarantee that a statement is simultaneously true for all instances grows
dramatically with the number of instances it has to cover. We will need new paradigms
for statistical inference that make sense for the simulation of millions of scenarios when it
is computationally possible to do so. Related problems motivated by large-scale statistical
testing have also arisen (Efron, 2010).

Parallel computing breaks the traditional relationship between simulation time and the
number of scenarios, number of replications and run length to simulate them; the level of
coordination matters much more. Algorithms that save replications by careful coordination
and synchronization are likely to give way to algorithms that perhaps waste some replications
and instances rather than let processors idle. Balancing that tradeoff will be a research and
practical challenge, particularly when k& > P.

As a case in point, consider the KN algorithm for ranking and selection (Kim and Nelson,
2001). This algorithm provides a guaranteed probability of correct selection when comparing
the means of k scenarios. The algorithm coordinates in two ways: (i) after an initial run of ng
replications from all k scenarios the sample variances of all pairs of differences are computed;
and (ii) from then on, decisions about which scenarios can be eliminated are based on all
pairs of differences among the sample means after obtaining a single additional replication
from each scenario still in contention. In addition, a different sort of synchronization is
necessary if common random numbers (CRN) are employed to insure that each scenario is
assigned the same U.

The rapid elimination of inferior scenarios, enhanced by CRN, is the reason KN is so
efficient in terms of replications consumed. But comparisons of all pairs of differences after
each incremental replication can create a significant coordination bottleneck: When P >
k not all available processors will even be used; and when k& > P all processors will be
repeatedly idle during the nontrivial work of doing k(k — 1)/2 comparisons. Contrast this
with a simple two-stage procedure, such as Rinott (1978), that can be implemented to
avoid any coordination at all because the number of replications generated from scenario x;
depends only on scenario x;. The penalty is that substantially more replications are needed
to select the best for typical problems, which may limit the size of problem that can be
solved in a timely manner, or greatly increase the cost for processors when the number of

10

scenarios k is huge and much larger than P.

Mitigating the coordination bottleneck in parallel simulation seems certain to be an
important tactical problem going forward, but it has to be done with some care. Consider
modifying a procedure like KN. As a first cut one might consider making elimination decisions
using whatever outputs have been returned from the processors, rather than waiting to
coordinate. Unfortunately, a pitfall affecting this sort of approach was discovered some
time ago by Heidelberger (1988) and Glynn and Heidelberger (1991). They noted that
there is frequently dependence between the time that it takes for a replication to execute
and the response value that the simulation returns. For instance, in a queueing simulation
replications for which the system is more congested will tend to execute more slowly because
there are a greater number of events to execute. This implies that the simulation results
from multiple processors observed in the order that they are completed are not identically
distributed (and, as it turns out, not independent either). Heidelberger (1988) and Glynn and
Heidelberger (1991) only considered a single scenario with replications assigned to multiple
processors, but the statistical problems get worse when there are multiple scenarios (Luo
et al., 2015).

The bottom line is that both computational efficiency and statistical validity play a role
when deriving optimization strategies for parallel simulation. There would seem to be two
general approaches:

1. Preserve the statistical validity of existing procedures by using the simulation outputs
in the order that they were requested, not returned, while efficiently managing what
is requested and how it is manipulated; see Ni et al. (2014).

2. Efficiently use the output data in the order that it is returned, but derive procedures
that are statistically valid anyway, as in Luo et al. (2015).

Finally, it is AM folklore, again going back at least to Conway (1963), that optimization
should employ CRN across scenarios to obtain improved efficiency essentially for free. How-
ever, CRN works best when all scenarios receive the same number of replications and are
paired; in fact, it can be counterproductive otherwise. In algorithms for parallel optimiza-
tion we may find that the benefits of CRN do not outweigh the overhead of coordination
and synchronization, or perhaps new approaches can be invented that strategically combine
CRN and independent replications.

