
Visualizing geographic information:

VisualPoints vs CartoDraw

Daniel A. Keim1,
Stephen C. North2,
Christian Panse3,
Jörn Schneidewind4

1University of Constance, Germany; 2AT&T

Shannon Laboratory, Florham Park, NJ, USA;
3University of Constance, Germany; 4University

of Halle, Germany

Correspondence:
Professor Dr. Daniel A. Keim, Computer
Science Institute, Universität Konstanz Fach
D78, Universitätsstr. 10, D-78457 Konstanz,
Germany.
Tel: +49 7531 88 3161; Fax: +49 7531 88
3062;
E-mail: keim@informatik.uni-konstanz.de

Received: 25 November 2002
Revised: 2 December 2002
Accepted: 5 December 2002

Abstract
Cartograms are a well-known technique for showing geography-related

statistical information, such as population demographics and epidemiological

data. The basic idea is to distort a map by resizing its regions according to a

statistical parameter, but in a way that keeps the map recognizable. In this
paper, we deal with the problem of making continuous cartograms that strictly

retain the topology of the input mesh. We compare two algorithms that solve

the continuous cartogram problem. The first one uses an iterative relocation of
vertices based on scanlines. This algorithm explicitly accounts for induced

shape error. The second one is based on the Gridfit technique, which uses

pixel-based distortion based on a quadtree-like data structure. The basic idea is
to insert pixels, the number of which corresponds to a statistical parameter,

into the data structure and distort the pixels such that every pixel obtains a

unique, nonoverlapping position. Relocation of vertices of the map are
positioned using the same distortion. We discuss the results obtained from

both methods, compare their shape and area trade-offs as well as their

efficiency, and show results from different applications.

Information Visualization (2003) 2, 58–67. doi:10.1057/palgrave.ivs.9500039

Keywords: Cartograms; visualization of geographic information

Introduction
Cartograms are a powerful way of visualizing geography-related informa-
tion. A cartogram is a generalization of an ordinary map, which is distorted
by resizing its regions by a geographically related input parameter.
Example applications in the literature include population demographics,1

election results,2 and epidemiology.3 Since cartograms are difficult to make
by hand, the study of automated methods is of interest.1,4 – 8

Cartograms can also be seen as a general information visualization
technique. They provide a means for trading shape against area to improve
a visualization, by scaling polygonal elements according to an external
parameter. In population cartograms, by allocating more area to densely
populated areas, patterns that involve many people are highlighted, while
those involving fewer people are emphasized less. Figure 9(a) shows a
conventional map of the 2000 U.S. presidential elections along with two
population-based cartograms representing the same information. The two
cartograms were generated using the two methods compared in this study.
In the cartogram, the area of the states is scaled to their population, and
reveals in that way the close result of a presidential election more
effectively than the professionally designed map in Figure 9(a). For a
cartogram to be effective, a human being must be able to understand
quickly the displayed data and relate it to the original map. Recognition
depends on preserving basic properties, such as shape, orientation, and
contiguity. This, however, is difficult to achieve in the general case because

Information Visualization (2003) 2, 58–67

& 2003 Palgrave Macmillan Ltd. All rights reserved 1473-8716 $25.00

www.palgrave-journals.com/ivs

http://www.palgrave-journals.com/ivs/index.html
http://www.ub.uni-konstanz.de/kops/volltexte/2008/6977/
http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-69774

it is impossible even just to retain the original map’s
topology.9 Even allowing for errors in shape and area
representations, we are left with a difficult simultaneous
optimization problem for which currently available
algorithms are very time-consuming.

The cartogram problem
Cartogram generation can be defined as a map deforma-
tion problem. The input is a planar polygon mesh (map)
and a set of values, one for each region. The goal is to
deform the map so that the area of each region matches
the value assigned to it, and in such a way that the overall
shape of the regions is preserved well enough for them to
be recognizable.

Problem. The Cartogram Problem.

Input: A planar polygon mesh P consisting of polygons
p1, y, pk, values w¼ x1, y, xk with xi40,

P
xi¼1. Let A(pi)

denote the normalized area of polygon pi with A(pi)40,P
A(pi)¼1.