6 Simulation to support decisions

Regardless of whether a simulation study is conducted to check feasibility, assess sensitivity,
or to optimize, there is virtually always one or more underlying decisions motivating it. Often
the simulation results will support the decision rather than produce the decision itself. But
even when the simulation provides the decision—e.g., when it is a simulation optimization—
additional insight about predicted system behavior or the availability of other good scenarios
will aid in implementing and managing the decision. AM research and practice can, and

11

should, do more to support decisions for current applications and users in at least two areas:
the reporting of results and the evaluation of model risk.

6.1 Reporting of results

As a research community AM has had a historical focus on measures of error, while decisions
should usually be based on measures of risk. By “risk” we mean the actual dynamic behavior
that might be realized, as opposed to a summary performance measure that is averaged over
the detailed behavior. For instance, a supply chain replenishment policy may minimize long-
run average cost, but do so by encouraging wide swings in period-by-period costs that would
be intolerable in practice.

Unfortunately, users often misinterpret error as risk. A confidence interval (CI) is a
measure of error, and measures of error answer the question “have we done enough simulation
so that our estimate of performance is statistically good?” The width of a CI says nothing
about the natural system variability; that is, it says nothing about realized behavior or risk.
A prediction interval (PI) is a measure of risk; it answers the question “what performance will
we most likely see when we implement the decision?” Measures of risk should be standard,
but they are not. And when reporting either type of measure, statistically meaningless
precision should be avoided so that it is not interpreted as meaningful. If a simulation
outputs a long-run average supply chain cost of $10,247,381.175, and this is reported, then
it may be believed even though only the first two digits, say, are statistically meaningful.

Nelson (2008), Wieland and Nelson (2009) and Song and Schmeiser (2009) present some
ideas about reporting simulation results so as to distinguish risk and error and avoid mislead-
ing precision, but they assume either risk or error is measured across i.i.d. replications, or
within a replication of a stationary process (think steady-state queueing simulation). How-
ever, what if the performance we need to evaluate is indexed by time, as in the example of
virtual waiting time in Section 47

We are willing to argue that whenever a system has time-varying load, or the performance
of interest is defined with respect to a finite planning horizon, then it will be more meaningful
to have performance measures indexed by time, rather than averaged across time. A simula-
tion analytics perspective would provide the necessary data, but the research challenges are
in estimating and displaying measures of risk and error for time-dependent outputs. And
“displaying” should not be dismissed as trivial: simulations produced high-dimensional, de-
pendent (through time and across series) output processes, possibly from multiple scenarios,
so inventing displays that capture the relevant information, yet can still be interpreted and
explored, is not easy. See Luboschik et al. (2014) for one innovative idea.

A different reporting issue arises when simulations are executed in an informal, ex-
ploratory manner that is guided by the user, as opposed to following a classical experiment
design. Since simulations are not physical experiments, data are often cheap, and results
can be collected and displayed immediately, user-driven exploration is natural. How should
we summarize a user-guided sequence of experiments on different scenarios to prevent them
from missing something or being misled, as well as insuring statistical validity of conclusions?

12

Hong and Nelson (2007) show, in a more narrow problem, how difficult it is to maintain an
overall probability of correct selection in simulation optimization when users choose the next
scenario based on the results from previous runs. Tracking, guiding and warning users seems
difficult, but progress in doing so would be a boon to effective simulation analysis.

A big step forward in the early development of simulation software was instrumenting it
to collect standard performance measures automatically: If there is a queue in the model,
then the minimum, maximum and average waiting time, queue length and server utilization
will be recorded from within each replication, and then averaged across replications as well.
When these pre-packaged statistics are what a user needs for their decision then they are in
great shape.