Output: A topology-preserving polygon mesh �PP consisting
of polygons �pp1; . . . ; pk such that the function f ð�SS; �AAÞ is
minimized with

�SS ¼ fs1; . . . ; skg; where si ¼ dSðpi; �ppiÞ ðShape errorÞ;

�AA ¼ fa1; . . . ; akg; where ai ¼ dAðxi;Að�ppiÞÞ ðArea errorÞ:
The function f ð�SS; �AAÞ can be used as f ð�SS; �AAÞ ¼
c1

Pk
i¼1 si þ c2

Pk
i¼1 ai, where c1 and c2 are constant

weights. Intuitively, topology preservation means that
the faces of the input mesh must stay the same, that is,
the cyclic order of adjacent edges in P must be the same
as in �PP. This can be expressed formally by saying that the
pseudo-duals (The pseudo-dual of a planar graph is a graph
that has one vertex for each face and an edge connecting
two vertices if the corresponding faces are adjacent.) of
the planar graphs represented by P and �PP should be
isomorphic. It is likely that even simple variants of the
cartogram problem that involve 2-D comparison is NP-
complete.

Since it may be impossible to fulfill the area and shape
constraints simultaneously, the functions f(� , �), dS(� , �),
and dA(� , �) model the error in an output cartogram. We
discuss possible forms of these functions in more detail in
the section The CartoDraw solution.

Previous work
Several families of cartogram generators are described in
the literature. They range from trivial noncontiguous
cartograms that merely scale and display disconnected
polygons, to sophisticated solutions that apply non-
linear transformations or techniques from computational
geometry to distort a map without breaking its topology.
Examples of the latter include the conformal maps
proposed by Tobler,1 the radial expansion method of
Selvin et al.,5 the rubber sheet method of Dougenik et al.,6

the line integral method of Guseyn-Zade and Tikunov,7

the ‘piezopleth’ method of Cauvin et al.,11 and
Dorling’s11 cellular automaton approach. Very similar
drawings can also be achieved by non-linear
magnification.12 – 15

In Figure 1, we provide four examples of population
cartograms. The first is a non-continuous cartogram that
scales each polygon to the desired size but does not retain
the input map’s topology (see Figure 1(a)). While non-
continuous cartogram are easy to generate, they do not
increase the size of small polygons and are therefore of
limited use in understanding data. The second example is
a pseudo-cartogram8 that expands the map along lines of
longitude and latitude to achieve a least root-mean-
square area error (see Figure 1(b)). The third example
applies a non-linear, topologypreserving mesh transfor-
mation technique16 (see Figure 1(c)). None of the
methods mentioned so far captures an explicit notion
of shape-preservation. In contrast, the force-based ap-
proach in the fourth example alternately optimizes shape
and area error2 by a non-linear optimization process (see
Figure 1(d)). Although its results are better than most
other methods, the complex optimization algorithm has
a prohibitively high execution time of about 18 h for a
modest-sized map with 744 vertices.

Our contribution
This study compares two new methods for generating
cartograms. The first one is a recently proposed scanline-
based local repositioning of vertices.9 In essence, this
approach uses a line drawn through the map as a hint for
the direction in which to extend or contract polygons,
while explicitly computing shape error. A series of such
local improvements using different scanlines leads to the
final cartogram. The second approach is based on the
Gridfit technique implemented in the VisualPoints sys-
tem.17 Gridfit applies pixel-based distortion to a quadtree-
like data structure. In this study, we show how the Gridfit
technique can be extended to cartogram construction.
The basic idea is to insert some number of pixels,
corresponding to the desired area parameter, into the
data structure and distort the pixel placement such that
every pixel is assigned to a unique non-overlap-
ping position. The vertices of the map are then
repositioned using the same distortion. We show how
different pixel insertion algorithms can yield different
cartograms.

Algorithm 1. Cartogram ðP; wÞ
SetO fSL=GetScanlines {automatically or interactively}

P0 ¼ P

repeat

AreaErr=AreaErrorP;P0; w;

for all SLASetO fS L do

{in order of area error reduction potential}

P̄=ProcessSLðP0; X̃; SLÞ
if Topology(P̄) && (ShapeErrorðP0; P̄ÞAs then

until (AreaErr – AreaError ðP;P0; wÞrA)

59

Our main objective is to compare these methods.18 We
provide a detailed analysis of the area and shape error
trade-offs of each and compare their efficiency. We also
apply them to several different problems including
population, election and telephony data.