However, when users want to go beyond these canned measures, as they should be en-
couraged to do, our software and methods are often quite demanding of them. We expect
the user to know what other performance measure they want, what procedures to use, which
scenarios to run, and to provide settings like run length, warm-up period, number of repli-
cations, confidence level, indifference zone, etc. This is not feasible for much of the current
user population, as described in Section 3. Simulation will be applied more effectively if the
user can focus on the decision, not the method. Stated differently, the user should tell the
software what they want to know, not how to get it. Here are some examples:

e The user says, “From which of these would a small change have the biggest impact?”
The software computes derivatives or does factor screening.

e The user says, “What can I promise and be right at least 85% of the time?” The
software computes quantiles.

e The user says, “Which of these is related to the process slowing down?” The software
reports correlations.

e The user says, “What is likely to happen if I actually implement this set up?” The
software displays prediction intervals.

e The user says, “Get rid of the scenarios that are not very good.” The software performs
multiple comparisons or subset selection.

Software that works in this way would be a radical change in our thinking about how users
interact with a simulation, but it might also be the biggest advance in the use of simulation
since graphical interfaces. From an AM perspective it challenges us to create methods and
procedures that have sensible and well-justified defaults, are robust and adaptive, have useful
displays to aid in interpreting results, and generate warnings when they may have failed.

6.2 Model risk

The validity of any mathematical, computer or physical model is important if one is to have
confidence in using it to inform decisions. See Sargent (2013) for a recent survey of tools
and techniques for validating stochastic simulation models.

13

A simulation model is never expected to be a perfect representation of reality, so a
valid model is usually defined to be one that is accurate enough for the decisions that it was
created to support, which is a difficult concept to quantify. Further, even a careful validation
exercise cannot hope to vet every aspect of a model, nor can it prevent “black swan” events
that are outside of the experience of the simulation modeler or the data upon which the
model is based. Even if a model is deemed “invalid” it may still be used if nothing better is
available. In the end, validation cannot be asked to do more than provide some assurance
that good modeling practices were used, that simplifications were carefully considered, and
that simulated output data are plausible.

Taken collectively, we refer to the exposure due to an imperfect simulation model as
model risk. There is increasing demand by businesses and governments that rely on models
for analysis that goes beyond validation and toward quantifying as much of the model risk
as possible. Knowing that a model has been “validated” is reassuring, but if you can assign
a number to the model risk then you can perhaps hedge against it. Model risk management
is now a staple offering of many consulting firms.

Two forms of model risk for which quantification seems promising are input uncertainty
and calibration error. We address calibration later. Input uncertainty refers to the risk that
is derived from using estimated input models in the simulation, where “input models” are
the fully specified stochastic models from which observations are directly generated to drive
the simulation; think arrival processes in queues; bed occupancy times in hospitals; and
machine failures in manufacturing. By “estimated” we mean either fit to real-world data or
based on subjective judgment.

For input uncertainty due to fitted distributions there is a substantial literature; see the
surveys of Barton (2012) and Song et al. (2014). Much of it focuses on propagating uncer-
tainty about the estimated distributions—a topic that is well studied in both classical and
Bayesian statistics—to the output performance measures that the simulation estimates. For
instance, some methods seek to inflate the standard simulation Cls so that they account for
input distribution, as well as stochastic sampling, error. When the input models are simple,
i.e., independent, parametric, univariate distributions, there are several useful and rigorously
justified methods. Input uncertainty from multivariate input distributions, including time
series, random vectors, and nonstationary arrival processes, are the next obvious topics on
the horizon. And in the spirit of assessing risk rather than performance, Pls for actual
performance that account for input uncertainty would be more useful than CIs in many
contexts.

Less work has been done on subjectively specified input distributions; instead it is usually
treated as sensitivity analysis with respect to, say, the mean of the distribution. The concern
with this approach is that the mean is not the only aspect of the input distribution that
matters; unfortunately, a more comprehensive sensitivity analysis to the mean, standard
deviation, upper and lower bounds, certain percentiles, etc. seems cumbersome at best. Also,
being sensitive does not necessarily imply that an error is likely: input uncertainty involves
both sensitivity of the output to the input, and also the level of uncertainty about the input
itself. Formal Bayesian treatments both in eliciting the distributions and in propagating the

14

uncertainty would be welcome here.