The paper is organized as follows. In the following
section we briefly review scanline-based cartogram gen-
eration. In the section thereafter we describe how the
Gridfit technique can generate cartograms, and
present several variants of pixel insertion. The penulti-
mate section presents a comparison using the visualiza-
tion of several real application data sets. We conclude
with open questions and ideas for future work in the last
section.

The CartoDraw solution
CartoDraw was recently proposed as a practical approach
to cartogram generation.9 In this section, we outline its
main ideas and some useful variations.

The CartoDraw algorithm
The basic idea of CartoDraw is to incrementally reposition
the vertices of the map’s polygons by means of scanlines.
Local changes are applied if they reduce total area error
without introducing excessive shape error. Scanlines may

be determined automatically, or entered interactively (see
the section on manual vs automatic scanlines). The main
search loop over the scanlines is presented in Algorithm
1. For each, it computes a candidate transformation of
the polygons, and checks it for topology and shape
preservation. If the candidate passes the tests, it is made
persistent; otherwise it is discarded. The scanline proces-
sing order depends on their potential for reducing area
error. The algorithm runs until the area error improve-
ment over all scanlines falls below a threshold A. Observe
that in processing an individual scanline, the algorithm is
allowed to increase the area error to escape local minima.
However, in each iteration of the repeat-until loop, the
area error decreases monotonically, so termination is
guaranteed.

The area error AreaErr is the sum of the single polygon
area errors. In the simplest case, the single polygon
area error function dA is the norm of the difference
of desired and actual area. If the ni and A(pi) (see
The cartogram problem section) are normalized
(ni404

P
ni¼1); (A(pi)404SA(pi)¼1), the AreaErr can

be determined as

AreaErr ¼
Xk

i¼1

dAðni;AðpiÞÞ ¼ jni
 AðpiÞj:

Figure 1 Cartogram drawing methods: (a) non-continuous cartogram, (b) Tobler,8 (c) Edelsbrunner and Waupotitsch,17 and (d)

Kocmoud and House.2

60

Depending on the application, we may also want to
weigh the area error such that the error in regions of high

interest (high values of ni) contributes more to the overall
error.

The shape of two polygons can be compared several
ways. We can approximate the curvature of the polygons
by a turning angle algorithm,19 curvature plots such as
geometric hashing20 or Fourier approximations.21 Our
implementation incorporates a Fourier transformation of
the polygons’ curvatures. If CðpÞ denotes the curvature of
a polygon p and FðCðpÞÞ denotes its Fourier transforma-
tion, the shape error dS can be determined as

dS ¼
Xk

i¼1

dEuclidðFðCðpÞÞ;FðCð�ppÞÞÞ:

Note that for polygons, the Fourier transformation of the
curvature can be determined analytically.21

Scanline-based local repositioning
The input scanlines are arbitrary, and may be computed
automatically or entered interactively (see the immediate
subsection). The idea is to use line segments (called
cutting lines) perpendicular to scanlines at regular inter-
vals. Consider the two edges on the boundary of the
polygon intersected by a cutting line on either side of the
scanline. These edges divide the polygon boundary into
two connected chains. Now, if the area constraints
require the polygon to be expanded, the algorithm
applies a translation parallel to the scanline to each
vertex on the two connected pieces of the boundary
(in opposite directions) to stretch the polygon at that

point. Similarly, if a contraction is called for, the
direction of translation is reversed. Figure 2 illustrates
the approach.

In contrast to the algorithm described by Keim et al.,9

in this study we apply translation only to points on the
boundary of the polygon mesh. We use interpolation to
remap points in the interior of the subdivision. For this
purpose, each interior point has four associated reference
points on the boundary, determined by the four closest
points to the interior point in each of the four quadrants.
The location of an interior point is updated with respect
to its reference points. Since interior points are connected
by straight line segments, a candidate update may create
an intersection of segments, violating the topology
preservation property. Consequently, the algorithm ex-
plicitly checks candidate transformations and rejects
those causing such intersections.

The processing of a single scanline is presented in
Algorithm 2. The function ScalingFactor determines if the
global polygon is to be stretched or contracted, and how
much. It computes the average of the area errors of the
polygons intersected by the cutting line, weighted by
their scale factors. The algorithm does not calculate the
new positions of all global vertices for each cutting line.
Rather, it aggregates the distortion vectors for each point
and applies the aggregate vector after all cutting lines of a
scanline have been considered.

Manual vs automatic scanlines
The central CartoDraw algorithm is independent of the
particular way that scanlines are generated. The automatic
generation of scanlines employs a fixed grid of horizontal
and vertical scanlines (see Figure 9(b)). The grid’s resolu-
tion can be varied, but within reason this has only a minor
influence on the result. Since only those scanlines that do
not induce a higher shape and area error are applied,
generating many useless scanlines causes a potential loss
in efficiency and does not improve the result.

The best cartograms seem to be obtained when the
scanlines are well adapted to the shape of the input
polygons, and are placed in areas with a high potential

Figure 2 Scanline-based local repositioning.

Algorithm 2. ProcessScanlineðP; w; SLÞ
for all cl A CuttingLines(SL) do

{cutting lines on Scanline SL}

SF=ScalingFactor({pi|pi-cla+},w)

{determines the aggregated scaling factor of all pi}

for all nAGPðPÞ do

n ¼ nþ SF � sideðn; clÞ � SL
�!j SL

�!jsideðcl; nÞ ¼ 1

if n is on the left side of cl and
1 otherwise}

61

for improvement. Automatic placement based on these
criteria so far has been difficult to achieve, therefore we
allow the user to interactively position the scanlines on the
current map (Figure 3). The scanlines seem to work best if
they are positioned such that they are either parallel or
orthogonal to the contour of the global polygon. Figure
9(b) shows an example of a set of manually placed
scanlines. Note how parts of the map needing large
changes have many scanlines of varying lengths, while
other parts have hardly any.

The VisualPoints solution
The VisualPoints system17 was developed to address the
problem of overplotting spatially referenced data. It
works by moving points that would be drawn on already
occupied pixels to nearby unoccupied pixels, instead of
overplotting them. VisualPoints assumes a hierarchical
partitioning of the data space to support efficient
repositioning of the data points while preserving their
distances and positions. In this study, we show how a
similar idea can be applied to efficient cartogram
generation. The basic idea is to insert multiple points
for a polygon, whose count is proportional to its target
area. The points are inserted into the hierarchical data
structure, and the distortion implied by the data structure
is then applied to reposition the vertices of the map.
Several different pixel insertion strategies are described,
yielding different cartograms.

The VisualPoints algorithm
In each step of the VisualPoints construction, the data set
is recursively partitioned into four subsets containing the
data points in four equally sized subregions. Since the
data points may not fit into the four equally sized
subregions, we have to determine new extents of the four
subregions (without changing the four subsets of data
points) such that the data points in each subset can be
visualized in its corresponding subregion. For an efficient
implementation, a quadtree-like data structure manages
the required information for the recursive partitioning.
The partitioning is determined as follows. Starting with
the root of the quadtree, in each step the data space is

partitioned into four subregions. The partitioning is
made such that the area occupied by each of the
subregions (in pixels) is larger than the number of
pixels belonging to the corresponding subregion (see
Figure 4).

Generating cartograms with VisualPoints
To adapt the VisualPoints technique to cartogram genera-
tion, a few changes need to be made to the original
algorithm. The modified algorithm is shown in Algo-
rithm 3. The most important changes will be explained in
more detail.

Partitioning strategy In cartogram generation, we are
interested in distorting maps instead of placing pixels, so
the modified algorithm has a different partitioning
strategy. In the original VisualPoints system, the borders
between the quadtree partitions are only shifted as much
as needed to accommodate all pixels in the quadrant. For
cartogram generation, the borders are shifted according
to the ratio of the number of pixels in the neighboring
quadrants. For example, with the original VisualPoints
algorithm, there is no change in the first step of Figure
4(b), since there is enough space (18 pixels) in the left
partition to accommodate all 12 data points. In the
modified algorithm, the border shifts proportionately to
the number of data points, that is, in a ratio of 12:2
resulting in the partition shown in Figure 5(a). Note that
the result of the second step is also different (compare
Figures 4(c) and 5(b)).

Figure 3 Population cartogram with automatically and interactively placed scanlines: (a) automatic scanlines and (b) interactive

scanlines.

Figure 4 Original VisualPoints algorithm: (a) example data, (b)

horizontal, and (c) vertical.