Simply quantifying input uncertainty (or model risk more generally) still leaves open the
decision of whether and how to hedge against it. A direct approach is to formulate and solve
the decision problem including the model risk. Expanding our optimization framework from
Section 5, let the performance measure we want to maximize be 0(x; 1), where 9 is the set
of parameters of all of the input models. Ideally we would maximize over x, given the true
input parameters, denoted 9""°; instead, what we have is an estimate of 19 based on data.

Suppose that, via frequentist or Bayesian reasoning, we can define an uncertainty set U
such that {9""° € U} with high probability. Then one of many input-uncertainty-robust
formulations of the optimization problem is

x* = argmax, min6(x;19). (1)
veu

In words, we want the decision x* that maximizes over the worst case in the parameter
uncertainty set. Of course, (1) has all of the difficulties that the generic simulation optimiza-
tion problem has, plus the minimization over the uncertainty set. A critical challenge here is
defining the uncertainty set in a way that is practically sensible and over which the problem
can be solved. For instance, an uncertainty set that is too large could lead to decisions that
are too conservative to be useful. Careful thought about meaningful formulations of simu-
lation optimization under model risk, as well as solution techniques for those formulations,
will provide useful research problems in the next decade.

A related problem that has received little attention in AM, but substantial attention in
the world of deterministic computer experiments, is calibration error. One of the most-cited
references in computer experiments is Kennedy and O’Hagan (2001).

We first contrast input modeling to calibration. Input modeling uses real-world input
data to fit families and parameters of input distributions that are then used in the simulation.
Calibration, on the other hand, adjusts simulation model parameters—which could be input-
distribution or other tuning parameters—so that the simulation output closely matches the
real-world system output; this is a type of inverse problem. Calibration has seemed less
important because we so often optimize, meaning relative performance matters, and we
tend to believe (perhaps incorrectly) that model errors affect relative performance less than
absolute performance. However, as simulation plays an increasing role in assessing risk and
making accurate predictions of behavior, calibration will be desirable.

Calibration is also needed when input modeling is not possible. Many systems automat-
ically collect a wealth of process data, but these are more often output (performance) data
than they are the basic input data needed to model uncertainty in the system. Even when we
have a wealth of output data on the existing system, if we want to use simulation to change
and improve system performance then we need input models to construct the simulation.

As a stylized illustration, consider a system that is actually an M/M /oo queue with
arrival rate A and service rate p, but for which no input data are available to estimate A
and p. However, real-world output data have been collected for the number of customers in
the system () and the number of customers departing the system per unit time, D. Since

15

for this system we know that, for large t, E(Q) = A/u and E(D) = X\, we can use the
observed output data to estimate the unknown input-distribution parameters via inverse
maps: service rate ji = D/Q and arrival rate X = D. In this case the input model risk comes
only from the finite output sample used to estimate () and D, because the inverse model
and the input-distribution families are known.

In general neither the underlying distribution families nor the inverse model will be
available, implying at least two sources of risk: the finite output sample used to estimate the
input distributions, and the approximation used for the inverse model. When will invertible
relations exist between measurable outputs and the unknown input parameters? What are
practical tools for determining invertibility? How can approximations to the inverse be
constructed? What can be said about the correctness or uniqueness of the approximations?
How can we incorporate inverse model uncertainty with the other sources of uncertainty to
characterize overall model risk? These are difficult questions that need answers if we want
to use calibrated simulation models. For a neat approach that applies to a more realistic
queueing example see Goeva et al. (2014).

7 Other emerging tactical problems

Our approach has been to look at three trends that affect more than simulation—cheap
storage of big data, parallel, cloud computing, and a societal need for risk analysis, prediction
and control—and think through the broad simulation design and analysis issues that they
imply. In this closing section we describe a few other tactical problems that seem likely to
be important, but that do not fit as neatly into our framework.