62

No pixel placement A second difference between the
original and the modified VisualPoints algorithm is that
pixels do not need to be positioned. They are only needed
to determine an optimal partitioning of the modified
quadtree for the subsequent transformation of map
polygons. It is also no longer necessary to search for
free space to avoid overlapping pixels. Since pixels do not
need to be positioned, we can further optimize the space
and time complexity of the algorithm by storing a pixel
at a given position only once.

Pixel insertion strategies To scale the polygons according
to their desired size, we represent the polygons by pixels.
If a polygon needs to shrink, we insert fewer pixels than
what its shape accommodates, thus creating free space; if
a polygon needs to expand, an excess of pixels are
inserted,

leading to overlapping pixels. The idea is to distort
the map such that all pixels can be placed without
overlap. In the best case, the overlapping pixels of the
growing polygons use the free space of neighboring
shrinking polygons. The pixel insertion strategy
determines where the pixels are placed for growing

and shrinking polygons. We tried the following
strategies:

 Bottom–top: Shrinking polygons are filled with pixels
starting at the top and going downward until all
pixels are set, and the overflow pixels are positioned at
the top of the expanding polygons (see Figure 6(a)).

 Left–right: Shrinking polygons are filled with pixels

starting on the left going right, and the overflow pixels
are positioned at the right sides of the expanding
polygons (see Figure 6(b)).

 Center–outside: Shrinking polygons are filled with

pixels from the center going outward, and the overflow
pixels are positioned at the edges of the expanding
polygons (see Figure 6(c)).

Observe that pixels are only used to construct the
quadtree-like data structure but are not actually posi-
tioned as in case of the VisualPoints system, so the exact
position of each pixel is not that important. As Figure
6(a–c) shows, the pixel insertion strategy is of great
importance for the quality of the resulting cartograms,

Figure 5 VisualPoints algorithm for cartograms: (a) horizontal

and (b) vertical.

Algorithm 3. VPcartoðP; wÞ
Quadtree Q; {empty initialized Quadtree}

for all polygons PAP do

point cur=FindStartPoint(P);

while pcoP.DesiredArea(w) do

{area is represented as pixels}

now=P.ComputeNextPosition(cur);

{depends on insert strategy}

Q.InsertQuadtree(cur);

pc=pc+1;

Trans formQuadtree(Q);

{moves the borders of the quadtree}

for all polygons PAP do

for all points pAP do

qnode node=Q.FindNode(p);

p=scale(node,p);

{depends on new height and width of node}

Figure 6 Insertion strategies: (a) top–bottom, (b) left– right,

(c) center–outside.

63

especially with respect to the shape of the polygons and
the overlap of 13 edges. The differences result from the
different partitioning of the quadtree induced by the
insertion strategies.

Determination of the polygon mesh After the quadtree
is constructed, it is applied to distort the vertices of
the polygon mesh. Each vertex is repositioned
separately: first the cell of the quadtree containing the
vertex is found. Then the new position of the vertex is
calculated by scaling the cells of the quadtree on each
level according to the desired size of the cells
(corresponding to the number of pixels). By
repositioning each vertex, we iteratively construct the
distorted polygon mesh.

Comparison and evaluation
The CartoDraw algorithm described in the section on The
CartoDraw solution was implemented in C++ using the
LEDA library22 and the VPCarto algorithm described in
the previous section was implemented in Java. The tests
reported in this section were performed on a 1 GHz
Pentium computer with 512 Mbytes of main memory. In
the following, we report and discuss the results and
compare the effectiveness and efficiency of both ap-
proaches.

Efficiency and effectiveness
Figure 7 shows the measured efficiency and effectiveness
results. The total run time was 3 s for the new VisualPoints
approach, 25 s for the automatic scanline approach,
and 16 h for the non-linear optimization approach by
Kocmoud and House.2 (The comparison assumes
that all algorithms run on a 120 MHz computer.) Note
that the scale on the y-axes of Figure 7 is logarithmic.
The VPCarto approach is more than four orders of
magnitude faster than the Kocmoud and House ap-
proach, about two orders of magnitude faster than the
interactive scanlines, and about one order of magnitude
faster than the automatic scanlines. Since the VPCarto
algorithm has no explicit notion of shape, its shape
preservation is not as good as that of CartoDraw. Figure
7(b) compares shape vs area error for population
cartograms made with VPCarto and interactive scanlines,
measured on the four call volume cartograms of
Figure 8. The results clearly indicate that the shape error
of the CartoDraw (interactive scanlines) is always con-
siderably better than that of the VPCarto results, and
slightly worse for the area error. Since the total shape
error is basically an average over the statewise area error,
Figure 7(c) shows the shape error by state, sorted by shape
error. Figure 7(c) reveals that the CartoDraw algorithm
consistently provides a lower shape error than the
VPCarto algorithm.