Our vision for simulation analytics might also be expressed as “data analytics for systems
that do not yet exist,” since we suggest applying the philosophy of field data analytics
to synthetically generated sample paths. We hinted that a detailed analysis of simulated
sample paths could be useful for suggesting system control strategies, but that is not the
same as optimal control, since it is passive observation. Dynamic policy optimization is a
weakness for simulation methodology; we are much better at optimizing static assignments,
like allocating capacity to manufacturing cells, staff to work shifts, and beds to hospital
clinics. The methodology we have developed is not effective for state-dependent policy
optimization of complex systems. Breakthroughs in this area would greatly extend the reach
of stochastic simulation.

There are two other ways in which we touch, or are touched by, the data analytics trend.

e The standard input modeling paradigm in stochastic simulation is to (a) collect input
data; (b) fit many candidate distributions using something like maximum likelihood;
(c) evaluate using goodness-of-fit tests and conformance plots; and (d) select the “best
fit” for use in the simulation. This makes sense when data are scarce or expensive,
but probably does not when we have thousands to millions of observations; in fact, a
goodness-of-fit test is likely to reject any standard distribution when we have enough
data since real data do not come from distributions. Reusing the data themselves seems

16

very attractive, particularly when the inputs are multivariate or time-dependent, but
resampling, say, 30 empirical distributions each of 40 million data points is probably
unworkable. This suggests that we need more parsimonious representations of big
input data that do not smooth out the unusual or rare features that really exist, but
facilitate use in a simulation.

e By the very nature of the tools and models that are used, machine learning with big
data tends to be much better at interpolation than extrapolation. That is, the tools
do well in predicting properties of new cases whose attributes are within the space of
observed attributes that trained the tool. Simulation can perhaps work in concert with
machine learning for extrapolation from big data.

Of course, there will be a host of AM problems that we have not anticipated, including
some that may refine our understanding of the foundations of simulation itself. In fact,
work at the interface of simulation and applied probability is thriving, and our bet is that
some of the most exciting, and (we hope) most practically important tactical issues a decade
from now will arise there. In any event it seems likely that the problems we want to solve
will continue to outpace the computing and analysis tools we have available to solve them,
providing compelling challenges for AM for some time to come.

Acknowledgements

While the author bears sole responsibility for the opinions expressed in this article, he re-
ceived insight and feedback from discussions with Russell Barton, Shane Henderson, Jeff
Hong, Emily Lada, Yujing Lin, Dennis Pegden, Justice Pettigrew, Eunhye Song, Jeremy
Staum and Dave Sturrock. This research was partially supported by the National Science
Foundation of the United States under Grant Number CMMI-1537060. Portions of Sec-
tion 4 were based on the grant proposal, and portions of Section 6 were based on Taylor
et al. (2013).

References

Barton, R. R. (2012). Tutorial: Input uncertainty in outout analysis. In Proceedings of the
2012 Winter Simulation Conference, pp. 1-12. IEEE.

Conway, R. W. (1963). Some tactical problems in digital simulation. Management Sci-
ence 10(1), 47-61.

Conway, R. W., B. M. Johnson, and W. L. Maxwell (1959). Some problems of digital systems
simulation. Management Science 6(1), 92-110.

17

Efron, B. (2010). Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing,
and Prediction. Cambridge University Press.

Feng, M. and J. Staum (2015). Green simulation designs for repeated experiments. In
Proceedings of the 2015 Winter Simulation Conference, pp. in press. IEEE.

Glasserman, P. (1991). Gradient Estimation via Perturbation Analysis. Springer Science &
Business Media.

Glynn, P. W. and P. Heidelberger (1991). Analysis of parallel replicated simulations under
a completion time constraint. ACM Transactions on Modeling and Computer Simula-
tion 1(1), 3-23.

Goeva, A., H. Lam, and B. Zhang (2014). Reconstructing input models via simulation
optimization. In Proceedings of the 2014 Winter Simulation Conference, pp. 698-709.
IEEE.