Application examples
We applied both algorithms to several example data sets.
In all figures, the area of the states in the cartograms

corresponds to population and the colors represent the
different values. Figure 9(c) shows the U.S. population
cartogram with the percentage of the tax paid per
capita.23 Since the area of a state corresponds to the
number of inhabitants, the cartograms show how many
people and which part of the country has to pay low,
medium, or high capita tax rates.

Figure 9(d) visualizes the percentage of uninsured
drivers. An average about 14% of the drivers are

Figure 7 Efficiency and effectiveness results: (a) run-time

comparison, (b) shape error vs area error (The four points are

connected by a spline to make clear which points belong to

which approach. The spline has no meaning in itself.), and (c)

sorted shape.

64

uninsured, but in some states, the number is much
higher. The cartogram shows the states with high rates of
uninsured drivers and provides an impression of how the
uninsured rate depends on the geographical location. In
New Mexico and Colorado, for example, the number of
uninsured drivers, represented by red color, is very high
in contrast to New England states, where the blue color

reflects a low percentage of uninsured drivers. Note that
the VPCarto algorithm provides slightly lower area error,
while the CartoDraw algorithm provides superior shape
preservation. (Notice, for example, shape distortion in
New England.)

We also have applied cartograms to monitoring a
continuous stream of telephone call volume data.
Figure 8 shows the results of the telephone call volume
(by origination, normalized by population) at four
different times during 1 day. Color is redundantly
mapped to the normalized call volume, with brighter
colors corresponding to smaller call volumes. The result-
ing visualizations clearly reflect the different time zones
of the US, and show interesting patterns of phone usage
as it changes during the day. For example, we see the
western part of the country shrink in size in the early part
of the day (6 a.m. EST) and slowly increase in size as the
day goes on, reflecting increasing traffic originated in
that part of the country. It is interesting that the call
volume is especially high in the morning and in the
evening (see Figures 8(a–e) and (d–h): 6 a.m. on the east
coast and midnight on the west coast), while it is slightly
lower during the day. Again, the VPCarto algorithm has a
slightly lower area error, while the CartoDraw algorithm
(interactive scanlines) provides a better shape preserva-
tion. The evaluation and comparison shows that both
approaches have their advantages and disadvantages:
while CartoDraw is superior in shape preservation, it
needs significantly more run time and yields somewhat
higher area error. In contrast, VPCarto runs in interactive
time 18 independent of the number of polygons
involved, but does not deal with the shape of the
polygons and therefore problems with local edge cross-
ings can occur.

Conclusions and future work
We analyzed and discussed the problem of efficient
cartogram drawing, and proposed a new cartogram
drawing heuristic based on the VisualPoints algorithm.
The new algorithm offers improved area error results
and significantly less running time, at some cost in
the final shape error. Experiments show that both
algorithms offer good results for a variety of applications,
and the speed of the new algorithm allows interactive
animation of online data for maps of many dozens of
polygons.

While the proposed algorithms are a significant step in
fast, reliable, and effective cartogram generation, there
are many potential directions for further improvements
of this work. One promising area is improve shape
preservation in the VPCarto approach, possibly by
starting with a CartoDraw map generated by automatic
scanlines and further refining it using the VPCarto
approach. An important related question is how to better
determine the placement of scanlines automatically. It is
possible that this could open the way to achieve
performance comparable to that of the best aspects of
both heuristics.

Figure 8 Long-distance call volume data computed with

CartoDraw (left) and VisualPoints (right). The unipolar colormap

shows the normalized call volume: (a) 6 a.m., (b) noon, (c)

6 p.m., and (d) midnight.

65

Figure 9 Population 2000 cartograms computed with CartoDraw (left) and VisualPoints (right) helps to demonstrate several data.

66

References
1 Tobler WR. Cartograms and cartosplines. Proceedings of the 1976

Workshop on Automated Cartography and Epidemiology (Washing-
ton, DC, 1976), 53–58.