Heidelberger, P. (1988). Discrete event simulations and parallel processing: Statistical prop-
erties. SIAM Journal on Scientific and Statistical Computing 9(6), 1114-1132.

Hong, L. J. and B. L. Nelson (2007). Selecting the best system when systems are revealed
sequentially. IIE Transactions 39(7), 723-734.

Hsieh, M.-H. and P. W. Glynn (2009). New estimators for parallel steady-state simulations.
In Proceedings of the 2009 Winter Simulation Conference, pp. 469-474. IEEE.

Kennedy, M. C. and A. O’Hagan (2001). Bayesian calibration of computer models. Journal
of the Royal Statistical Society, Series B, Statistical Methodology 63(3), 425-464.

Kim, S.-H. and B. L. Nelson (2001). A fully sequential procedure for indifference-zone
selection in simulation. ACM Transactions on Modeling and Computer Simulation 11(3),
251-273.

Luboschik, M., S. Rybacki, F. Haack, and H.-J. Schulz (2014). Supporting the integrated
visual analysis of input parameters and simulation trajectories. Computers € Graphics 39,
37-47.

Luo, J., L. J. Hong, and B. L. Nelson (2015). Fully sequential procedures for large-scale
ranking-and-selection problems in parallel computing environments. Operations Research,
in press.

Nance, R. E. and R. G. Sargent (2002). Perspectives on the evolution of simulation. Opera-
tions Research 50(1), 161-172.

Nelson, B. L. (2004). 50th anniversary article: Stochastic simulation research in Management
Science. Management Science 50(7), 855-868.

18

Nelson, B. L. (2008). The MORE plot: Displaying measures of risk & error from simulation
output. In Proceedings of the 2008 Winter Simulation Conference, pp. 413-416. IEEE.

Ni, E. C., S. G. Henderson, and S. R. Hunter (2014). A comparison of two parallel ranking
and selection procedures. In Proceedings of the 2014 Winter Simulation Conference, pp.
3761-3772. IEEE.

Pritsker, A. A. B. (1990). Papers, Ezxperiences, Perspectives. Systems Publishing Corpora~
tion.

Rinott, Y. (1978). On two-stage selection procedures and related probability-inequalities.
Communications in Statistics-Theory and Methods 7(8), 799-811.

Sargent, R. G. (2013). Verification and validation of simulation models. Journal of Simula-
tion 7(1), 12-24.

Smith, J. S. and B. L. Nelson (2015). Estimating and interpreting the waiting time for
customers arriving to a non-stationary queueing system. In Proceedings of the 2015 Winter
Stmulation Conference, pp. in press. IEEE.

Song, E., B. L. Nelson, and C. D. Pegden (2014). Advanced tutorial: Input uncertainty
quantification. In Proceedings of the 2014 Winter Simulation Conference, pp. 162—-176.
IEEE.

Song, W. T. and B. W. Schmeiser (2009). Omitting meaningless digits in point estimates:
The probability guarantee of leading-digit rules. Operations Research 57(1), 109-117.

Taylor, S. J., S. Brailsford, S. E. Chick, P. L’Ecuyer, C. M. Macal, and B. L. Nelson (2013).
Modeling and simulation grand challenges: An OR/MS perspective. In Proceedings of the
2013 Winter Simulation Conference, pp. 1269-1282. TEEE.

Tocher, K. D. (1967). The Art of Simulation. London, U.K.: English Universities Press.
Whitt, W. (1989). Planning queueing simulations. Management Science 35(11), 1341-1366.

Whitt, W. (2006). Analysis for design. Handbooks in Operations Research and Management
Science 13, 381-413.

Wieland, J. R. and B. L. Nelson (2009). How simulation languages should report results: A
modest proposal. In Proceedings of the 2009 Winter Simulation Conference, pp. 709-715.
IEEE.

19