2 Kocmoud CJ, House DH. Continuous cartogram construction. Proceed-
ings of the IEEE Visualization (Research Triangle Park, NC, 1998),
197–204.

3 Gusein-Zade S, Tikunov V. Map transformations. Geography Review,
1995; 9: 19–23.

4 Dent BD. Cartography: Thematic Map Design, 4th edn, Chapter 10,
William C. Brown: Dubuque, IA, 1996.

5 Selvin S, Merrill D, Schulman J, Sacks S, Bedell L, Wong L.
Transformations of maps to investigate clusters of disease. Social
Science and Medicine 1988; 26: 215–221.

6 Dougenik JA, Chrisman N, Niemeyer DR. An algorithm to construct
continuous area cartograms. The Professional Geographer 1985; 37:
75–81.

7 Gusein-Zade S, Tikunov V. A new technique for constructing
continuous cartograms. Cartography and Geographic Information
Systems 1993; 20: 66–85.

8 Tobler WR. Pseudo-cartograms. The American Cartographer 1986; 13:
43–40.

9 Keim DA, North SC, Panse C. Cartodraw: a fast algorithm for
generating contiguous cartograms. IEEE TVCG 2003, to appear.

10 Cauvin C, Schneider C, Cherrier G. Cartographic transformations
and the piezopleth method. The Cartographic Journal 1989; 26: 96–
104.

11 Dorling D, Area Cartograms: Their Use and Creation, 1st edn.
Department of Geography, University of Bristol: England, 1996.

12 Keahey T, Robertson E. Nonlinear magnification fields. Proceedings of
the IEEE Symposium on Information Visualization (Phoenix, AZ,
1997), 51–58.

13 Munzner T. Exploring large graphs in 3D hyperbolic space. IEEE
Computer Graphics & Applications 1998; 18: 18–23.

14 Carpendale MST, Cowperthwaite DJ, Tigges M, Fall A, Fracchia FD.
The TARDIS: a visual exploration environment for landscape dynamics.
Visual Data Exploration and Analysis VI, Proceedings of the SPIE, Vol.
3643 (San Jose, CA, January 1999), 110–119.

15 Alan Keahey T. Area-normalized thematic views. Proceedings of the
International Cartography Assembly (Ottawa, Canada, August 1999).

16 Edelsbrunner H, Waupotitsch R. A combinatorial approach to
cartograms. Computational Geometry 1997; 7: 343–360.

17 Keim DA, Herrmann A. The gridfit algorithm: an efficient and effective
approach to visualizing large amounts of spatial data. Proceedings of
the IEEE Visualization (Research Triangle Park, NC, 1998), 181–188.

18 Keim DA, North SC, Panse C, Schneidewind J. Efficient cartogram
generation: a comparison. Proceedings of the IEEE Information
Visualization 2002 (Boston, Massachussets, 2002), 33–36.

19 Horn P, Berthold K. Robot Vision. MIT Press: Cambridge, MA, 1986.
20 Rigoutsos I, Hummel R. Massively parallel model matching: geo-

metric hashing on the connection machine. IEEE Computer 1992; 25:
33–42.

21 Berchtold S, Keim DA, Kriegel H-P. Using extended feature objects for
partial similarity retrieval. VLDB Journal 1997; 6: 333–348.

22 Mehlhorn K, Näher S. The LEDA Platform of Combinatorial and
Geometric Computing, 1st edn. Cambridge University Press: Cam-
bridge, 1999, http://www.mpi-sb.mpg.de/Bmehlhorn/LEDA-
book.html.

23 HSH Home Plans. http://homeplans.hsh.com/articles/taxes/state-tax-
percapita.asp, December 2002.

24 History Central, www.multied.com/elections, March 2002.
25 CNBC. http://www.moneycentral.msn.com/articles/insure/basics/

6292.asp, December 2002.

67

	Text5:
	Text6:
	Text7:
	Text8: Konstanzer Online-Publikations-System (KOPS)
URL: http://www.ub.uni-konstanz.de/kops/volltexte/2008/6977/
URN: http://nbn-resolving.de/urn:nbn:de:bsz:352-opus-69774
	Text9: First publ. in: Information visualization 2 (2003), 1, pp. 58-67

